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Fiber reinforced materials consisting of aligned fibers within a matrix are effective for applications in nat-
ure and engineering in which strength and stiffness are required in a dominant direction. The fibers are
typically coated. Optimization of these materials is typically based upon choosing elastic properties of
phases to reduce static stresses. However, materials with well-matched moduli can have mismatched
acoustic impedance, and thus a fiber reinforced material that is strong in quasistatic loading may be weak
in dynamic loading. To explore this trade-off, we modeled perfectly bonded, isotropic, linear elastic
coated fibers in an infinite, isotropic, linear elastic matrix and calculated dynamic stresses and interfacial
stress concentrations induced by continuous and transient waves using the wave function expansion
method. Results revealed ways that the physical properties and geometrical dimensions of a coating
around a fiber can be tailored to reduce dynamic stress concentration, and point to a pathway for improv-
ing the shock resistance of fiber reinforced materials.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The ever-increasing demand for materials with high strength
and stiffness and low mass continues to promote the development
of advanced fiber reinforced composite materials (Ashby and
Cebon, 1993). However, the fibrous components that endow com-
posites with high strength and stiffness to weight ratios also intro-
duce new failure mechanisms that must be understood to improve
failure and fatigue properties and make use of composites at their
fullest potential, especially for high-risk applications such as air-
craft structures (Kyriakides et al., 1995; Lu, 1996; Evans et al.,
1995; Genin and Hutchinson, 1999, 1997). Numerous; theoretical,
and experimental approaches to understand these mechanisms
have uncovered a central role for matrix microcracks that can on
the one hand energy absorption and stress redistribution (Genin
and Hutchinson, 1999, 1997; Aveston and Kelly, 1973; Budiansky
et al., 1986; Rajan and Zok, 2013), but can on the other hand coa-
lesce to form deleterious macrocracks (Paskaramoorthy and
Meguid, 1999; Davidson, 1991). Under dynamic loading, dynamic
stress concentrations arising from mismatches between the elastic
and thermal properties of the fiber and matrix may promote
microcracking, and are therefore a focus of research (Bugarin
et al., 2012).

Analysis of the internal stress fields in fiber (Kyriakides et al.,
1995) and particle (Wang et al., 1993; Kassam et al., 1995) rein-
forced composites builds from the Eshelby solution (Eshelby,
1957); which predicts uniform strain fields within an ellipsoidal
inclusion bonded to a uniformly strained infinite medium
(Benveniste et al., 1989), and has been extended to include the
effects of coatings on the reinforcement (Bonfoh et al., 2012;
Chen et al., 2019a, 2019b; Lipinski et al., 2006; Sarvestani, 2003;
Achenbach and Zhu, 1989). In engineering, these coatings emerge
during processing due to chemical reactions between the rein-
forcement and the surrounding matrix, especially in high temper-
ature composites, and may also be created deliberately by coating
the fibers (Gillies and Lieber, 2011). In biology, many fibers develop
coatings, such as the myelin coatings on axons, the endomysium
surrounding muscle fibers, perimysium surrounding fibrous mus-
cle fascicles, the epimysium surrounding muscles, and epitenon
and endotenon in tendons (Mouw et al., 2014; Podratz et al.,
2001; Choi et al., 2007). Similarly, many cells are surrounded by
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coatings, notably chondrocytes in cartilage (Saadat, 2018;
Madhukar and Drzal, 1991).

In the case of static loads, these coatings are well-studied and
are known to affect the strength, stiffness, and internal stress fields
of the composite or tissue (Gillies and Lieber, 2011; Walpole,
1978). Walpole (cf. Mikata and Taya, 1985) showed that a thin
coating on an inclusion has a pronounced effect on stress and
strain fields in the matrix, and Mikata and Taya (Chen et al.,
2018) showed similar effects in thermo-mechanical loading. Coat-
ings around cells can modulate the membrane stress and kine-
matic fields to affect fluid transport and surface interactions
(Chen et al., 2019; Madhukar and Drzal, 1991; Ghosn and Lerch,
1989). These effects have been exploited in engineered composites,
including efforts to reduce microcracking by minimizing residual
stresses in the matrix (Evans et al., 1991), to increase and control
microcracking for the purpose of protecting fibers and enhancing
composite toughness (Aveston and Kelly, 1973; Budiansky et al.,
1986; Zhang et al., 2018); or to enhance strength and stiffness
(Carman et al., 1993; Frueh et al., 2018), In the case of ceramic
matrix composites, weak coatings are critical to toughness, so
much so that they must be designed to resist strengthening
through oxidation (Bogan and Hinders, 1993). However, these
enhancements have been made for improving responses to qua-
sistatic loadings only, in which inertial effects can be neglected.

Under sufficient dynamic loading, the role of inertia is no longer
negligible. Typically, the energy of a dynamic load is transmitted in
the form of waves travelling through the matrix of the composite
(Bugarin et al., 2012; Wang et al., 2007). Upon meeting obstacles
such as fibers, these waves are scattered, leading to complicated
stress patterns and higher local stresses (stress concentrations).
Dynamic stresses may induce microcracking and nucleate failure
at interfaces between the matrix, coating, and fibers. The mechan-
ics of dynamic stress concentrations associated with coatings
needs to be further explored for designing composite materials
with enhanced mechanical properties.

The theoretical approach of this paper is complementary to a
large body of advanced numerical treatments of acoustics in solids.
These numerical treatments, mostly using finite element and finite
difference approaches, are now robust, convenient, and well-
validated (Pamel, 2017; Xu and Yu, 2017; Pao et al., 1973). How-
ever, these numerical methods require closed form solutions for
validation, and offer only approximations to analytical solutions.
For the problem studied in this paper, the theoretical solution
offers two types of insight that numerical solutions cannot. First,
it provides scaling laws for the effects of coatings on fibrous rein-
forced composite subjected to continuous elastic waves and tran-
sient waves. Second, it allowed for clear delineation of the effects
of quasistatic and dynamic stress. We believe that this insight will
Fig. 1. Schematic of wave scattering by a coated cylindrical fiber embedded in an
infinite matrix.
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be of value for structural and material optimization of these mate-
rial systems.

2. Theoretical model

Consider an infinite, linearly elastic medium containing an infi-
nitely long, coated, cylindrical, linear elastic fiber of radius a
aligned with the z axis of a cylindrical r; h; zð Þ coordinate system
(Fig. 1). The matrix (phase i ¼ 1), coating (phase i ¼ 2) and fiber
(phase i ¼ 3) are perfectly bonded, and are linear, elastic and iso-
tropic. Dynamic excitation is provided by an incident plane com-
pressional wave traveling in an arbitrarily chosen x direction in
an x-y plane perpendicular to the z axis. Plane strain conditions
prevail so that the linearized strain components
ezz ¼ exz ¼ eyz ¼ 0, and field quantities such as the displacements,
strains, and stresses are independent of z.

2.1. Governing equations

In the absence of body forces, the equation of motion for dis-
placement vector u is (Pao and Mow, 1976; Pao, 1962)

ki þ 2li

� �rruþ lir2u ¼ qi
€u ð1Þ

where ki and li are the Lamé elastic constants of material phase
i,r is the gradient operator, and qi is the density of material phase
i.

The displacement u may be expressed advantageously as the
superposition of the gradient of a scalar potential and the curl of
a vector potential, as (Pao and Mow, 1976; Pao, 1962)

u ¼ ruþr� w ð2Þ
where u is the plane compressional wave potential and w is the

transversely polarized shear wave potential. Inserting (2) into (1)
leads to two scalar wave equations (Pao and Mow, 1976):

r2u ¼ 1
c2ai

u ð3Þ

r2
w ¼ 1

c2bi
w ð4Þ

where cai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki þ 2li

� �
=qi

q
is compressional wave velocity in

material i and cbi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
li=qi

p
is the shear wave velocity in material

i. In the current plane-strain problem, there is no displacement
in the z-direction. Thus, w has no component in the r- or the
h-direction and reduces to w ¼ wez, ez being the unit vector in
the z-direction. Consequently, in cylindrical coordinates, the dis-
placement components can be expressed in terms of u and w by
(Pao and Mow, 1976)

ur ¼ @u
@r þ 1

r
@w
@h

uh ¼ 1
r

@u
@h � @w

@r

ð5Þ

The non-zero linearized strains can be computed from the
strain–displacement relations:

err ¼ @ur
@r

ehh ¼ 1
r

@uh
@h þ ur

r

erh ¼ 1
2

1
r

@ur
@h þ @uh

@r � uh
r

� � ð6Þ

and the linearized stresses can be computed from the linear
elastic constitutive relations:

rrr ¼ 2lierr þ ki err þ ehhð Þ
rhh ¼ 2liehh þ ki err þ ehhð Þ
rrh ¼ 2lierh

ð7Þ
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2.2. Displacements and stresses in the matrix

Within the matrix, wave fields consist of incident and scattered
waves. We study a planar harmonic compressional wave (P-wave)
propagating in an arbitrarily chosen positive x-direction, which can
be represented by the following potential in the x-y plane (Pao and
Mow, 1976):

u Incð Þ ¼ u0e
j a1x�xtð Þ ð8Þ

where the superscript (Inc) indicates the incident wave, u0 is
the amplitude of the wave function, a1 ¼ x=ca1 is the wavenumber
of the P-wave in the matrix, x is the circular frequency of the P-
wave, t denotes time, and j ¼

ffiffiffiffiffiffiffi
�1

p
.

In anticipation of writing the boundary conditions in cylindrical
coordinates, the displacement potential of the incident wave may
be expressed as (Pao and Mow, 1976):

u Incð Þ ¼ u0

X1
n¼0

kni
nJn a1rð Þ cos nhð Þe�jxt ð9Þ

where Jn xð Þ denotes the nth order Bessel function of the first
kind and the Neumann factor kn is k0 ¼ 1, kn ¼ 2 n � 1ð Þ.

Substituting Eq. (9) into Eq. (5) and Eq. (6), and then into Eq. (7),
one obtains expressions for the displacements and stresses due to
the incident wave as:

u Incð Þ
r1 ¼ u0

r

X1
n¼0

kni
n a1rJn�1 a1rð Þ � nJn a1rð Þ½ � cos nhð Þe�jxt ð10Þ

u Incð Þ
h1 ¼ u0

r

X1
n¼0

kni
n �nJn a1rð Þ½ � sin nhð Þe�jxt ð11Þ

r Incð Þ
rr1 ¼2l1u0

r2
X1

n¼0
kni

n n2þn�b2
1r

2=2
� �

Jn a1rð Þ�a1rJn�1 a1rð Þ� �
cos nhð Þe�jxt

ð12Þ

r Incð Þ
rh1 ¼2l1u0

r2
X1

n¼0
kni

n n nþ1ð ÞJn a1rð Þ�na1rJn�1 a1rð Þ½ �sin nhð Þe�jxt

ð13Þ
Due to mode conversion, the incident P-wave gives rise to scat-

tered wave fields of two genera when it impinges upon the coated
fiber: a scattered P-wave, and a vertical, polarized shear wave (SV-
wave). The displacement potentials of these two scattered wave
fields in the elastic medium can be expressed by (Pao and Mow,
1976)

u sð Þ ¼ u0

X1
n¼0

kni
nAnH

1ð Þ
n a1rð Þ cos nhð Þe�jxt ð14Þ

w sð Þ ¼ u0

X1
n¼0

kni
nBnH

1ð Þ
n b1rð Þ sin nhð Þe�jxt ð15Þ

where H 1ð Þ
n xð Þ is the nth order Hankel function of the first kind,

b1 ¼ x=cb1 is the wavenumber of the shear wave, An andBn are
unknown constants to be determined using boundary conditions,
and the superscript (s) indicates the scattered waves.

Substitution of (14) and (15) firstly into (5) and (6) and then
into (7) leads to the expressions for displacements and stresses
in the matrix due to wave scattering:

u sð Þ
r1 ¼u0

r

X1
n¼0

kni
n An a1rHn�1 a1rð Þ�nHn a1rð Þ½ �þBn nHn b1rð Þ½ �f gcos nhð Þe�jxt

ð16Þ

u sð Þ
h1 ¼ u0

r

X1
n¼0

kni
n

An �nH 1ð Þ
n a1rð Þ

h i
þ

Bn �b1rH
1ð Þ
n�1 b1rð Þ þ nH 1ð Þ

n b1rð Þ
h i

8><
>:

9>=
>;sin nhð Þe�jxt

ð17Þ
3

r sð Þ
rr1 ¼ 2l1u0

r2
X1

n¼0
kni

n

An
n2 þ n� b2

1r
2=2

� �
H 1ð Þ

n a1rð Þ
�a1rH

1ð Þ
n�1 a1rð Þ

" #

þBn
�n nþ 1ð ÞH 1ð Þ

n b1rð Þ
þnb1rH

1ð Þ
n�1 b1rð Þ

" #
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

cos nhð Þe�jxt

ð18Þ

r sð Þ
rh1 ¼ 2l1u0

r2
X1
n¼0

kni
n

An
n nþ 1ð ÞH 1ð Þ

n a1rð Þ
�na1rH

1ð Þ
n�1 a1rð Þ

" #

þBn
� n2 þ n� b2

1r
2=2

� �
H 1ð Þ

n b1rð Þ
þb1rH

1ð Þ
n�1 b1rð Þ

" #
8>>>>><
>>>>>:

9>>>>>=
>>>>>;
sinðnhÞe�jxt

ð19Þ
The total displacement and stress fields in the matrix are

obtained by superposition of contributions due to incident and
scattered waves.

2.3. Displacements and stresses in the coating

Displacement potentials for refracted, standing waves confined
within the coating can be expressed as (Pao and Mow, 1976):

u2 ¼ u0

X1
n¼0

kni
n CnH

1ð Þ
n a2rð Þ þ DnH

2ð Þ
n a2rð Þ

h i
cos nhð Þe�jxt ð20Þ

w2 ¼ u0

X1
n¼0

kni
n MnH

1ð Þ
n b2rð Þ þ NnH

2ð Þ
n b2rð Þ

h i
sin nhð Þe�jxt ð21Þ

where H 2ð Þ
n xð Þ is the nth order Hankel function of the second

kind, and Cn;Dn;Mn and Nn are constants to be determined from
boundary conditions.

By substituting (20) and (21) firstly into (5) and (6) and then
into (7), expressions for the displacements and stresses due to
the refracted waves can be determined as:

ur2 ¼u0

r

X1
n¼0

kni
n

Cn a2rH
1ð Þ
n�1 a2rð Þ�nH 1ð Þ

n a2rð Þ
h i

þDn a2rH
2ð Þ
n�1 a2rð Þ�nH 2ð Þ

n a2rð Þ
h i

þMn nH 1ð Þ
n b2rð Þ

h i
þNn nH 2ð Þ

n b2rð Þ
h i

8>>>><
>>>>:

9>>>>=
>>>>;
cos nhð Þe�jxt

ð22Þ

uh2 ¼u0

r

X1
n¼0

kni
n

Cn �nH 1ð Þ
n a2rð Þ

h i
þDn �nH 2ð Þ

n a2rð Þ
h i

þMn �b2rH
1ð Þ
n�1 b2rð ÞþnH 1ð Þ

n b2rð Þ
h i

þNn �b2rH
1ð Þ
n�1 b2rð ÞþnH 1ð Þ

n b2rð Þ
h i

8>>>><
>>>>:

9>>>>=
>>>>;
sin nhð Þe�jxt

ð23Þ

rrr2¼2l2u0

r2
X1
n¼0

kni
n

Cn n2þn�b2
2r

2=2
� �

H 1ð Þ
n a2rð Þ

h i
þDn n2þn�b2

2r
2=2

� �
H 2ð Þ

n a2rð Þ
h i

þMn �n nþ1ð ÞH 1ð Þ
n b2rð Þþnb2rH

1ð Þ
n�1 b2rð Þ

h i
þNn �n nþ1ð ÞH 2ð Þ

n b2rð Þþnb2rH
2ð Þ
n�1 b2rð Þ

h i

2
666666664

3
777777775
cos nhð Þe�jxt

ð24Þ

rrh2 ¼2l2u0

r2
X1
n¼0

kni
n

Cn n nþ1ð ÞH 1ð Þ
n a2rð Þ�na2rH

1ð Þ
n�1 a2rð Þ

h i
þDn n nþ1ð ÞH 2ð Þ

n a2rð Þ�na2rH
2ð Þ
n�1 a2rð Þ

h i

þMn

� n2þn�b2
2r

2=2
� �

H 1ð Þ
n b2rð Þ

þb2rH
1ð Þ
n�1 b2rð Þ

2
4

3
5

þNn

� n2þn�b2
2r

2=2
� �

H 2ð Þ
n b2rð Þ

þb2rH
2ð Þ
n�1 b2rð Þ

2
4

3
5

2
66666666666666664

3
77777777777777775

sin nhð Þe�jxt

ð25Þ
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2.4. Displacements and stresses in the fiber

The longitudinal and shear waves transmitted into the cylindri-
cal elastic fiber are also standing refracted waves, and can be writ-
ten in the following form (Pao and Mow, 1976):

u3 ¼ u0

X1
n¼0

kni
nFnJn a3rð Þ cos nhð Þe�jxt ð26Þ

w3 ¼ u0

X1
n¼0

kni
nGnJn b3rð Þ sin nhð Þe�jxt ð27Þ

The displacement field in the fiber is obtained by substituting
(26) and (27) into (5):

ur3 ¼u0

r

X1
n¼0

kni
n Fn a3rJn a3rð Þ�nJn a3rð Þ½ �þGn nJn b3rð Þ½ �f gcos nhð Þe�jxt

ð28Þ

uh3 ¼u0

r

X1
n¼0

kni
n Fn �nJn a3rð Þ½ �þGn �b3rJn�1 b3rð ÞþnJn b3rð Þ½ �f gsin nhð Þe�jxt

ð29Þ
Similarly, the stress field is obtained by substituting (28) and

(29) into (6) and then into (7), as:

rrr3 ¼2l3u0

r2
X1

n¼0
kni

n
Fn

n2þn�b2
3r

2=2
� �

Jn a3rð Þ
�a3rJn�1 a3rð Þ

" #

þGn
�n nþ1ð ÞJn b3rð Þ
þnb3rJn�1 b3rð Þ

	 

8>>>><
>>>>:

9>>>>=
>>>>;
cos nhð Þe�jxt

ð30Þ

rrh3 ¼2l3u0

r2
X1

n¼0
kni

n

Fn
n nþ1ð ÞJn a3rð Þ
�na3rJn�1 a3rð Þ

	 


þGn
� n2þn�b2

3r
2=2

� �
Jn b3rð Þ

þb3rJn�1 b3rð Þ

" #
8>>>><
>>>>:

9>>>>=
>>>>;
sin nhð Þe�jxt

ð31Þ
2.5. Boundary conditions

The unknown coefficients appearing in the displacement poten-
tials are determined by the boundary conditions, which enforce
continuity of displacements and stresses at the matrix/coating/-
fiber interfaces:

u Incð Þ
r1 þ u sð Þ

r1 ¼ ur2;u
Incð Þ
h1 þ u sð Þ

h1 ¼ uh2;

r Incð Þ
rr1 þ r sð Þ

rr1 ¼ rrr2;r Incð Þ
rh1 þ r sð Þ

rh1 ¼ rrh2 at r ¼ b ð32Þ

ur2 ¼ ur3;uh2 ¼ uh3;rrr2 ¼ rrr3;rrh2 ¼ rrh3 at r ¼ a

Substitution of the expressions for displacements and stresses
into (32) and making use of the orthogonality of transcendental
functions leads to, for n � 0, a set of simultaneous algebraic equa-
tions that can be expressed in matrix form as:

Q½ � Xnf g ¼ ff g ð33Þ
where the vector Xnf g contains the unknown coefficients An, Bn,

Cn, Dnetc. The elements of Q½ � and ff g are complex valued. One can
obtain the unknown coefficients by solving Eq. (33).

For dynamic loading by the incident P-wave defined in Eq. (8)
through an isotropic, linear elastic mediumwithout fiber reinforce-
ment, the stress field in the medium can be expressed in Cartesian
coordinates as (Pao et al., 1973):

rxx ¼ � k1 þ 2l1

� �
a2
1u0e

j a1x�xtð Þ ð34Þ

ryy ¼ �k1a2
1u0e

j a1x�xtð Þ ð35Þ
4

rzz ¼ 2m1 k1 þ l1

� �
a2
1u0e

j a1x�xtð Þ ð36Þ
where m1 denotes the Poisson ratio of the matrix. All shear stres-

ses vanish and the maximum stress is r0 ¼ k1 þ 2l1

� �
a2
1u0 ¼

l1b
2
1u0.
The solution procedure is valid only up to the point at which

plastic flow occurs. Although the conditions for plastic flow in
response to short duration stress waves can differ from conditions
associated with quasistatic loading, the von Mises yield criterion is
a reasonable first approximation for most metals. Thus, coatings
are favorable if they reduce the von Mises equivalent stress, which
can be written in our cylindrical coordinate system as:

rvm¼ 1ffiffiffi
2

p rrr�rhhð Þ2þ rrr�rzzð Þ2þ rzz�rhhð Þ2þ6 r2
rhþr2

rzþr2
hz

� �h i1=2
ð37Þ

For convenience, we normalize stresses by the magnitude of
incident stress r0 in a homogeneous matrix and the associated
von Mises equivalent stress r0

0, as:

r�
kl ¼

rkl

r0

����
����; k; l ¼ r; h ð38Þ

r�
vm ¼ rvm

r0
0

����
���� ð39Þ

where

r0
0 ¼ 1� 2m1

1� m1
l1b

2
1u0 ð40Þ

the latter of which can be obtained by inserting (34) -(36) into
(37). r�

kl and r�
vm represent dynamic stress concentration factors

(DSCFs) due to the presence of fibers or coated fibers.
Further examination of (38) and (39) shows that these dimen-

sionless stresses depend upon the coating thickness, the dimen-
sionless incident wave frequency, x�, and three additional
dimensionless parameters: (1) the ratio of shear modulus of coat-
ing and matrix, l2=l1; (2) the ratio of density of coating and
matrix, q2=q1; (3) the Poisson ratio of the coating, m2. In the follow-
ing parametric study, we characterized how dynamic stresses were
affected by the coating thickness and these dimensionless param-
eters. Computations proceeded by first solving Eq. (33) with the
specific boundary conditions (Eq. (32)) to compute the scattering
coefficient Xnf g, and its unknown coefficients, including An and
Bn. An and Bn were then incorporated into Eqs. (16) and (17) to
obtain the displacement field in the matrix. Finally, by inserting
these into the strain–displacement and constitutive relations
(Eqs. (6) and (7)), we computed the stresses in the matrix, then
computed the stress at the interface by setting r ¼ b. The von Mises
equivalent stress was then obtained by inserting the stress compo-
nents into Eq. (37), and the normalized stress was obtained using
Eqs. (38) and (39). All calculations were performed using Matlab
(The Mathworks, Natick, MA).

2.6. Transient waves

To assess how coatings affect the response to transient loading,
we studied an incident wave on the coated fiber-reinforced com-
posite material subjected to a transient pulse. The form of this
pulse was chosen to represent a blast wave, which characteristi-
cally presents a relatively short rise time and a relatively longer
decay time. Following others (Wang et al., 2017), we represented
this with a needle wave function that combines sine and exponen-
tial functions. This function can be expressed as P tð Þ ¼ Pmaxf tð Þ; in
which Pmax is the peak impact pressure and f tð Þ follows (Fig. 2):
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f tð Þ ¼ e
n
g tan

�1 g
nð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n

g

� �2
r

� e�nt singt t 2 0; T2½ � ð41Þ

For t < 0 or t > T2, f tð Þ ¼ 0. Defining g ¼ p=T2 and f T1ð Þ as the
maximum value, we write:

n ¼ g cotgT1 ¼ p=T2ð Þ cotðpT1=T2Þ ð42Þ
The transient wave requires one period to reach its peak value

at time T1 then decrease more gradually to 0 at time T2 (Fig. 2).
For our study, t = 0 when the transient wave impinges on the

coating boundary. For calculation, we normalized the time t by
the time needed to travel through the inclusion as

s ¼ c1t
b

ð43Þ

Thus the normalized T1 can be expressed as s1 ¼ c1T1=b.
Dynamic stresses for the continuous wave can be expressed as

rkl

r0
¼ R xð Þ þ iI xð Þ ð44Þ

We applied a Fourier transform technique to bridge the steady
state and transient responses. The transient wave (Eq. (41)) meets
the Dirichlet conditions and is integrable, so the transient response
of the system can be expressed as (Pao and Mow, 1976):

g xi; tð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
Z 1

�1
v xi; tð ÞF xð Þe�ixtdx ð45Þ

where v xi; tð Þ is the admittance function defined as the steady
state response of the system under a unit magnitude force, and
F xð Þ is the Fourier transformed form of input function f tð Þ.

Because we focus on the dynamic stress response in the matrix
around the inclusion, the normalized dynamic stresses rkl=r0 can
work as the admittance function. Because f tð Þ ¼ 0 for t < 0, the
response g xi; tð Þ can alternatively be expressed in terms as sine
or cosine transforms. Furthermore, to reduce the computational
complexity, the d tð Þ function and Heaviside step function were
used (Pao and Mow, 1976). The Fourier transform of d tð Þ is
1ffiffiffiffiffiffiffi
2p

p
Z 1

�1
d tð Þe�ixtdt ¼ 1ffiffiffiffiffiffiffi

2p
p ð46Þ

Therefore, the dynamic response caused by the d tð Þ function can
be expressed as (Pao and Mow, 1976)

gd xi; tð Þ ¼ 2
p

Z 1

0
R xð Þ cosxtdx ¼ 2

p

Z 1

0
I xð Þ sinxtdx ð47Þ
Fig. 2. Transient loading curve.
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Then, the response of Heaviside step function can be expressed
by the impulse response as (Pao and Mow, 1976)

gh xi; tð Þ ¼
Z t

0
gd xi; sð Þds ¼ 2

p

Z 1

0

R xð Þ sinxt
x

dx ð48Þ

According to the Duhamel integral, for arbitrary input function
f sð Þ, the transient response can written (Pao and Mow, 1976):

g xi; tð Þ ¼
Z t

0
f sð Þgh

0 t � sð Þds

¼ f 0ð Þgh tð Þ þ
Z t

0
f 0 sð Þgh t � sð Þds ð49Þ

Therefore, for the needle shape transient wave we studied here,
when 0 � t � T2, we have

g xi;tð Þ¼ 2
p

Z 1

0

Z t

0
e�snþ

n
gtan

�1 g
nð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

g2

s
gcos sgð Þ�nsin sgð Þ½ �R xð Þsin x t�sð Þ½ �

x
dsdx

¼
Z 1

0

�2e�tnþn
gtan

�1 g
nð ÞR xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

g2

q
p n2þ g�xð Þ2
h i

n2þ gþxð Þ2
h i

�

g n2þg2�x2
� �

cos gtð Þ

þn n2þg2þx2
� �

sin gtð Þ

�entg ðn2þg2�x2Þcos xtð Þ
þ2nxsin xtð Þ

" #

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
dx

ð50Þ

when t > T2, we have

g xi;tð Þ¼2
p

Z 1

0

Z T2

0
e�snþ

n
gtan

�1 g
nð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þn2

g2

s
gcos sgð Þ�nsin sgð Þ½ �R xð Þsin x t�sð Þ½ �

x
dsdx

¼

Z 1

0

�2e
�T2nþ

n
gtan

�1 g
nð ÞR xð Þ

ffiffiffiffiffiffiffiffi
1þn2

g2

q
p n2þ g�xð Þ2½ � n2þ gþxð Þ2½ �x

�

sin xtð Þ

�2eT2nngx2þgxcos T2gð Þ
2nxcos T2xð Þþ

ðn2þg2�x2Þsin T2xð Þ

" #

sin T2gð Þ
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h i
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777777775
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�2nxsin T2xð Þ
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3
5

þsin T2gð Þ
nxðn2þg2þx2Þcos T2xð Þ
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sin T2xð Þ

0
B@

1
CA

2
6666666666664

3
7777777777775

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

dx

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð51Þ

Based on Eqs. (50) and (51), we studied the transient stress
behavior of fiber reinforced composite materials. Eqs. (50) and
(51) were evaluated numerically using trapezoidal functions by
determining R xð Þ from the real part of r�

kl=r0 or r�
vm=r

0
0, found

as described above for the case of continuous waves.
3. Results and discussion

We studied, as a model problem, a titanium alloy matrix com-
posite material, with parameters as shown in Table 1. We studied



Table 1
Material properties of fiber reinforced composite phases (Leão-Neto et al., 2017).

Material Young’s modulus (GPa) Poisson’s ratio Density
(kg /m3)

Fiber (carbon) 41 0.25 1700
Matrix (Ti alloy) 121.6 0.348 5400
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a range of coatings representing the properties of BN, graphite
(Bogan and Hinders, 1993), pyrolytic carbon (Carman et al.,
1993), ZrO2 (He et al., 2019), and Al2O3 (Verbis et al., 2002). The
Fig. 3. (a) Traction vector field in the matrix around the fiber. (b) Stress distribution arou
wave approaching from the left side. The fields are symmetric with respect to the horiz

6

dimensionless quantities studied were thus
l2=l1 ¼ 0:8;1:2; 1:6; 2; q2=q1 ¼ 0:8;1:2; 1:6; 2; and
m2 ¼ 0:2; 0:3; 0:4; 0:45. Although these values do not cover the
range of parameters possible for practical applications, they
demonstrated the influence of coatings on dynamic stress
concentrations.
3.1. Static comparison case and dynamic stress amplification

For comparison, we investigated the limiting static case for an
incident P-wave whose wavelength is infinite a1 ! 0ð Þ. For this,
nd fiber without a coating at relatively low and high frequencies for an incident P-
ontal axis. Contours represent the range of normalized dynamic stress.
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the solutions obtained using the current approach should asymp-
totically approach the static case:

rxx ¼ �r0

ryy ¼ � k1
k1þ2l1

r0

rzz ¼ 2m1 k1þl1ð Þ
k1þ2l1

r0

ð52Þ

with shear stresses 0. The stress field of (52) is triaxial and
hence the results presented below are for the dynamic counter-
parts of these fields. Stress fields in the absence of a coating the
stresses were expressed as infinite series using Eqs. (12), (13),
(18) and (19). To ensure convergence, the series were truncated
at n ¼ N using the Wiscombe criterium (Mahmoudian and
Margrave, 2007):

N ¼ x� þ 4:05 x�ð Þ1=3 þ 2
l m

ð53Þ
Fig. 4. (a) Normalized hoop stress r�
hh and (b) von Mises stress r�

vm plotted as a function o
the density and Poisson ratio of the coating held constant and equal to those of the fiber
Mises stress for different coating shear modulus ratios l2=l1, under these same conditio
coating shear modulus ratio l2=l1.
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where xd e represents the nearest integer to x, and x� ¼ a1b is
the normalized frequency.

In the absence of a fiber coating, normalized stresses r�
rr and r�

hh

within the matrix were sensitive to the frequency of a harmonic
incident P-wave (Fig. 3). The traction vector was plotted and all
of them are symmetric with respect to the horizontal axis
(Fig. 3a). Scattering affected the stress most within a few radii
the cylindrical fiber, with the scattered wave amplitude decreasing
with distance from the fiber and approaching zero at infinity. At
lower frequencies, for which k ¼ 2p=a1 ¼ 20pb was far larger than
the radius of the fiber, the stresses arising from a harmonic inci-
dent wave resembled those of a quasi-static loading, with symme-
try about the vertical axis for a wave arriving in the horizontal
direction (e.g., x� ¼ 0:1, Fig. 3b). In this case, at the fiber/matrix
interface, the maximum value of r�

rr occurred at h ¼ 0 and h ¼ p
while the maximum value of r�

hh occurred at h ¼ 	p=2.
f normalized frequencyx� for selected values of coating shear modulus l2=l1, with
(q2 ¼ q3 and m2 ¼ m3). (c) Angular location of the maximum hoop stress and (d) von
ns. (e) P wave impedances and (f) S wave impedances plotted for selected values of
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For higher frequency incident waves (e.g., x� ¼ 2, Fig. 3b),
dynamic loading effects arising from reflection, refraction and scat-
tering of the incident were evident as deviations from the quasi-
static solution. The normalized radial stress r�

rr became more con-
centrated on the illuminated side of the fiber near the fiber/matrix
interface. A ripple effect, absent from the quasi-static case,
emerged in the incident region due to scattering. Scattering broke
the symmetry of the normalized hoop stress (r�

hh) distribution.
Normalized stresses were always maximal at the interface
between the fiber and matrix, consistent with the observation that
in many practical applications of fiber reinforced composite mate-
rials, failure is often initiated in the matrix at the interface between
the fiber and matrix.
Fig. 5. (a) Normalized hoop stress r�
hh and (b) von Mises stress r�

vm plotted as a function
density and shear modulus of the coating held constant and equal to those of the fiber (
Mises stress for different coating Poisson ratio m2, under these same conditions. (e) P w
Poisson ratio m2.
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3.2. Effects of coatings on dynamic stress concentrations for steady
state waves

The influence of a coating on dynamic stress concentrations was
studied by first considering coatings with a fixed thickness of 0:1a.
For a given frequency, dynamic stress concentrations in the matrix
were obtained by calculating the normalized stress components as
a function of angle and searching for the maximum value for x� in
the range of 0–2 (Fig. 4).

In the comparison case without a coating, the normalized cir-
cumferential and von Mises stresses increased with normalized
frequencies up to x� ¼0.4, then decreased to a plateau that was
interrupted by minor oscillations before decreasing further
of normalized frequency x� for selected values of coating Poisson ratio m2, with the
q2 ¼ q3 and l2 ¼ l3). (c) Angular location of the maximum hoop stress and (d) von
ave impedances and (f) S wave impedances plotted for selected values of coating
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(Fig. 4a and b). The angular locations of the maximum circumfer-
ential and von Mises stresses (Fig. 4c and d) were always near
h ¼ p=2. For the frequency range studied, peak dynamic stress con-
centration factors were always larger than 1, highlighting the sig-
nificance of dynamic effects when designing advanced composite
materials.

We next considered the effect of the coating shear modulus by
varying the coating shear modulus while keeping constant the
matrix and coating density and Poisson ratio, q2 ¼ q3 and
m2 ¼ m3. r�

rr was less than 1 for all cases (results not shown), with
no stress amplification in the radial direction. Dynamic stress con-
centration factors were greater than 1 for both r�

hh and r�
vm, but

decreased with coating shear modulus (Fig. 4a,b). The locations
of the maximum stress were again near h ¼ p=2. For some cases,
for example l2=l1 ¼ 2 at 1:8 < x� < 2, a sharp transition point
in r�

hh was evident due to a shift in the location of the angular loca-
Fig. 6. (a) Normalized hoop stress r�
hh and (b) von Mises stress r�

vm plotted as a function
Poisson ratio and shear modulus of the coating held constant and equal to those of the fi
von Mises stress for different coating density q2=q1, under these same conditions. (e) P
density q2=q1.

9

tion of peak stress from 68o to 111o (Fig. 4c). These reductions of
dynamic stress concentration could be further understood by
studying scattering of the incident wave u Incð Þ. With u Incð Þ

held constant, the scattered waves u sð Þ and w sð Þ were influenced
only by mismatches in the wave impedances of the scattered
waves P- and S-waves, defined in material i as
(Peng et al., 2020; Peng, 2020)
Zpi ¼ qicai
Zsi ¼ qicbi

ð54Þ

For the model composite studied, the matrix impedances,
Zp1 ¼ 32:3 MRayl and Zs1 ¼ 15:6 MRayl, were much larger than
their counterparts of the fiber, leading to a large wave impedance
gradient. The coatings studied had P- and S-wave impedances
between those of the matrix and fiber and were studied in terms
of normalized frequency x� for selected values of coating density q2=q1, with the
ber (m2 ¼ m3 and l2 ¼ l3). (c) Angular location of the maximum hoop stress and (d)
wave impedances and (f) S wave impedances plotted for selected values of coating
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of a relative wave impedance change, defined as the ratio of the
mismatch between the coating and fiber to that between the
matrix and coating:

DZp ¼ Zp2�Zp3
Zp1�Zp2

DZs ¼ Zs2�Zs3
Zs1�Zs2

ð55Þ

When DZ is close to 1, the impedance gradient between the
matrix and coating matches that between the coating and the fiber,
weakening the scattering effect.

The shear modulus affected both the wave velocities and wave
impedance. Stiffer coatings (l2=l1 ¼ 2), with DZp close to 1,
reduced dynamic stress concentrations factors (Fig. 4e and f). As
DZp approached 1, the wave impedance gradient decreased, weak-
ening scattering, and r�

hh and r�
vm generally decreased. Although

DZs for stiffer coatings were further from 1, this effect was small
compared to the effect of P wave impedance because the matrix
and fiber had S wave impedances substantially lower than their
P wave impedances.

As the Poisson ratio of the coating decreased with all other
parameters held constant and shear modulus and density fixed
as l2 ¼ l3 and q2 ¼ q3, a modest reduction of dynamic stress con-
centration factors r�

hh and von Mises stress r�
vm was observed, all

less than 10%, and little effect was observed on the angular loca-
tions of their maximum values (Fig. 5). This was expected from
the standpoint of wave impedance: although Poisson’s ratio affects
compressional wave velocity, its effect on P wave impedance and
the gradient DZp is small (Fig. 5e), and it has no effect on transverse
wave velocity or S wave impedance (Fig. 5f).

Substantial effects of coating density (increasing q2=q1) were
evident only for higher frequencies (x� � 1Þ, with dynamic stress
Fig. 7. (a) Normalized hoop stress r�
hh and (b) von Mises stress r�

vm plotted as the func
l2=l1 ¼ 2, q2 ¼ q3, and m2 ¼ m3. (c) Angular location of maximum hoop stress for diffe
different coating thickness t=a.
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concentrations increasing with coating density in this range when
holding all other parameters constant and setting m2 ¼ m3 and
l2 ¼ l3 (Fig. 6). This again was due partially to effects the wave
impedance, with both DZp and DZs increasing with coating density,
and partially due to effects of density on inertial force (Eq. (1)). The
latter appears to have dominated at higher frequencies because, as

seen from Eq. (1), Finertia / q€u / q x�ð Þ2. That is to say, the effect of
the density on the right-hand term of Eq. (1) will be amplified by

the term x�ð Þ2. When the frequency is very low (e.g.x� = 0.02),
the role of inertia is so weak (q€u 
 0) that no matter how the den-
sity is changed, both the normalized hoop stress r�

hh and von Mises
stress r�

vm differ insignificantly from the quasistatic values associ-
ated with q€u ¼ 0 (Fig. 6). Because of this parabolic relationship, the
influence of coating density was attenuated for x� << 1, but
became increasingly important as x� approached 1, and dominant
for x� > 1.

Dynamic stress concentrations decreased with increasing coat-
ing thickness for stiff coatings with l2=l1 ¼ 2, q2 ¼ q3 and m2 ¼ m3
(Fig. 7). This was expected because, first, for stiff coatings with
l2=l1 ¼ 2, coatings reduce the dynamic stress concentration, and
second, increasing the thickness of the coating increases the wave
impedance of the inclusion (the combined coating and fiber), lead-
ing to the decrease of the wave impedance gradient. Therefore, the
thickness of the coating can be tailored to effectively reduce
dynamic stress concentrations in fiber reinforced composite
materials.

For continuous waves, we studied the loading frequency range
of 0 < x� < 2: Before progressing to study transient waves such
as impact loading by superimposing multiple continuous waves,
as will be done in the next section, we evaluated how dynamic
tion of normalized frequency x� for selected values of coating thickness t=a with
rent coating thickness t=a. (d) Angular location of maximum von Mises stress for



Fig. 8. (a) Normalized hoop stress r�
hh and (b) von Mises stress r�

vm plotted as the function of position h=p for selected values of s1=s with T2=T1 ¼ 5. (a) Normalized hoop
stress r�

hh and (b) von Mises stress r�
vm plotted as the function of normalized time s for selected values of s1 with T2=T1 ¼ 5.
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stresses from continuous waves over this relatively narrow range
could be attenuated by a coating. For continuous waves, inertial
effects became increasingly important at higher x� (x� > 1Þ, and
were negligible for lower x� (e.g. x� ¼ 0:01). An interesting result
is that the dynamic stress concentration could be attenuated across
this entire range through judicious choice of the coating shear
modulus.

As mentioned above, in the continuous wave problem, the iner-
tial term on the right-hand side of the wave equation (Eq. (1))
becomes small relative to other terms for low x�, and the problem
approaches a static problem. The shear modulus affects both terms
on the left-hand side of Eq. (1), while the Poisson ratio affects only
the Lamé constant k in the first. For low frequency loading, the
coating shear modulus had strong effect on dynamic stress concen-
trations (Fig. (4)), while Poisson’s ratio had little effect (Fig. (5)). As
frequency increased and the problem became dynamic, the coat-
ing’s affect on wave impedance reduced the dynamic stress con-
centration for the range l2=l1 � 2

� �
studied. Thus, stiffer

coatings reduced stress concentrations for the entire range studied.
Increasing the coating thickness decreased the magnitude of the

impedance gradient between the matrix and fiber, and thus
decreased the dynamic stress concentration (Fig. (7)). Coating den-
sity had a more complicated effect because it affected the inertial
force in the governing equation (Eq. (1)). For x� ! 0, the density
could not raise the inertial terms to become significant compared
to the left-hand side of Eq. (1) and r�

hh and r�
vm deviated insignifi-

cantly from their quasi-static values. For higher x�, inertial effects
became significant because the coating density effect scales as

x�ð Þ2 and dominates as x� nears and exceeds 1 (Fig. (6)). Thus,
the effects of coating density are pronounced for very high fre-
quencies ðx�

> 1Þ, but are insignificant for lower frequencies.
11
3.3. Transient waves

For an impact loading like that of Fig. 2, the stress concentra-
tions around a fiber with no coating were highest near the poles
of the fiber (h ¼ 	p=2, Fig. 8a,b) for the baseline case of with
T2=T1 ¼ 5 and normalized pressure increase time s1 ¼ 5. For the
baseline case, the dynamic stress concentration factors increased
to a peak above 1 when the transient wave reached its peak pres-
sure, with r�

hh and r�
vm, increasing monotonically to a maximum

over a timescale close to s1 before decreasing monotonically back
to 0 (Fig. 8c,d). This established that transient waves can cause
dynamic stress concentrations and motivated us to explore
whether coatings can be designed to alleviate these.

We first studied coatings in the presence of baseline transient
waves (T2=T1 ¼ 5 and s1 ¼ 5). For a fiber coated with a material
of modulus intermediate to that of the fiber and matrix and with
all other properties matching those of the matrix (q2 ¼ q3 and
m2 ¼ m3), dynamic stress concentrations decreased with increasing
coating modulus (Fig. 9a,b). For these coatings and the case of
l2=l1 ¼ 2, dynamic stress concentrations decreased with increas-
ing coating stiffness (Fig. 9c,d). Poisson’s ratio had limited effect
on dynamic stress concentrations (Fig. 9e and f). These trends all
followed those of the continuous wave analyses, as was expected
because the latter was used as the admittance function for the
transient wave case.

However, the effect of density changed substantially, and had
very little effect on the dynamic stress concentrations caused by
transient wave for the case of m2 ¼ m3 and l2 ¼ l3 and changed
the coating density (Fig. 9g,h). This was in stark contrast to effects
of density, especially at high frequency, for a continuous wave. To
explain this contradiction, we examined Eqs. (50) and (51) and



Fig. 9. (a) Normalized hoop stress r�
hh and (b) von Mises stress r�

vm plotted as the function of normalized time s for selected values of coating shear modulus l2=l1; (c)
Normalized hoop stress r�

hh and (d) von Mises stress r�
vm plotted as the function of normalized time s for selected values of coating thickness t=a; (e) Normalized hoop stress

r�
hh and (f) von Mises stress r�

vm plotted as the function of normalized time s for selected values of coating Poisson ratio m2; (g) Normalized hoop stress r�
hh and (h) von Mises

stress r�
vm plotted as the function of normalized time s for selected values of coating density q2=q1.
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Fig. 10. Relative contribution of different frequencies to the dynamic part of r�
vm .

Shown is gðxi; tÞ (cf. Eqs. (50)–(51)) as a function of circular frequencyx for selected
coating densities q2=q1.
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found that most wave energy concentrated in the low-frequency
range, especially 0 < x < 5kHz (Fig. 10), corresponding to a nor-
malized frequency ranged of 0 � x� < 0:84. As seen from Fig. 6,
the density of the coating had little effect on dynamic stresses
for this low frequency range. Thus, at the lower frequencies for
which the integral part contributed most to r�

hh and r�
vm, the coat-

ing density had only slight effect on dynamic response, while at the
for higher frequencies for which coating density had a greater
effect, the integral part contributed little to r�

hh and r�
vm, leaving lit-

tle effect of coating density for these transient waves.
3.4. Reduction of stresses through tailored coatings

For our model composite material system and our model con-
tinuous and transient waves, dynamic stress concentrations in
the matrix can be reduced in the following ways. Decreasing coat-
ing density reduces dynamic stress concentrations for the continu-
ous wave loading case at high frequency. Increasing the stiffness
and thickness of the coating reduces dynamic stress concentrations
for both the continuous and transient loading cases. Poisson’s ratio
has little effect. For the model composite system studied, with the
constraint that the properties of the coating must lie between
Fig. 11. (a) Normalized hoop stress r�
hh and (b) von Mises stress r�

vm plotted as a function
the case of a SiC coating (l2 ¼ 415GPa, q2 ¼ 3205kg=m3, and m2 ¼ 0:17) (Leão-Neto et a
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those of the fiber and those of the matrix, the goal is to find a mate-
rial with a stiffness as large as possible compared to that of Ti and a
density as close as possible to that of carbon fibers, with a thick-
ness as great as possible. Although technical ceramics exist in both
the stiffness and density range of interest, none have both the stiff-
ness and density range required (Ashby and Cebon, 1993). How-
ever, an example that falls within the correct range is SiC. For a
loading of continuous wave, this coating can reduce the peak
dynamic hoop stress r�

hh and dynamic von Mises stress r�
vm by

3.4–24% (Fig. 11a) and 6.2–40% (Fig. 11b), respectively, for coatings
with thickness ranging from 0.01 to 0.1 times the radius of the car-
bon fiber.
4. Conclusions

Exact expressions for scattering from a coated fiber in an isotro-
pic elastic medium were derived for plane compressional and tran-
sient waves. Results demonstrate that the dynamic stress
concentrations at the fiber/matrix interface can be substantial
compared to stress concentrations associated with static loadings
at particular frequencies of the incident waves. A coating can
attenuate these dynamic stress concentrations. For the cases of
both continuous and transient wave loading, numerical results
reveal that the shear modulus of the coating can change the wave
impedance of the coating and tune the scattering effect, leading to
reduction of dynamic stress concentrations. The coating’s Poisson
ratio has little effect on wave impedance, and its effects on
dynamic stress concentrations are thus limited. The coating den-
sity can affect the inertial force, with higher density coatings
increasing dynamic stress concentrations for high frequency con-
tinuous wave loading, but not affecting transient loading in the
range studied. The thickness of the coating also affects dynamic
stress concentrations. Results offer guidance for designing
advanced fiber reinforced composite materials.
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