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Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a
channel wall. The present study investigates the effects of periodically structured surface roughness
upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness
considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness
(i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2.
Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of
roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio
of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate
formulations, which are validated against numerical simulation results. The relative roughness and
the wave number are identified as the two key parameters affecting the static flow resistivity and the
Darcy friction factor. Published by AIP Publishing. https://doi.org/10.1063/1.5017876

I. INTRODUCTION

Fluid flow in pipes is a fundamental problem in sci-
ence and engineering. The pioneering work goes back to
Poiseuille,1 who conducted a series of experiments on pipe
flow and found that the pressure gradient was proportional
to the fourth power of hydraulic radius. Such flow behavior,
named as the Poiseuille law, has become a basic property of
pipe flow. Nowadays, with the assumption of a smooth and
no-slip boundary, one can readily obtain solutions of fully
developed laminar flow in a wide range of pipes that match
well with experimental measurements.

In practice, the assumption of smooth boundary is often
challenged by the fact that surface roughness is inevitable,
especially for fluid flow in micro-channels. For instance,
for fluid transport in porous media, cardiovascular systems,
and micro-electro-mechanical systems (MEMSs), various
microstructures (i.e., surface roughness) covering solid wall
surfaces are encountered, which significantly affect the flow
field. As a result, studying the influence of surface roughness
on fluid flow has become necessary and important.

Surface roughness was identified as an important param-
eter governing pipe flow in the nineteenth century.2 After a
series of experiments on different rough pipes, Darcy estab-
lished that the pressure drop through a rough pipe was corre-
lated with its diameter and surface type by means of the Darcy
friction factor,

f =
∆p

1
2 ρU2 L

D

, (1)

where ∆p is the pressure drop, f is the Darcy friction factor,
ρ is the fluid density, U is the average flow velocity, and D

a)Author to whom correspondence should be addressed: fengxian.xin@
gmail.com

b)Author to whom correspondence should be addressed: tjlu@xjtu.edu.cn

and L are separately the hydraulic diameter and length of the
pipe. Equation (1), known as the Darcy law, can be applied to
analyze a known flow field, rather than calculate an unknown
flow field. The friction factor, serving as an evaluation indi-
cator, reflects the energy dissipation influenced by surface
roughness, so one can utilize Eq. (1) to quantify the effect of
surface roughness on pipe flow. A number of semi-empirical
models on surface roughness effects have been developed over
the decades.3 Further experimental studies indicated that the
Reynolds number plays an important role,4 with three separate
states of flow identified for the influence of surface roughness:
laminar, transition, and turbulent flows. Based on extensive
experimental studies, Colebrook and White5 and Colebrook6

obtained the well-known Colebrook equations that describe
the correlation among the Darcy friction factor, the Reynolds
number, and the relative roughness. Subsequently, making use
of the Colebrook equations, Moody7 presented the famous
Moody chart which has since been widely used in engineering.

According to existing research work, surface roughness
(which was assumed to be composed of densely packed sand)
had no direct effect on the friction factor in laminar flow
(Re < 2300).8 Therefore, the Darcy friction factor can be
expressed as9

f =
Po
Re

, (2)

where Po is the Poiseuille number decided by the morphology
of the pipe (channel).

Although the Colebrook equations led to good agreements
with experimental results in some cases, a significant depar-
ture of the Darcy friction factor in the laminar flow regime was
also observed according to recent experimental studies.10–13

Kandlikar et al.14 and Wagner and Kandlikar15 indicated that
the real diameter of the channel should be replaced by the con-
stricted flow diameter because of the flow constriction effect
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(due to surface roughness) and verified their theoretical pre-
dictions by experiments. Zou et al.16 provided an in-depth
analysis on the flow constriction effect and introduced a devi-
ation coefficient to modify the conventional Darcy friction
factor, as

fcf = f

[
1 −

2e
D

]−4

, (3)

where f cf is the revised friction factor based on the con-
stricted flow diameter, f is the conventional friction factor of
Eq. (2), and e is the average roughness height. Equation (3)
was built upon the assumption that surface roughness was rela-
tively dense, and hence the equivalent diameter of the channel
was constricted by the height of the roughness. Corresponding
theoretical predictions of the pressure drop agreed with exper-
imental results, and therefore it is reasonable and necessary to
take the flow constriction effect into consideration. However,
the assumption of flow constriction may cause discrepancy
between theory and experiment when surface roughness is not
so closely packed. In addition, existing theories only provide
a simplified solution of pressure drop without detailed discus-
sion of the flow field. From a theoretical point of view, as the
distribution of velocity in a rough channel remains unknown,
further exploitation of the roughness effect on the flow field
and pressure drop is necessary.

Apart from the semi-empirical models as discussed above,
a perturbation model has also been adopted to characterize sur-
face roughness effects. For instance, with the Poiseuille flow in
a smooth channel taken as the mean solution, the influence of
surface roughness was considered as a perturbed term in the
flow field.17 By solving the resulting perturbation equation,
the distribution of the stream function in the flow field can
be obtained. Bontozoglou and Papapolymerou18 presented a
boundary perturbation model to calculate the laminar flow of
a liquid down an inclined wall with sinusoidal corrugations,
while Wang et al.19 solved the perturbation equation using
the finite difference method and calculated, indirectly, the
dependence of the Darcy friction factor on ribbon-like surface
roughness. Nonetheless while these theories appeared to be
rigorous and accurate in the prediction of velocity distribution,
they did not consider the effect of flow constriction.

In the present research, we mainly study low-Reynolds-
number flow (i.e., Stokes flow) in corrugated tubes, serving
the basis for applications in biological systems, microfluidics,
MEMS, and porous media, to name just a few. The rough sur-
face of channels/pores in these fields plays an important role
in energy dissipation and matter exchange. For instance, in
biological systems, the movement of blood can be considered
as creeping flow,20 with the blood pressure seriously affected

by the microstructure grown on the vessel surface. Further, the
compound vesicle under Stokes flow condition is a reasonable
analogy of blood cell (i.e., erythrocyte, leukocyte, and platelet)
inside the vessel.21–23 In microelectrical devices, heat sinks
constructed on the basis of microchannels are often adopted for
active cooling.24 At large Reynolds numbers, a wavy (rough)
boundary can enhance the heat transfer.25–27 By contrast, at
sufficiently small Reynolds numbers, the wavy boundary may
deteriorate the rate of heat transfer.28 In the study of sound
propagation across porous media, low-Reynolds-number is
also a common assumption. Recently, it was demonstrated that
roughness can promote viscous dissipation of sound energy by
arrays of microslits having corrugated surfaces.29

The main purpose of this study is to investigate theoreti-
cally the effect of surface roughness on fully developed Stokes
flow by unifying three existing theoretical approaches: the
Colebrook equations, the flow constriction model, and the per-
turbation model. A revised perturbation theory is developed to
calculate the pressure drop and flow field in a circular pipe with
periodic surface roughness. To quantify the overall deviation
in velocity distribution due to the flow constriction effect, two
dependent parameters are introduced and computed based on
additional boundary conditions in extreme cases. Numerical
simulations are performed to validate the proposed model.

II. CHARACTERIZATION OF SURFACE ROUGHNESS

Figure 1 illustrates schematically a circular pipe with peri-
odic (sinusoidal) roughness placed on its inner wall. D is the
hydraulic diameter of the pipe [i.e., the distance between the
central axis of the sinusoidal roughness; Fig. 1(b)], e is the
amplitude, and b is the wavelength of roughness. The length
(L) of the pipe is considered to be sufficiently long to ensure
fully developed flow. The periodic microstructures are treated
as a kind of uniform surface roughness so that the boundary
surface of the circular pipe can be described by

r̄ = Γ (x, θ) D, with Γ (x, θ) =
1
2
− εg (x) , (4)

where (x̄, r̄, θ) are the real coordinates, (x, r, θ) are the dimen-
sionless coordinates with x = x̄/D and r = r̄/D, Γ (x, θ) is
the dimensionless boundary function, ε = e/D is the relative
roughness, and g(x) is the surface morphology function. For
simplicity, sinusoidal roughness is considered first so that

g (x) = cos (βx) , (5)

where β = 2πD/b is the wave number of roughness. Later,
other types of roughness morphologies are also considered,
including rectangular and triangular morphologies.

FIG. 1. Schematic of a circular pipe
with periodic roughness on its inner
surface: (a) three-dimensional view and
(b) two-dimensional view.
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III. ANALYSIS OF STATIC FLOW FIELD
A. Revised perturbation model

The revised perturbation theory is utilized to obtain the
flow field in the circular pipe with surface roughness. Incom-
pressible Newtonian fluid is considered, with fully developed
steady laminar flow assumed. Further, to simplify the analysis,
the Reynolds number is taken sufficiently small (e.g., Re < 1)
so that Stokes flow is in force, with the inertia effect neglected.
Here, ignoring the inertial term is considered acceptable30,31

because both the characteristic length and characteristic
velocity are considerably small in the problem of Fig. 1.
Malevich et al.32 calculated the fluid field of Stokes flow inside
a channel with three-dimensional wavy walls. It was demon-
strated that when the wave number of roughness is relatively
small, no eddy could be formed. At sufficiently low Reynolds
numbers, the nonlinear term in the governing function can be
abandoned to obtain simplified solutions, instead of solving by
a numerical method (e.g., finite difference method). Moreover,
in the present study, small relative roughness (ranging from 0
to 0.2) is considered since a perturbation model is employed
for modeling. Due to the linearity of the Stokes equations, it
is feasible to adopt such a large range of relative roughness
without significant loss of accuracy.

As shown in Fig. 1(b), the problem is axisymmetric
and can be solved in two-dimensional (2D) cylindrical coor-
dinates (x̄, r̄). With periodicity considered, the analysis is
performed in a characteristic element domain x̄ ∈ (0, b) ,
r̄ ∈ (0, Γ (x, θ) D). For fully developed steady incompressible
flow, the non-dimensional Navier-Stokes equation is given by

0 = −∇p + ∇2u. (6)

Subsequent analysis and calculation are all performed in the
dimensionless fluid field.

The inner boundary of the rough pipe is assumed to be no-
slip and no-penetration. The center line (r = 0) is considered
to be axis-symmetric. Therefore, the boundary condition can
be written as




u = 0, v = 0, at r = Γ (x, θ) ,

u, v < ∞, at r = 0,
(7)

where u and v are the axial and radial velocity component
in the pipe, respectively. For incompressible fluid, the stream
function ψ and the flow velocity components are linked by

u =
1
r
∂ψ

∂r
, v = −

1
r
∂ψ

∂x
. (8)

Substitution of Eqs. (8) into Eq. (6) yields

E2E2 (ψ) = 0, (9)

where E2 is the Stokes operator,33 given by

E2 =
∂2

∂r2
−

1
r
∂

∂r
+
∂2

∂x2
. (10)

Substituting the velocity of Eq. (8) into the boundary condition
(7) leads to




∂ψ

∂x
= 0,

∂ψ

∂r
= 0, at r = Γ (x, θ) ,

ψ < ∞, at r = 0.
(11)

Following Van Dyke,17 the stream function can be
expressed as a combination of the basic solution for a smooth
circular pipe plus a series of perturbed solutions. Thus, one
can take the Taylor expansion of the stream function ψ(x, r)
about the small relative roughness ε and retain only its zero-
and first-order terms,

ψ (x, r) = ψ0 (x, r) + εψ1 (x, r) + O
(
ε2

)
, (12)

where O (εn) is defined as the infinitesimal of the n-th order.
According to the present model,

ψ (x, r)|r=Γ(x,θ) = ψ (x, r)|r= 1
2
−εg (x)

(
∂ψ (x, r)
∂r

) �����r= 1
2

+O
(
ε2

)
.

(13)
Note that, in Eq. (13), the complex boundary curve r = Γ (x, θ)
has been taken equivalent to the simplified boundary curve
r = 1/2. As a result, the influence of surface roughness is
reflected by the first-order difference term εg (x)

(
∂ψ(x,r)
∂r

) ���r= 1
2
.

As a result, the following analysis and results are all deduced
in the equivalent element domain x ∈ (0, 2π/β) , r ∈ (0, 1/2).

Substitution of (12) into (9) leads to the following
perturbation expansion of the Stokes equation:

E2E2 (ψ0) + εE2E2 (ψ1) + O
(
ε2

)
= 0. (14)

Solving E2E2 (ψ0) = 0 gives the zero-order stream func-
tionψ0 = r2−2r4, corresponding to fully developed Poiseuille
flow,

u0 = 8
(
1/4 − r2

)
. (15)

The first-order term of the perturbed equation together
with the revised boundary condition are given by

E2E2 (ψ1) = 0,




∂ψ1

∂x
= 0,

∂ψ1

∂r
= −4g (x) + O (ε) , at r =

1
2

,

ψ1 < ∞ at r = 0.

(16)

Traditionally, it has been suggested to solve Eq. (16)
numerically, e.g., using the finite difference method.19

Nonetheless, the velocity field thus obtained leads to no growth
in pressure drop along the roughened pipe, which is obviously
inconsistent with experimental results.10–13 This is because the
simplification of boundary conditions as detailed above leads
to non-ignorable errors when the periodic roughness is densely
distributed, that is, when the wave number β is relatively large.
In reality, the surface roughness, serving as the disturbance
source, causes significant nonlinearity at the boundary. Such
nonlinearity magnifies the higher-order terms in the system so
that the O(ε) term in Eq. (16) cannot be neglected.

To address the aforementioned deficiency, one needs to
modify the condition at the roughened boundary. Therefore,
upon introducing a modification function q(x, ε, β) to revise
the boundary condition, the problem becomes

E2E2 (ψ1) = 0,




∂ψ1

∂x
= 0,

∂ψ1

∂r
= −4g (x) + q (x, ε, β) , at r =

1
2

,

ψ1 < ∞ at r = 0.

(17)

The modification function q(x, ε, β), which replaces O(ε) in
Eq. (16), depends on the position coordinate, relative rough-
ness, and wave number of roughness. Nonetheless, at present,
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the precise expression of q(x, ε, β) is difficult to obtain, and it
has been demonstrated that retaining more terms in the Taylor
expansion of Eq. (13) does not work as well. Alternatively, an
approximate estimation of q(x, ε, β) is performed, as detailed
below.

To simplify the present analysis of the surface roughness
effect on pipe flow, let Q (ε, β) = ∫

2π/β
0 q (x, ε, β) dx, which

represents the periodic average of flow constriction. To sepa-
rate the two variables r and x in Eq. (17), take Fourier transform
of the first-order term of the stream function in the x direction,
as

ψ1 =

∞∑
k=−∞

ϕk (r) e jkβx. (18)

Substitution of (18) into (17) yields

E2E2


∞∑
k=−∞

ϕk (r) e jkβx

= 0,




∂ψ1

∂x
= 0,

∂ψ1

∂r
= −2e jβx − 2e−jβx + Qe0, at r =

1
2

,

ψ1 < ∞ at r = 0.

(19)

According to this boundary condition, three terms (k =�1, 0, 1)
remain in the expansion of the first-order stream function,
namely,

ψ1 = ϕ1 (r) e jβx + ϕ−1 (r) e−jβx + ϕ0 (r) . (20)

Here, ϕ1 (r) e jβx and ϕ−1 (r) e−jβx represent the periodic fluc-
tuation of flow velocity along the axial direction, which have
no direct effect on the growth of pressure gradient, while ϕ0(r)
represents the overall deviation of flow velocity along the radial
direction, which is responsible for increased pressure drop
according to Eq. (6). Therefore, Eq. (17) can be separated
into two independent governing functions, i.e., the fluctuation
function and the deviation function, as(

∂2

∂r2
−

1
r
∂

∂r
− β2

) (
∂2

∂r2
−

1
r
∂

∂r
− β2

)
ϕ1 = 0,




ϕ1 = 0,
∂ϕ1

∂r
= −2, at r =

1
2

,

ϕ1 < ∞, at r = 0,

(21)

(
∂2

∂r2
−

1
r
∂

∂r

) (
∂2

∂r2
−

1
r
∂

∂r

)
ϕ0 = 0,




∂ϕ0

∂r
= Q, at r =

1
2

,

ϕ0 < ∞, at r = 0.

(22)

The solution of (21) for the fluctuation function is detailed
in the Appendix. Due to symmetry of the equation, ϕ1 and ϕ

�1

are complex conjugate. As previously discussed, this solution
does not cause any increase in the pressure gradient.

As a key in understanding the influence of roughness on
the pressure gradient, the solution to (22) for the deviation
function is given by

ϕ0(r) =
M
2

r2 +
N
4

r4, (23)

where M(ε, β) and N(ε, β) are two functions that depend on
relative roughness and wave number, satisfying 4M + N = 8Q.

Further, with the consideration of flow conservation in an ele-
ment domain x ∈ (0, 2π/β) , r ∈ (0, 1/2), the velocity flux
increment of incompressible fluid in this domain should be
zero, namely, the volume integration of the first-order velocity
u1 equals zero,∫ 2π/β

0

∫ 1/2

0
u1rdrdx = 0,

with

u1 =
1
r

(
dϕ0

dr
+

dϕ1 (r)
dr

e jβx +
dϕ−1 (r)

dr
e−jβx

)
. (24)

The integration of the last two terms on the right-hand side of
u1 equals zero due to the integration property of trigonometric
functions (i.e., ∫

2π/β
0 e jβxdx = 0, ∫

2π/β
0 e−jβxdx = 0). Inserting

(23) into (24) yields
M = −8N . (25)

Thus, there remains only one unknown parameter in (23).
However, due to nonlinearity at the boundary, the conventional
perturbation theory cannot precisely calculate M, N, or Q. Con-
sequently, in Sec. III B, an approximate approach is proposed
to determine M and N.

B. Solution

Given that surface roughness hinders fluid flow in pipes,
one can quantify the hindering effect, albeit approximately,
based on flow fields in two extreme cases as shown schemati-
cally in Fig. 2.

One limit is given by Eq. (3), valid only when the wave
number of the sinusoidal surface roughness is very large
(i.e., β→∞), as considered in the constricted flow model.14,15

Another limit corresponds to very small wave numbers
(β → 0). Consideration of the two extreme cases leads to
two limiting values of pressure drop, i.e., the lower and upper
bounds. As the wave number is increased, it becomes more
difficult for the fluid to flow through the boundary layer.
Given a specified relative roughness ε, it is expected that
∂2p
∂x∂β < 0, which results in ∂

∂β

(
∇2u1

)
< 0. This leads to

∂
∂β

[
∇2

(
1
r
∂ϕ0
∂r

)]
< 0, finally yielding ∂N

∂β < 0 [deduced from
Eqs. (6), (10), (20), and (23)]. In other words, N(β) is a

FIG. 2. Two extreme cases of a pipe with periodic surface roughness: (a) very
small wave number (β → 0) and (b) very large wave number (β → +∞).
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decreasing function. For the problem considered in the current
study, the logistic function34 commonly adopted to describe
an S-shaped growth curve satisfies all the properties of N(β).
Further, the growth ratio and limits of the logistic function
depend in general on extreme cases. Therefore, the logistic
function is used to approximate the dependence of M and N
on β, as follows:

M = *
,
M1

2e−
1

5π β

1 + e−
1

5π β
+ M2+

-
, (26)

N = *
,
N1

2e−
1

5π β

1 + e−
1

5π β
+ N2+

-
, (27)

where M1, M2, N1, N2 are four coefficients depending on
relative roughness.

With reference to Fig. 2(b), when β = ∞, the flow field
can be calculated approximately using the Poiseuille flow in a
smooth pipe with diameter (1 � 2ε), as

uβ=∞ =
1

2(0.5 − ε)4

[
(0.5 − ε)2 − r2

]
(28)

which yields

M2 =
1
ε

[
1

2(0.5 − ε)2
− 2

]
, (29)

N2 =
1
ε

[
−

1

2(0.5 − ε)4
+ 8

]
. (30)

Similarly, based on Fig. 2(a), when β → 0, the partial
derivative of the flow velocity with respect to x is a higher-order
infinitesimal term, i.e., du

dx =
du
dr . The flow field can thence be

calculated approximately using the Poiseuille flow in a smooth
pipe with varying diameter (1 − 2ε cos (βx)), as

uβ=0 =
6 (r − ε cos (βx)) (1 − ε cos (βx) − r)

1 − 6ε cos (αx) + 12cos2 (βx) ε2 − 8cos3 (βx) ε3

(31)

from which one obtains

M1 =
2
ε

*
,

1(
1 − 4ε2)1.5

−
1

(1 − 2ε)2
+
-

, (32)

N1 =
8
ε



1

(1 − 2ε)4
−

(
6ε2 + 1

)
(
1 − 4ε2)3.5


. (33)

The Stokes equation in the x direction can be rewritten as(
∂2

∂r2
+

1
r
∂

∂r
+
∂2

∂x2

)
u =

dp
dx

. (34)

The ratio of the average pressure drop (i.e., area-weighted aver-
age of dp/dx) across a rough pipe to that across a smooth pipe
can be obtained as

ksine =
(∆p/L)rough

(∆p/L)smooth
= 1 −

εN
8

. (35)

As an important parameter quantifying the influence of surface
roughness on pressure drop, ksine has been widely used to char-
acterize fluid flow across roughened pipes. For example, the
static flow resistivity, which evaluates the viscous resistivity
of a pipe, is given by

σ =
−∆p
UL

. (36)

The ratio of static flow resistivity between rough and smooth
pipes can be weighed using ksine, as

σrough

σsmooth
=

(∆p/LU)rough

(∆p/LU)smooth
= ksine. (37)

Similarly, the ratio of the Darcy friction factor between rough
and smooth pipes can be obtained as

frough

fsmooth
=

[
(2D∆p/L)/ρU2

]
rough[

(2D∆p/L)/ρU2]
smooth

= ksine. (38)

To determine ksine, the function N(ε, β) needs to be calcu-
lated. To this end, Eqs. (27), (30), (33), and (35) are combined
to obtain

ksine =
1

(1 − 2ε)4
−

*.
,

1

(1 − 2ε)4
−

(
6ε2 + 1

)
(
1 − 4ε2)3.5

+/
-

2e−
1

5π β

1 + e−
1

5π β
,

(39)
which is valid when the relative roughness is small, e.g.,
ε < 0.2. Note that, when ε → 0, both Eqs. (35) and (42)
degrade to the fundamental solution ksine = 1 although this
is not so obvious from Eq. (42).

For the two extreme cases considered in Fig. 2, the
solutions of ksine are given by

ksine =

(
6ε2 + 1

)
(
1 − 4ε2)3.5

at β = 0,

ksine =
1

(1 − 2ε)4
at β = ∞.

(40)

C. Rectangular and triangular surface roughness

In addition to sinusoidal roughness considered in Secs.
III A and III B, other types of periodic surface roughness
with, e.g., rectangular and triangular morphologies, can also be
treated by decomposing their morphology function g(x) into a
series of sinusoidal functions via Fourier transform.

Figure 3 displays three different kinds of periodic surface
roughness, with identical relative roughness and wave number.
According to Eq. (16), the effect of roughness morphology on
flow is characterized using the revised boundary condition.

FIG. 3. (a) Sinusoidal, (b) rectangular, and (c) triangular roughness period-
ically distributed on the channel wall with identical relative roughness and
wave number.
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In view of the linearity of Eq. (9), the influence of rectangular
or triangular roughness can be considered equivalent to that of
a series of sinusoidal roughness upon Fourier transform.

The Fourier transforms of periodic rectangular and trian-
gular roughness are given by

grectangle (x) =
4
π

[
cos (βx) −

1
3

cos (3βx) +
1
5

cos (5βx) + · · ·

+ (−1)n−1 1
(2n − 1)

cos ((2n − 1) βx)

]
, (41)

gtriangle (x) =
8

π2

[
cos (βx) +

1
9

cos (3βx) +
1
25

cos (5βx) + · · ·

+
1

(2n − 1)2
cos ((2n − 1) βx)

]
, (42)

where n = 1, 2, 3, . . . ,∞. As a first-order approximation, keep-
ing only the first term in the foregoing equations, one can
establish equivalence between sinusoidal roughness and rect-
angular/triangular roughness. Consequently, in view of (35),
it follows that




krectangle (ε, β) ≈ ksine

(
4
π
ε, β

)
,

ktriangle (ε, β) ≈ ksine

(
8

π2
ε, β

)
.

(43)

The solution shows that the pressure drop for rectangular cor-
rugation is more than that for sinusoidal corrugation and the
pressure drop for triangle is less. This conclusion is consistent
with the previous studies done by Herwig et al.9 By studying
the problem of laminar flow passing the rough channels with
Q-type, S-type, and T-type elements (i.e., rectangular, wavy,
and triangular roughness), they pointed out that the entropy
production in the cavities between the rough elements is almost
negligible. Instead, the entropy production is more likely to
be concentrated in a small band along the heads of the sin-
gle roughness elements. As a result, the decreasing area of
the heads of the rough element will lead to the decreasing
resistivity effect.

IV. RESULTS AND DISCUSSION

To validate the proposed model, direct numerical sim-
ulations are performed. Fully developed laminar flow of air
in a rough pipe is studied. The physical properties of air are
summarized in Table I.

Air flow in the rough pipe is solved with Fluent 6.3� at
Re = 0.6872. For the representative model of Fig. 4(a), the
flow is simulated using the laminar and axisymmetric solver.
In most cases, the length (L) of the representative pipe is large

TABLE I. Physical parameters of air and geometric parameters of the circular
pipe.

Physical parameter Values

Density ρ = 1.23 kg/m3

Dynamic viscosity µ = 1.79 × 10�5 Pa/s
Average velocity U = 0.01 m/s
Diameter D = 0.001 m

enough to ensure that the flow is fully developed and there are at
least four periodic roughness in the numerical model (L ≥ 4b).
To ensure numerical accuracy, mesh sensitivity is checked
for each model. The numerical results are independent of the
grid resolution, as verified by systemically varying the size of
the grid. According to Fig. 4(c), grid independence is satis-
fied as long as the number of cells is larger than 10 000 or
the corresponding characteristic length of the cell does not
exceed 2.5 × 10�5 m. The absolute criterion of the system
is set at less than 10�8 to ensure the convergence of each
calculation.

A. Velocity distribution

Figure 5 displays the radial distributions of flow veloc-
ity within a fully developed region (1 mm < x̄ < 5 mm) of
a roughened circular pipe (D = 1 mm; L = 18 mm; ε = 0.1;
β = 2π), as obtained separately from the present perturbation-
based theoretical model and the Computational Fluid Dynam-
ics (CFD) simulation. The results are given in dimensionless
form in accordance with the theoretical deductions. For refer-
ence, corresponding results for a smooth pipe without rough-
ness are also presented. Two significant features of the velocity
distribution shown in Fig. 5 are observed:

(i) Periodic fluctuation (with extent denoted by a purple
arrow) represents the periodic change of flow field along
the axial direction, which is consistent with the periodic
distribution of surface roughness;

(ii) Overall deviation (with extent denoted by a blue arrow)
indicates the difference in the average flow field between
the roughened pipe and the smooth pipe, which is
attributed to the flow constriction effect.

Conclusively speaking, the velocity field follows a wavy
pattern. The phase of the periodic fluctuation is identical to
the phase of wavy boundary [as shown in Eq. (20)], so the
maximum of the periodic fluctuation is happening both at the
corrugation peak and corrugation bottom. The amplitude of the
periodic fluctuation is determined by the solution of Eq. (21).
Figure 5 shows that the maximum amplitude occurs near the
axisymmetric line (r = 0). The position (center line) of the
periodic fluctuation is determined by Eq. (22), characterizing
the overall deviation of the flow field.

More details are given in Fig. 6, which compares the
flow field inside the rough tube with different wave numbers
(β = 0.4π, 2π, 10π). Based on the cylinder coordinate, both
the velocity contour and streamline diagram are plotted inside
the rough tube. It shows that with the increase of the wave
number, there are much less streamlines appearing inside the
cavity between the two rough elements. When the wave num-
ber is large, the velocity field in the rough channel is similar
to the velocity field in the corresponding smooth channel with
reduced radius.

The results of Fig. 5 show that the present model pre-
dictions match well with the numerical results at r = 0, 0.1,
0.2, and 0.3, while small deviations are found at r = 0.4 and
0.5 as the roughened wall is approached. The latter is mainly
attributed to the fact that the disturbance source, r = Γ (x, θ),
will amplify the relative error at the roughened wall. How-
ever, this should not undermine the application potential of
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FIG. 4. Representative numerical
model of fully developed air flow
in (a) a roughened circular pipe
(ε = 0.1; β = 2π) (A: velocity inlet; B:
axis; C: outflow; D: wall); (b) triangular
mesh; (c) grid independence tests based
on the absolute value of relative static
flow resistivity (i.e., σrough/σsmooth)
versus the number of cells.

the proposed model. According to Figs. 5(a)–5(f), the model
accurately predicts all the important features of the periodic
velocity field, such as period, phase, amplitude, and central
line, which makes it good enough to characterize the flow
field in a roughed circular pipe. In Sec. IV B, another impor-
tant parameter of the problem, the static flow resistivity, will
be determined.

B. Static flow resistivity

Static flow resistivity is an important parameter that quan-
tifies the viscous resistivity of a channel and has been widely

used in the characterization of porous media. With the flow
constriction effect in a roughened circular pipe determined
as shown in Secs. III and IV A, its static flow resistivity
can be readily calculated. In Fig. 7, the theoretically pre-
dicted static flow resistivity of a roughened pipe, normal-
ized by that of the corresponding smooth pipe, is compared
with the CFD simulation results. Overall, good agreement is
achieved.

According to Fig. 7(a) for the case of D = 1 mm; β = 2π,
there exists an accelerated growth of the ratio of static flow
resistivity σrough/σsmooth about relative roughness ε, even
when ε is as large as 0.2. The results of Fig. 7(b) for the case

FIG. 5. Comparison of theoretical model predictions and CFD simulation results for radial distribution of dimensionless velocity u in a roughened circular pipe
(D = 1 mm; L = 18 mm; ε = 0.1; β = 2π): (a) u (x, r) |r=0; (b) u (x, r) |r=0.1; (c) u (x, r) |r=0.2; (d) u (x, r) |r=0.3; (e) u (x, r) |r=0.4; (f) u (x, r) |r=0.5. Corresponding
results for a smooth circular pipe are presented for reference.
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FIG. 6. Velocity contour and stream-
line of the flow field: (a) β = 0.4π;
(b) β = 2π; (c) β = 10π (ε = 0.1).

of D = 1 mm, ε = 0.1 indicate that increasing the wave number
of roughness leads to a significant increase in static flow resis-
tivity, which is mainly caused by the increased surface area.
When the wave number grows larger, the static flow resistivity

will converge to the solution of the equivalent smooth chan-
nel with the diameter of (D � 2e), and any further change
in wave number will not change the flow field and resistivity
accordingly.

FIG. 7. Comparison of static flow resis-
tivity between theoretical predictions
and numerical calculations: (a) effect
of relative roughness (D = 1 mm;
β = 2π) and (b) effect of wave number
(D = 1 mm; ε = 0.1).
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Conclusively, the theoretical prediction agrees well with
the numerical results. When the wave number becomes large,
however, the numerically calculated static flow resistivity
becomes smaller than the theoretical predictions, which can
be explained using Eq. (28). When β → ∞, the fluid flow
domain is assumed to be blocked in the rough boundary region
r ∈ (0.5 � ε, 0.5 + ε). Under such conditions, using the
analogue of the Poiseuille flow in a constricted channel, one
can determine the flow field. However, the application of the
Poiseuille flow is somewhat inappropriate here, for even when
β is relatively large, the equivalent boundary r = 0.5 � ε is
still filled with fluid. It is more reasonable to employ the slip
boundary condition at r = 0.5 � ε instead of the no-slip bound-
ary.14 Nonetheless, for typical wave numbers (e.g., β < 10π)
as considered here, the error associated with the present
theoretical prediction of static flow resistivity is relatively
small.

C. Discussion

Figure 8 compares the Darcy friction factors calculated
using Colebrook’s equations, the constricted flow method, and
the present model. The effect of relative roughness for the case
of D = 1 mm, β = 0π, 5π, 10π is displayed in Fig. 8(a), and
the effect of wave number for the case of D = 1 mm, ε = 0.1
is presented in Fig. 8(b).

The results of Fig. 8 reveal that the revised perturbation
theory presented in the present study is applicable in a wide
range of ε and β values (e.g., 0 ≤ ε ≤ 0.2, 0 ≤ β < ∞):
when ε → 0, the prediction degrades to the basic solution
f = 64

Re of Colebrook’s equations;9 when β → ∞, the predic-
tion degrades to f = (1 − 2ε)−4 64

Re given by the constricted flow
model.16 These limit properties, which have already been pre-
sented in Eq. (40), demonstrate the superiority of the present
model.

Conventional theories of surface roughness effect are
more or less associated with limitations: both Colebrook’s
equations and the constricted flow model fail to provide rig-
orous analysis of the effect of wave number because they are
essentially built on the global fitting of experimental results;
the conventional perturbation theory does not provide accurate
predictions of the shear stress on the boundary, for it is built
upon approximation analysis of the Navier-Stokes equations.

Even worse, the conventional perturbation theory ignores the
nonlinearity of boundary condition and neglects O(ε) terms in
Eq. (16). As a result, while this method can predict the periodic
fluctuation of flow velocity along the axial direction, it fails
to capture the overall deviation of flow in the radial direction
responsible for enhanced pressure drop.

On the contrary, as demonstrated in Fig. 5, the revised
perturbation theory proposed in the present study cannot
only predict the periodic fluctuation of flow in Eq. (21) but
also the overall deviation of flow in Eq. (22) that reflects
the concentration of flow field (thus the growth of pressure
drop). In other words, the proposed model overcomes the
deficiencies of conventional approaches to obtain more accu-
rate predictions of a fully developed laminar flow field (and
hence pressure drop) in a circular pipe having periodic surface
roughness. This is considered the main novelty of the present
study.

Figure 9 displays the ratio of pressure drop across a rough
pipe to that across a smooth pipe calculated using the present
model as well as the numerical method. Three types of sur-
face roughness with identical relative roughness and wave
number are considered, as shown in Fig. 3. The theoretical
predictions agree well with the numerical results when the
wave number is relatively small (β < 5π). Figure 9(a) reveals
that rectangular roughness has more influence on pressure
drop than either sinusoidal or triangular roughness because
it can generate step flow, which prevents the flow propagat-
ing through the boundary area and hence increases viscous
dissipation. Figure 9(b) shows that the approximation solu-
tion of (43) is valid only when the wall roughness are not
closely packed, which is attributed to the approximation of
the roughness morphology in Eqs. (41) and (42). However,
it is possible to improve the prediction accuracy by modify-
ing the approximation functions (i.e., the logistic function) in
Subsection III B.

In view of Figs. 7 and 9, it is interesting to see that
the effect of relative roughness (ε) is better predicted than
the effect of wave number (β), which can be explained by
the approximation analysis in Subsection III B. First, with ε
fixed, the logistic function is used to fit M(β) and N(β) as
functions of β which would, inevitably, lead to fitting errors.
Second, once M(β) and N(β) are determined, no assumption
is made in calculating M(ε) and N(ε). As a result, the predicted

FIG. 8. Darcy friction factor predicted
by using three different models: (a)
effect of relative roughness (D = 1 mm;
β = 0π, 5π, 10π) and (b) effect of wave
number (D = 1 mm; ε = 0.1).
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FIG. 9. Influence of roughness mor-
phology on the pressure gradient: (a)
effect of relative roughness (D = 1 mm;
β = 2π) and (b) effect of wave number
(D = 1 mm; ε = 0.1).

relationship between the flow field and relative roughness can
be accurate enough when we adopt the accurate M(β) and
N(β) (at small wave number) to calculate M(ε) and N(ε), as
shown in Figs. 7(a) and 9(a). By contrast, as shown in Figs. 7(b)
and 9(b), the predicted flow field versus wave number relation-
ship at a given relative roughness is less accurate. This also
indicates that wave number is a key parameter in the analysis
of roughness effect on pipe flow.

V. CONCLUSIONS

A theoretical model has been established to quantify the
effect of periodic surface roughness on fully developed Stokes
flow across a circular pipe by unifying three existing the-
oretical approaches (i.e., the Colebrook equations, the flow
constriction model, and the perturbation model). Sinusoidal,
rectangular, and triangular roughness morphologies with rel-
atively small relative roughness ε and wave number β are
considered. Approximated solutions of fluid flow and pres-
sure drop are obtained and validated using direct numerical
simulations. The main findings are as follows:

(i) The presence of periodic surface roughness leads to
periodic fluctuation and overall deviation of fluid flow,
which leads to growth in pressure drop.

(ii) Increasing the relative roughness or wave number can
increase pressure drop across a rough pipe, which is

predicted correctly by the present theory but not the
previous theoretical methods.

(iii) The predicted Darcy friction factor reduces, correctly,
to f = 64

Re when ε → 0 and to f = (1 − 2ε)−4 64
Re when

β →∞.
(iv) With both ε and β fixed, rectangular roughness leads to

a higher pressure gradient than sinusoidal or triangular
roughness.
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APPENDIX: SOLUTION OF THE PERIODIC
FLUCTUATION FUNCTION

The governing equation in Eq. (21) can be rewritten as

[
∂4

∂t4
−

(
2
t

)
∂3

∂t3
+

(
3

t2
− 2

)
∂2

∂t2
+

(
2
t
−

3

t3

)
∂

∂t
+ 1

]
ϕ1 = 0,

where

t = βr. (A1)

FIG. 10. Error analysis of the revised
perturbation theory in the calculation of
the value of the amplitude (i.e., peri-
odic fluctuation) and the position of the
centerline (i.e., overall deviation): (a)
effect of relative roughness (D = 1 mm;
β = 2π) and (b) effect of wave number
(D = 1 mm; ε = 0.1).
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Based on the boundary condition ϕ1 < ∞, at t = 0,
the solution to Eq. (A1) is

ϕ1 (t) =
{
t2J (2, it)

}
C1 +

1
8

i
{
πt3J (0, it) J (2, it) Y (1,−it)

+ πt3J (0, it) J (1, it) Y (2,−it)
}

C3, (A2)

where Jk (βti) is the Bessel function of the kth-order and
Yk (βti) is the revised Bessel function of the kth-order.
C1, C3 are two unknown constants that depend on the boundary
condition

ϕ1 = 0,
∂ϕ1

∂t
= −2, at t =

1
2
β. (A3)

The proposed theory has already been validated by the
numerical approach, as shown in Figs. 5, 7, and 9. To discuss
the influence of the parameter on the relative error, an error
analysis has been provided here, based on the calculation of
the value of the amplitude (i.e., periodic fluctuation) and the
position of the centerline (i.e., overall deviation).

According to Fig. 10(a), the relative error is growing with
the increase of the relative roughness, due to the limitation
of perturbation method. When ε ≥ 0.1, the amplitude has a
larger relative error than the position. As a result, at ε = 0.2,
the results of the velocity field are no longer reliable, but the
results of overall deviation and pressure drop still have con-
siderable accuracy. According to Fig. 10(b), the decrease of
the wave number can reduce the relative error. This is because
when the wave number is large, most of the streamlines will
concentrate on the center of the rough channel. The ampli-
tude of the periodic fluctuation is approaching zero, leading
to the decrease of relative error. In addition, since the over-
all deviation is calculated based on limit analysis, the relative
error of overall deviation will be restricted in a reasonable
range.
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