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ABSTRACT

From biology to engineering, while numerous applications are based on capillary phenomena in tubes having roughened surfaces, such as
blood transport, paper-based rapid diagnostics, microfluidic fuel cells, and shale gas transport, the dynamics of such capillary flow remains
poorly understood. We present a theoretical model for a circular undulated tube that has an idealized cosine-type inner wall characterized by
two key morphological parameters: undulation amplitude and axial wave number. With the tube oriented at an arbitrary angle, we first char-
acterize the apparent contact angle of the fluid as a function of local distortion angle and then establish a theoretical model involving inertia,
viscosity, and gravity to describe the dynamics of capillary flow. A dimensionless number combining the three forces is introduced to quan-
tify their influence. The model predictions reveal that, in an undulated tube with large wave numbers, the capillary height in equilibrium state
is generally lower than that in a smooth tube of similar dimensions, whereas the reverse holds if the wave number becomes relatively small.
When the viscosity of fluid is sufficiently small, capillary oscillation in an undulated tube is alleviated relative to that in a smooth tube, and
hence stable capillary flow forms more easily in the former.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0048868

I. INTRODUCTION

Numerous applications in a wide range of fields from biology, geo-
physics to engineering are based on the phenomena of capillary flow in
small channels, such as blood transport,1 paper-based rapid diagnostics,2

microfluidic fuel cells,3 functional hydrogels,4 shale gas transport,5 and
bio-printing.6 Often, for such applications, the channels (i.e., tubes) in
which the fluids undergo capillary rise (or fall) may not be smooth but
exhibit undulated (roughened) inner walls. For instance, varicose, sinu-
ous, or sausage-like geometries are frequently found in pathologies of
tracheal tubes, renal tubes, or arteries, which change the fundamental
behavior of fluid flow.7 It is therefore important to investigate, both the-
oretically and experimentally, the dynamics of capillary flow in undu-
lated channels, so as to better understand the capillary phenomenon
and exploit it in technologies such as heart pumps.8

Capillary flow in a wide variety of channels has been extensively
studied under the assumption of smooth channel walls, as comprehen-
sively reviewed by Washburn9 and Bosanquet,10 among others.

Washburn presented an equation to quantify the capillary height in a
circular smooth tube, which was subsequently validated experimen-
tally.9 However, the Washburn equation does not consider inertia,
which leads to an unphysical infinite velocity of imbibition, making it
inapplicable on long timescales. Bosanquet10 addressed the issue by
taking into account the inertia term. Recently, to better understand the
problem, the Buckingham p theorem was used to perform dimension-
less analysis of dynamic capillary rise in a smooth tube.11 Upon intro-
ducing an aspect ratio, similar dimensionless analysis was applied to
characterize capillary flow in a rectangular channel.12 Most recently,
capillary rise in a smooth tube was studied, both experimentally and
theoretically.13,14 Nonetheless, as existing research predominantly
focused on capillary flow in smooth tubes, how changes in the contact
angle affect the dynamics of capillary flow in tubes with undulated
walls needs to be quantified.15,16

Investigating how a liquid spreads over a rough surface, Wenzel
proposed a roughness factor for contact angle measurement,17 which
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was verified experimentally.18 Since then, the Wenzel contact angle
has been widely used to describe the contact behavior of fluid on rough
surfaces.18–21 Built upon the Wenzel contact angle, several studies also
directed efforts to capillary flow in undulated channels. For instance,
horizontal capillary flow in conical and parabolic channels (or tubes)
as well as vertical capillary flow in a parabolic channel was studied
both experimentally and theoretically,22,23 horizontal capillary flow in
a tube with sinusoidal walls was investigated using dimensionless anal-
ysis,24 and vertical capillary flow in a channel between two plates cov-
ered with cylindrical micropillar arrays was studied experimentally.25

However, in practice, most channels are oriented at an arbitrary angle,
with vertical and horizontal channels being the limiting cases. It is
therefore necessary to extend existing analyses of horizontal and verti-
cal capillary flows to cover arbitrarily oriented tubes with undulated
walls, especially the dynamic rise/fall (i.e., advancing/receding) of the
flow.

In the present work, we aim to quantify the effect of undulation
(i.e., surface roughness) on capillary rise in a tube oriented at an arbi-
trary angle. For simplicity, we assume idealized cosinoidal undulation
on the inner wall of a circular tube in the axial direction and account
for forces originating from inertia, viscosity, and gravity to characterize
the dynamics of capillary flow. To facilitate the description of different
cases of capillary rise, a dimensionless number is introduced that com-
bines all three types of the forces. It is demonstrated that the analysis is
valid when the amplitude of wall undulations is relatively small in
comparison with the mean radius of the tube.

II. MODEL OF CAPILLARY RISE

Figure 1 illustrates schematically the phenomenon of capillary
rise in a circular tube with an undulated (i.e., roughened) inner wall,
oriented at an arbitrary angle / relative to the horizontal surface. For
symmetry, let 0 � / � p=2, with / ¼ p=2 (/ ¼ 0) indicating a verti-
cal (horizontal) tube. To facilitate mathematical modeling, we assume
an idealized periodic undulation, with the radius of the undulated tube
described by

R zð Þ ¼ R0 � e cos
2p
b
z

� �
¼ R0 1� e cos a

z
R0

� �� �
; (1)

which can be transformed into an arbitrary function with a Fourier
series. Here, R0 is the mean radius of the undulated tube, the dimen-
sionless amplitude e is the ratio of e to R0, a ¼ 2pR0=b is the dimen-
sionless wave number of the undulation, and e and b are the
amplitude and wavelength of the undulation, respectively. The greater
a is, the greater is the spatial density of the undulations. Given a wet-
ting wall surface, an incompressible viscous Newtonian fluid can be
driven up by capillary force, as shown in Fig. 1.

Let h(t) be the height of the meniscus at time t. In this study, we
assume that the wall is rigid and thus does not deform as the fluid
rises, and we neglect the influence of entry loss and exit loss on
dynamic capillary rise. Furthermore, to avoid complications such as
trapped air, complete wetting is assumed.18,26

The total external force acting on the fluid inside a tube equals
the rate of change of momentum10

F ¼ d m _hð Þ
dt

¼ Fcap � Fvis � Fg : (2)

The negative signs preceding Fvis and Fg indicate that, together, the vis-
cous force and the gravity counter the rise of the fluid, thereby doing
negative work as it rises. To quantify the effect of undulation on the
height to which the fluid rises, we derive the relationship between the
three forces in Eq. (2) and h(t).

In the first place, the rate of change in momentum is given by

F ¼ d m _hð Þ
dt

¼
d pq

ðh
0
R2 zð Þdz _h

 !

dt

¼ pqR2
0

d
ðh
0

1� e cos a
z
R0

� �� �2
dz _h

 !

dt
; (3)

where m is the mass in a control volume enclosed by the undulated
wall, z¼ 0 and z¼ h, and q is the fluid density.

Next, to determine the apparent contact angle between the
fluid surface and the undulated surface, we consider a local distor-
tion of the contact line. As shown schematically in Fig. 2, the appar-
ent contact angle u gradually changes with position on the wall
from the advancing state to the receding state. For both cases (i.e.,
positive slope and negative slope), the apparent contact angle can
be expressed as

u ¼ hþ arctan
dR
dz

hð Þ
� �

¼ hþ arctan ae sin a
h
R0

� �� �
; (4)

where h is the static contact angle. Next, by using the Young–Laplace
equation, the capillary force exerted on the fluid in the undulated tube
is given by

FIG. 1. Capillary rise in a circular tube with a cosinoidally undulated inner wall. R0
is the mean radius of the tube, e is the undulation amplitude, b is the undulation
wavelength, and / (0�/�p/2) is the orientation angle of the tube.
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Fcap ¼ 2c
cos uð Þ
R hð Þ pR2 hð Þ

¼ 2pR0c cos uð Þ 1� e cos a
h
R0

� �� �
; (5)

where c is the fluid surface tension.
At low Reynolds numbers, the Hagen–Poiseuille equation

remains valid for jdR=dzj ¼ eaj sin ðaz=R0Þj � 1,23 so the fluid veloc-
ity along the axis of the undulated tube is given by

w rð Þ ¼ 1
4g

r2 � R2ð Þ dp
dz

; (6)

where g is the dynamic viscosity of the fluid, and r is the radial posi-
tion in cylindrical coordinates.

For 0 � j sin ðaz=R0Þj � 1, the product of e and a having a value
less than 0.3 can ensure the validity of the H-P equation under all sit-
uations. However, the validity is not limited to that: for example, when
j sin ðaz=R0Þj ¼ 0:01 and ea¼ 30, jdR=dzj ¼ 0:3 � 1. For global
validity, e and a should have values in reasonable ranges to ensure that
the product of them is less than 0.3, as shown in Table I.

For a circular tube, the volumetric flow rate is given by

Q ¼ pR2 hð Þ _h ¼ �pR4 zð Þ
8g

dp
dz

; (7)

so the pressure gradient may be expressed as

dp
dz

¼ � 8gR2 hð Þ _h
R4 zð Þ : (8)

From (6) and (8), the stress tension exerted on the undulated wall is

s ¼ g
dw
dr

jr¼R zð Þ ¼
R zð Þ
2

dp
dz

¼ � 4gR2 hð Þ _h
R3 zð Þ ; (9)

and the viscous force exerted on the fluid is calculated by

Fvis ¼ �2p
ðh
0
R zð Þdzs

¼ 2p
ðh
0
g
4R2 hð Þ _h
R3 zð Þ R zð Þdz

¼ 8pgR2 hð Þ _h
ðh
0

1
R2 zð Þ dz:

: (10)

The force exerted by fluid gravity on the control volume is

Fg ¼ pqg sin /ð Þ
ðh
0
R2 zð Þdz: (11)

Finally, substituting Eqs. (3), (5), (10), and (11) into Eq. (2) yields

q

d
ðh
0

1� e cos a
z
R0

� �� �2
dz _h

 !

dt

¼ 2c cos uð Þ
R0

1� e cos a
h
R0

� �� �
� 8gR2 hð Þ

R2
0

_h
ðh
0

1
R2 zð Þ dz

� qg sin /ð Þ
R2
0

ðh
0
R2 zð Þdz; (12)

which is the equation governing dynamic capillary rise in an undu-
lated tube.

With the capillary force taken as a scaler, Eq. (12) can be rewrit-
ten in a more convenient form as

a
f0

d
ðh
0

1� e cos a
z
R0

� �� �2
dz _h

 !

dt
þ b

f1
f0
h _h þ c

f2
f0
h sin /ð Þ ¼ 1;

(13)

where

a ¼ qR0

2c cos hð Þ ; (14a)

b ¼ 4g

R0c cos hð Þ ; (14b)

c ¼ qgR0

2c cos hð Þ ; (14c)

and

FIG. 2. The apparent contact angle u on the undulated inner surface of a circular
tube gradually changes with tube position h. The origin of the cylindrical coordinates
is placed at the tube center (r¼ 0 and z¼ 0).

TABLE I. The relationship between e and a which ensures the global validity of the
Hagen–Poiseuille equation.

e 0.001 0.01 0.1 0.3 0.5

a <300 <30 <3 <1 <3/5
ea <0.3 <0.3 <0.3 <0.3 <0.3
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f0 hð Þ ¼ cos uð Þ
cos hð Þ 1� e cos a

h
R0

� �� �
; (15a)

f1 hð Þ ¼ R2 hð Þ
h

ðh
0

1
R2 zð Þ dz; (15b)

f2 hð Þ ¼ 1
R2
0h

ðh
0
R2 zð Þdz: (15c)

The first, second, and third terms on the left side of Eq. (13) account
for the inertial effect, the viscous effect, and the gravitational effect,
respectively.

In the limit e¼ 0, we have R(z)¼R(h)¼R0, f0¼ 1, and f1¼ 1,
and f2¼ 1. The problem then becomes that of capillary rise in a
smooth tube, and Eq. (13) simplifies to

a
d h _hð Þ
dt

þ bh _h þ ch sin /ð Þ ¼ 1; (16)

which is consistent with the result of Ref. 11. If the flow reaches steady
state when t ! 1, both the inertial and viscous forces vanish so that
the steady-state capillary height is obtained by solving heq ¼ qgR0=
½2c cos ðhÞ� for / ¼ p=2.

In the next section, we use the established theoretical model to
analyze the dynamic process of capillary flow in the undulated tube of
Fig. 1.

III. NUMERICAL RESULTS AND DISCUSSION

Equation (13) governs the dynamics of capillary rise in an undu-
lated tube oriented at an arbitrary angle. However, at different stages
of the fluid rise, one of the three forces due to inertia, viscosity, or grav-
ity is relatively weak compared with the other two and thus may be
neglected when solving Eq. (13). For example, the force due to gravity
is relatively small during the initial stage10 or in a microgravity envi-
ronment, whereas the inertial effect can be neglected when the rising
height h> 0.1heq.

11 Moreover, the viscous effect is small at the onset of
capillary rise27 or for a low-viscosity fluid.

Consequently, for these three different scenarios, we can adopt
the three different nondimensionalization methods previously pro-
posed for smooth tubes.11 Generally speaking, these methods involve
scaling the problem with only two of the three forces, with the initial
conditions given by hðt ¼ 0Þ ¼ 0 and _hðt ¼ 0Þ ¼ 0. Furthermore, to
quantify the influence of inertial, viscous, and gravitational forces in
each of the three scenarios (i.e., small inertia, small viscosity, and small
gravity), we introduce the following dimensionless number that com-
bines all three forces:

X ¼
ffiffiffiffiffiffiffi
b2

ac2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128c cos hð Þg2

q3g2R5
0

s
:

A. Effect of undulation on the height of capillary rise
with negligible inertia

For the case of small inertia, upon choosing the viscous and grav-
itational forces as the scaling parameters, the dimensionless rising
height h� and the corresponding dimensionless time t� take the form

h� ¼ ch ¼ qgR0

2c cos hð Þ h ¼ h
h0

; (17a)

t� ¼ c2

b
t ¼ q2g2R3

0

16gc cos hð Þ t ¼
t
t0
: (17b)

The apparent contact angle u can be expressed by using h� and t� as

u ¼ hþ arctan ae sin
2a
Bo

cos hð Þh�
� �� �

; (18)

where Bo ¼ qgR2
0=c is the Bond number,28 which reflects the impor-

tance of gravity relative to surface tension. For many fluids, such as
Castor oil or UCONTM oil, the value of Bo falls within the range of
0.6–32.29 Thus, for illustration purposes, we assume herein Bo¼ 30.

In terms of dimensionless variables, Eq. (13) can be rewritten as

1

X2f0 h�ð Þ

d
ðh�
0
R�2 z�ð Þdz� _h�

 !

dt�

þ f1 h�ð Þ
f0 h�ð Þ h

� _h
� þ f2 h�ð Þ

f0 h�ð Þ h
� sin /ð Þ ¼ 1; (19)

where the dimensionless parameter X is put into the inertia term to
control the influence of inertia. As X increases, the influence of inertia
decreases. X¼ 100 is sufficiently large to simulate typical cases of neg-
ligible inertia. Here, the tube radius is normalized to R0,
R�ðz�Þ ¼ RðzÞ=R0, and the distance variable is normalized to h0,
z� ¼ z=h0. The coefficients f0, f1, and f2 can thence be rewritten in
dimensionless forms as

f0 h�ð Þ ¼ cos uð Þ
cos hð Þ R

� h�ð Þ; (20a)

f1 h�ð Þ ¼ R�2 h�ð Þ
h�

ðh�
0

1
R�2 z�ð Þ dz

�; (20b)

f2 h�ð Þ ¼ 1
h�

ðh�
0
R�2 z�ð Þdz�: (20c)

Figures 3 and 4 plot the dimensionless rising height h� as a func-
tion of dimensionless time t� for selected amplitudes (e¼ 0, 0.05, 0.1,
0.2, and 0.3) and wave numbers (a¼ 0, 5, 10, 15, and 20), at /¼p/2
(vertical tubes) and /¼ p/4 (inclined tubes), respectively. When e¼ 0,
the present result is consistent with the classical Washburn solution
for smooth tubes, given by9

t� ¼ �h� � ln 1� h�ð Þ: (21)

The results shown in Figs. 3 and 4 show that the height of capil-
lary rise increases with time, eventually reaching steady state where the
gravity balances the capillary force. For large wave numbers (cf.
a¼ 10), the steady-state height decreases with increasing undulation
amplitude e, but increases with increasing e when a is relatively small
(cf. a¼ 5) [see Figs. 3(a) and 4(a)]. In other words, the static flow resis-
tance increases when the undulation is denser and the amplitude is
larger. Possible reasons for this observation will be discussed in detail
later by studying how the steady-state height varies as a function of e
and a.

Comparing Fig. 3 with Fig. 4 shows that the steady-state height
in an inclined tube exceeds that in a vertical tube with the same undu-
lation structure. This occurs because, to balance the capillary force, the
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fluid in the inclined tube needs to rise higher to experience the same
force of gravity as in the vertical tube.

Figure 5 shows the contour lines of steady-state height with vary-
ing amplitude e and wave number a. Note that the steady-state height
in an undulated tube equals that in a smooth tube if h� ¼ 1. Figure 5
shows that the steady-state height is less than 1 for sufficiently large a
(a> 8) and e> 0.05. Under such conditions, the wall undulation is so
dense that numerous positions are available with a large radius
(R0 þ e) for the fluid to crossover, thereby reducing the capillary force.
Nevertheless, when the wave number a becomes sufficiently small
(a <8), the wavelength becomes so large that the radius of the local
position on the undulated surface remains almost unchanged during
the whole rising process. This, together with the fact that the radius
R0 � e is less than R0, induces a larger capillary force, leading to a
higher steady-state height (h� > 1).

B. Effect of undulation on the height of capillary rise
with negligible viscosity

For the case of negligible viscosity, the inertial and gravitational
forces are taken as the scaling parameters, so the dimensionless rising

FIG. 3. Dynamic rising in the small-inertia
case (X ¼ 100; / ¼ p=2) for selected
undulation amplitudes and wave numbers:
(a) a¼ 5 and 10 and (b) e¼ 0.2 (from
top, a¼ 0, 5, 10, 15, and 20).

FIG. 4. Dynamic fluid rise in the small-
inertia case (X ¼ 100; / ¼ p=4) for
selected undulation amplitudes and wave
numbers: (a) a¼ 5 and 10, and (b)
e¼ 0.2 (from top, a¼ 0, 5, 10, 15, and
20).

FIG. 5. Contours of steady-state fluid height in small-inertia case
(X ¼ 100; / ¼ p=2).
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height h� and the corresponding dimensionless time t� can be
expressed as

h� ¼ ch ¼ qgR0

2c cos hð Þ h ¼ h
h0

; (22a)

t� ¼
ffiffiffiffi
c2

a

r
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qg2R0

2c cos hð Þ

s
t ¼ t

t0
: (22b)

We must note that, due to the choice of different scaling parameters, t0
in (22b) is different from the one in the case of negligible inertia [cf.
Eq. (17b)], so the dimensionless times t� in the two cases are not iden-
tical. Since the main purpose of this study is to investigate the effect of
undulation on capillary rise in different cases, we do not discuss the
consecutiveness of t�. Substituting (22) in Eq. (13) yields

1

f0 h�ð Þ

d
ðh�
0
R�2 z�ð Þdz� _h�

 !

dt�
þX

f1 h�ð Þ
f0 h�ð Þh

� _h
� þ f2 h�ð Þ

f0 h�ð Þh
� sin /ð Þ¼ 1;

(23)

whereX is put into the viscous term to regulate the influence of viscos-
ity. Decreasing X decreases the influence of viscosity. In the present
study, we take X¼ 0.1 to represent cases of negligible viscosity.

It is noticed that, at the onset of capillary rise, the viscosity force
is negligible. As shown in Fig. 6(a), when e¼ 0, the present results are
entirely consistent with the analytical solution presented by Qu�er�e for
smooth tubes,27

h� ¼ t� 1� t�

6

� �
: (24)

Alternatively, when the viscosity of fluid is small, the rising height first
increases, then oscillates, and finally tends to steady state with increas-
ing time (see Figs. 6 and 7). It is found that the ratio of maximum
height to steady-state height lies within the range of 1.2–1.5 for the
selected amplitude e and wave number a. Because the viscosity is neg-
ligible, viscous damping cannot stop the flow from crossing over the
steady-state position. As a result, the capillary force and the gravity
require a certain time to produce the balanced state, during which the

oscillation amplitude gradually decreases. In addition, the oscillation
frequency increases when either e or a increases.

For large wave numbers, a larger undulation amplitude produces
a larger static flow resistance and a larger damping for fluid flow. As a
result, the steady-state height decreases with increasing e, and the
oscillation is alleviated (see Figs. 6 and 7). However, when the wave
number is relatively small, increasing the amplitude increases the sur-
face tension since the tube radius is reduced, which in turn increases
the steady-state height.

Like the case of small inertia, we use the model to determine how
the combination of undulation amplitude and wave number affects
the steady-state height in the case of negligible viscosity. However,
once capillary flow achieves the steady state, the gravity is balanced by
the capillary force, and hence the steady-state height becomes inde-
pendent of inertia and viscosity. That is, changing the viscosity of the
fluid affects only the oscillation. As a result, the outcome is almost the
same as that shown in Fig. 5 for the case of negligible inertia; thus, for
brevity, it is not presented here.

C. Effect of undulation on the height of capillary rise
with negligible gravity

Finally, consider the effect of undulation on capillary rise when
the gravity is negligible. Analogous to the other two cases discussed
above, upon taking the inertial and viscous forces as scaling parame-
ters, the relevant dimensionless variables become

h� ¼ bffiffiffiffiffi
2a

p h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16g2

qR3
0c cos hð Þ

s
h ¼ h

h0
; (25a)

t� ¼ b
a
t ¼ 8g

qR2
0
t ¼ t

t0
: (25b)

Note that, in (25), the dimensionless rising height h� and the corre-
sponding dimensionless time t� differ from the other two cases.
Therefore, the apparent contact angle also differs, as given by

u ¼ hþ arctan ae sin
a

4Oh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hð Þ

p
h�

� �� �
; (26)

FIG. 6. Dynamic fluid-rise in the small-
viscosity case (X ¼ 0:1; / ¼ p=2) for
selected undulation amplitudes and wave
numbers: (a) a¼ 10 (from top, e¼ 0,
0.05, 0.1, 0.2, and 0.3) and (b) e¼ 0.2
(from top, a¼ 0, 5, 10, 15, and 20).
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where Oh ¼ g=
ffiffiffiffiffiffiffiffiffiffi
R0qc

p
is the Ohnesorge number that relates the vis-

cous force to the inertial force and surface tension, thereby reflecting
the importance of the viscous force. For instance, the viscosity, density,
and surface tension of a typical lubricant oil are about g ¼ 0.13Pa s,
q¼ 885 kg/m3, and c¼ 25mN/m,30 respectively. It follows that, when
the mean radius of the tube R0 lies within the range of 50–5000lm,
the Ohnesorge number can be calculated as Oh¼ 0.391–3.91. Thus,
we take Oh¼ 1.5 in this study for illustration purposes.

Substituting (25) and (26) in Eq. (13) yields the dimensionless
form,

2

f0 h�ð Þ

d
ðh�
0

1� e cos
a

4Oh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hð Þ

p
z�

� �� �2
dz� _h

�
 !

dt�

þ 2
f1 h�ð Þ
f0 h�ð Þ h

� _h
� þ

ffiffiffi
2

p
f2 h�ð Þ

Xf0 h�ð Þ h� sin /ð Þ ¼ 1: (27)

Here, the parameter X serves to tune the strength of the gravity effect
as it appears in the third term: increasing X reduces the effect of grav-
ity. We take a large enough value (X¼ 100) to describe the case of

negligible gravity. Thus, capillary rises in inclined and vertical tubes
reach the same height at the same time.

Figure 8 plots the rising height h� as a function of t� for selected
amplitudes (e¼ 0, 0.05, 0.1, 0.2, and 0.3) and wave numbers (a¼ 0,
10, 15, 20, and 30). For validation, we examine the limit e¼ 0 and find
that the present result is consistent with Bosanquet’s analytical solu-
tion10 for smooth tubes [see Fig. 8(a)],

h� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� � 1� e�t�ð Þ

p
: (28)

In the absence of gravity, the height does not stabilize because no
force balances the capillary force, as shown in Fig. 8. In other words,
the fluid continues to rise due to the absence of external forces.
Similarly, the rising height decreases when either e or a increases, that
is, when the tube is increasingly undulated.

It is interesting that, in the absence of gravity, the capillary rise in
an undulated tube exhibits stick-slip behavior, as discussed in detail by
Sch€affer and Wang.31 Moreover, if local positions with large radius
R0 þ e in the present undulated tube are taken as branches (as dis-
played schematically in Fig. 9), the stick-slip behavior occurs, as
observed experimentally by Andersson et al.32

FIG. 7. Dynamic fluid-rise in small-
viscosity case (X ¼ 0:1; / ¼ p=4) for
selected undulation amplitudes and wave
numbers: (a) a¼ 10 (from top, e¼ 0,
0.05, 0.1, 0.2, and 0.3) and (b) e¼ 0.2
(from top, a¼ 0, 5, 10, 15, and 20).

FIG. 8. Dynamic fluid-rise for the case of
negligible gravity (X¼ 100) and for
selected undulation amplitudes and wave
numbers: (a) a¼ 10 (from top, e¼ 0,
0.05, 0.1, 0.2, and 0.3) and (b) e¼ 0.2
(from top, a¼ 0, 5, 10, 15, and 20).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 052109 (2021); doi: 10.1063/5.0048868 33, 052109-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


IV. CONCLUDING REMARKS

We have developed an analytical model involving inertia, viscos-
ity, and gravity to describe the dynamics of capillary rise in a circular
tube with an undulated (roughened) inner wall and oriented at an
arbitrary angle. With the undulation structure idealized as cosinoidal
and the undulation amplitude assumed to be sufficiently small, the
effect of undulation amplitude e and wave number a on capillary ris-
ing height has been quantified. A dimensionless number X combining
the inertial, viscous, and gravitational forces is introduced to tune
between the three different cases (i.e., small inertia, small viscosity, and
small gravity) of capillary rise. Salient features drawn from the main
results are summarized below:

(1) Because the apparent contact angle of the fluid varies continu-
ously with the slope of the undulated tube wall, the capillary
force differs significantly from that of a smooth tube.

(2) For negligible inertia and viscosity, the dimensionless steady-
state height h� of capillary rise decreases with increasing e at
large a (>10) and decreases with increasing a at given e (see
Figs. 3, 4, 6, and 7). In contrast, the steady-state height increases
(h� > 1) when the undulation wave number is sufficiently small
(a< 8) (cf. Fig. 5). Moreover, the steady-state heights in these
two cases are consistent with each other because they are inde-
pendent of inertia and viscosity when the capillary force balan-
ces the gravity. In addition, in the case of negligible viscosity,
the oscillation of capillary rise is alleviated as either e or a
increases (see Figs. 6 and 7), and the ratio of maximum height
of capillary rise to steady-state height falls within the range of
1.2–1.5 for selected values of e and a.

(3) For the case of negligible gravity, the capillary rise does not sta-
bilize, because no force exists to balance the capillary force (cf.
Fig. 8). In this case, a stick-slip behavior occurs in the undulated

tube when gravity is absent (see Fig. 8), which is consistent with
previous results (Refs. 31 and 32).

(4) The steady-state height of capillary rise in an inclined tube
exceeds that in a vertical tube for the cases of negligible inertia
and viscosity (see Figs. 3, 4, 6, and 7).

The present results enable better understanding of the influence
of undulation (surface roughness) on dynamic capillary flow, poten-
tially significant for applications involving, e.g., blood flow in human
body or fluid transport in small, roughened tubes in conventional-
gravity or microgravity environments.

It needs however be pointed out that, in the present study, the
influence of entry and exit losses on capillary rise has been neglected.
In reality, the entry loss and exit loss both affect flow rising in a capil-
lary tube, and there exist a number of theoretical, numerical, and
experimental studies33–38 devoted to quantifying such effects on capil-
lary rise in a smooth tube (channel). These studies demonstrated that:
(i) entrance region effects exist because the flow at the entry is not fully
developed, so that the capillary pressure is less than the theoretical
one; (ii) for long enough capillary tubes (tube length larger than steady
capillary height), additional energy is dissipated as the capillary fluid
has to displace the air, thus introducing an exit loss to decrease the
capillary rate; (iii) when the tube length is less than steady capillary
height, the liquid free surface exhibits oscillations at the exit of the
tube. For an undulated tube, it is expected that the way that entrance
pressure and exit pressure affect the dynamics of capillary rise, which
is similar to its smooth counterpart. However, the effects of amplitude
and density of undulation on dynamic capillary flow may be complex
and need to be investigated in detail. These issues will be addressed in
our future study.
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