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A B S T R A C T

A refined four-unknown quasi-3D zigzag beam theory is developed to model the free vibration and buckling
behaviors of multilayered composite beams subjected to axial mechanical loading (e.g., distributed load and
terminal force) and uniform temperature variation. Types of the composite beams considered include laminated
composite beams, sandwich beams with composite face sheets, and fiber metal laminates. The proposed theory
accounts for not only thickness stretching but also interlaminar continuity of transverse shear stresses and
displacements. Associated eigenvalue problems for various boundary conditions are derived using the Ritz
method. Accuracy and effectiveness of the theoretical predictions are verified by comparison with existing re-
sults and present finite element simulations. The theory is employed to quantify the effects of axial distributed
load/terminal force and temperature variation on free vibration and buckling for different boundary conditions,
geometric parameters and material properties. The present theory could produce sufficiently accurate predic-
tions of natural frequencies and buckling capacities of multilayered beams at a very low computational cost.

1. Introduction

Lightweight laminated composite and sandwich structures have
enjoyed widespread engineering applications due to their superior
stiffness, strength, shock resistance and other excellent properties. Fiber
metal laminates (FMLs), as a kind of hybrid material made of stacked
metal sheets and fiber reinforced composite (FRC) layers [1], have also
been increasingly applied as structural material for the aerospace in-
dustry (e.g., lower wing skin and internal parts of airplanes, Airbus
A380 fuselage, etc.), attributed to their excellent fatigue, impact re-
sistance, and damage tolerance [2]. This research aims to develop a
refined four-unknown quasi-3D zigzag beam theory to characterize the
free vibration and buckling behaviors of multilayered composite beams
(including laminated composite, sandwich and FML beams). The beam
is subjected to axial mechanical load, e.g., distributed load and terminal

force, and uniform temperature variation.
Existing research on the dynamic response of FMLs has mainly fo-

cused on the classical or first-order beam/plate theories. For typical
instance, based on the first-order shear deformation theory, Shooshtari
and Razavi [3] employed the Galerkin method and multiple time scales
method to study linear and nonlinear free vibration behaviors of a FML
rectangular panel. Using the first-order shear deformation theory as
well as the Fourier series method, Payeganeh et al. [4] investigated the
dynamic response of FMLs subjected to low-velocity impact. By
adopting the differential quadrature method, Nermark-beta method and
iterative method, Fu et al. [5,6] studied the nonlinear dynamic response
of delaminated FML beams and viscoelastic FML beams under thermal
shock based upon the Timoshenko beam theory. Using the Galerkin
method and Newmark method, Tao et al. [7] employed the Euler-Ber-
noulli beam theory to study nonlinear dynamic behavior of FML beams
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subjected to moving loads in thermal environment.
Beams subjected to axially distributed load, e.g., self-weight or ac-

celeration-induced body force, are a class of commonly applied struc-
tures in civil and aerospace engineering. The axially distributed load
plays an important role in affecting the stability and natural frequencies
of the structures. As reviewed in our previous work [8], existing re-
search studied the stability or post-buckling of beams subjected to
axially distributed load using the classical Euler-Bernoulli beam theory,
with the effect of transverse shear ignored. To address this deficiency,
Han et al. [8] adopted the Timoshenko theory with both Engesser and
Haringx types to study the stability and initial post-buckling of beams
subjected to combined axially distributed load and terminal force. It
was found that the effect of transverse shear deformation should not be
neglected especially for predicting the buckling of sandwich and com-
posite laminated beams, and the Engesser shear theory gave better
predictions than the Haringx type.

Existing research on vibration analysis of beams subjected to axially
distributed load was mostly carried out within the framework of Euler-
Bernoulli and Timoshenko beam theories [9]. For example, taking ac-
count of self-weight, Naguleswaran [10] used the Frobenius method to
investigate the natural frequencies of standing and hanging Euler-Ber-
noulli beams. Virgin et al. [11] evaluated the effect of gravity on the
vibration of vertical Euler-Bernoulli cantilevers. Employing a multiple
time-scales perturbation method, Hijmissen and Horssen [12] studied
the vibration of a standing Euler-Bernoulli beam with a tip-mass
damper, and later the transverse vibration of a standing, uniform,
cantilevered Timoshenko beam [13]. Abramovich [14] utilized the
Galerkin method to investigate the free vibration of a hanging Ti-
moshenko beam, while Xi et al. [15] studied the free vibration of a
hanging or standing Rayleigh beam-column subjected to vertically or-
iented gravity load.

At present, higher-order shear deformation theories are scarcely
employed to study the vibration and stability of FML beams, or standing
laminated and sandwich beams subjected to axially distributed load.
The Euler-Bernoulli beam theory, as the simplest deformation beam
theory, is inaccurate for reasonably thick and/or highly anisotropic
composite beams, as it neglects transverse shear strain in the laminates.
Timoshenko beam theory, or the first-order beam theory, considers
constant transverse shear strain through the beam thickness and hence
has to incorporate a shear correction factor to adjust the transverse
shear stiffness. However, while the shear correction factor determines
the accuracy, it could not in general be determined a priori apart from
very special cases [16,17]. To address this issue, several higher-order
shear deformation theories (HSDTs), e.g., polynomial, trigonometric,
exponential and hyperbolic shear deformation theories, have been de-
veloped as the Equivalent Single Layer (ESL) theories, LayerWise (LW)
theories, and Zigzag (ZZ) theories, which have been recently reviewed
for laminated composites and sandwich beams [18–22] as well as
functionally graded (FG) beams [23–25]. In the frame of one dimen-
sional (1D) LW models, Léotoing et al. [26] investigated the geome-
trically nonlinear interaction between overall and local buckling modes
of sandwich beams, Yu et at. [27] developed a 1D finite element model
to simulate the instability of sandwich beams with high efficiency, and
Sad Saoud and Le Grognec [28] studied the post-buckling behavior of
sandwich beams. In order to minimize the computational cost of the LW
models, one can resort to ZZ theories [29]. Kapuria et al. [30] assessed
the zigzag theory for static loading, buckling, free and forced response
of composite and sandwich beams. Hu et al. [31] evaluated different
kinematic theories on the static and dynamic analysis of various
sandwich beams with viscoelastic core, and found the zigzag theories
were more accurate than classic laminated theory (CLT) and HSDT
based ESL models. Carrera et al. [32,33] presented the static and dy-
namic analysis of laminated beams by using polynomial, trigonometric,
exponential, and zigzag functions in the frameworks of the Carrea
Unified Formulation. Tessler [34] developed the refined zigzag theory
(RZT) based upon the Timoshenko beam theory for laminated

composite beams. Referring to the kinematics of Tessler’s RZT, Di
Sciuva et al. [35] and Treviso et al. [36] developed a class of C0-con-
tinuous beam elements for the analysis of laminated beams. The C0-
continuous kinematics of the in-plane components satisfying the con-
tinuity of transverse stresses can be efficiently reproduced by adopting
the zigzag theories. However, most of the Zigzag theories are compli-
cated when thickness expansion is taken into account and the pre-stress
is considered under thermal environment.

For thick laminated, sandwich or FG beams, the normal strain ef-
fect, regarded as thickness stretching, becomes very important and
should be considered in vibration and stability analysis [37]. Using a
higher-order shear and normal deformation theory with axial and
transverse displacements expanded in power series, Matsunaga [38]
studied the vibration and buckling of a simply supported multilayered
composite beam subjected to axial stresses. Mantari and Canales
[39,40] utilized the Ritz method with hybrid series to study the buck-
ling and vibration of laminated beams with various boundary condi-
tions. To this end, they employed two quasi-3D higher-order shear
deformation theories, which include both shear deformation and
thickness effects with a higher-order variation of in-plane and out-plane
displacements through the thickness. Based upon a refined quasi-3D
polynomial theory, Vo et al. [24,41,42] developed analytical solutions
and finite element (FE) models to investigate FG and composite lami-
nated beams. Nguyen et al. [43] and Osofero et al. [44] employed a
variety of quasi-3D theories to investigate the vibration and buckling of
FG sandwich beams. Existing quasi-3D theories are quite applicable to
FG beams/plates, as they automatically satisfy the interlaminar con-
tinuity of both displacements and transverse shear stresses due to the
continuous gradient change of materials along the thickness. However,
for multilayered laminated beams, such theories violate the continuity
conditions of transverse stresses due to the jump change of material
properties at the layered interfaces, usually leading to overestimated
prediction of natural frequency and buckling load [45,46]. As empha-
sized in a recent review [21], in view of minimizing the number of
unknown variables, higher-order beam theories considering the effects
of both the transverse normal deformation and interlaminar continuous
transverse shear stresses on bending, buckling and vibration responses
should be developed for laminated composite and sandwich beams.

In the present study, a refined and generalized quasi-3D zigzag
beam theory is developed to characterize the free vibration and stability
behaviors of composite, sandwich and FML beams with different
boundary conditions under axial mechanical (e.g., axially distributed
load and terminal force) and thermal loading. In Section 2, the de-
formation theory is introduced by incorporating a refined four-un-
known higher-order shear theory and zigzag-type continuous transverse
functions, and accounts for both thickness stretching and interlaminar
continuity of transverse shear stresses and displacements, which could
produce sufficiently accurate results at low computational cost. The
Ritz method in terms of boundary characteristic orthogonal polynomial
functions is applied to solve the vibration and buckling problems. For
validation, the theoretical predictions are compared with existing lit-
erature results and the present FE simulations in Section 3. In Section 4,
three situations are considered and analyzed for various multi-layered
configurations: (i) sandwich and laminated composite beams with dif-
ferent boundary conditions; (ii) micromechanics-based laminated
beams with hinged-hinged boundary condition; (iii) fiber metal lami-
nated (FML) beams with hinged-hinged boundary condition. Lastly,
Section 5 closes the paper with conclusions.

2. Theoretical formulation

With reference to Fig. 1, consider a symmetric multi-layered com-
posite beam composed of 2N+1 layers perfectly bonded together. The
beam has length L, width b, and total thickness h. The global coordinate
system x-y-z is chosen such that the x-y plane coincides with the mid-
plane of the beam. Let the superscript 0 denote all quantities referring
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to the middle-layer or core-layer, and let “zk” denote the material in-
terface coordinate between the k-th and (k-1)-th layers. The beam may
be a laminated composite, a composite sandwich, or a FML structure.

The linear thermoelastic constitutive relations of the k-th ortho-
tropic layer/lamina with any fiber orientation with respect to the x–z
plane may be expressed as:
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where TΔ is temperature change from the stress free state, and a uni-
form temperature variation is assumed. While detailed expressions of
the well-known reduced stiffness Qij can be found in [47], the coeffi-
cients of thermal expansion for the k-th layer in the laminated reference
coordinates are:

= +α α α θ α θ α α( , , ) (cos sin , , 0)x z xz
2

1
2

2 3 (2)

where θ is the angle between the fiber direction and the x-axis of the
individual layer.

2.1. Deformation field with quasi-3D shear deformation beam theory

The displacement field is constructed on the basis of a refined and
generalized quasi-3D shear and normal deformable beam theory de-
veloped from Mohammed [42,48,49]. The in-plane displacement
u x z t( , , ) is expanded as odd functions of the thickness coordinate while
the transverse displacement w x z t( , , ) is splitted into bending, shear and
thickness stretching parts, as:
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where u x t( , )0 , w x t( , )b , w x t( , )s and φ x t( , )z are the four unknown
functions of the beam, f z( ) is the shape function determining trans-
verse shear strains along the thickness, and = − ′g z f z( ) 1 ( ). A prime
denotes the derivative with respect to z, and the subscript “x” re-
presents the partial derivative with respect to x. As a compact for-
mulation, the above displacement field can take into account different
higher-order shear deformation functions, satisfying the stress free
boundaries at the top and bottom surfaces. However, within the frame
of this quasi-3D shear deformation beam theory, the transverse stresses
are not continuous at the interface between two neighboring layers.

2.2. Kinematics with improved quasi-3D zigzag shear deformation beam
theory

With the k-th layer taken as an independent beam
= ± ±k N( 0, 1, ..., ), its displacement components can be written as:
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where = − ′g z f z( )  1 ( )k k( ) ( ) . In the present study, small elastic deforma-
tions are assumed, i.e., displacements and rotations are small, and they
obey Hooke’s law. The strain field can be expressed as:
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From Eqs. (1) and (5), the transverse shear stress of the k-th layer
can be obtained as:
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Upon inserting (7) into (6), the requirement of continuity of inter-
laminar shear stress at zk yields:

= =

= + − = =

∓

∓ ∓

∓ ∓

∓ ∓

A A A

B B C C B C

, 1

( ) , 0, 1

k
Q g z

Q g z
k

k
Q g z

Q g z
k k k

( )

( )
1 0

( )

( )
1 1 0 0

k k k
k k k

k k k
k k k

55
( 1) ( 1)

55
( ) ( )

55
( 1) ( 1)

55
( ) ( ) (8)

where the upper or lower sign on the right side is connected with
the negative or positive values of k, respectively. Substituting Eq. (7)
into Eq. (4) and maintaining continuity of displacement components
(i.e., u k( ) and w k( )) at zk yields:
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where

Fig. 1. Geometry of a symmetrical multi-layered composite beam and its co-ordinate system.
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As a result of the forgoing definitions, the displacement components
of all the constituent layers have been written in terms of the corre-
sponding components of the middle layer. Inserting Eqs. (7)–(10) into
Eq. (4), an improved quasi-3D zigzag shear deformation beam theory is
obtained as:
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This form of displacement approximation yields continuous dis-
placements and transverse shear stress throughout the multi-layered
beam thickness, regardless of any a posteriori specified shape function
f z( )k( ) . Let
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where Ak and Bk are dependent on layer sequence and material prop-
erties, while Dk and Ek are additionally determined by the thickness
coordinate and shear shape function. Therefore, Eq. (11) can be re-
written as:

⎧
⎨
⎩

= − − −

= + +

u x z t u zw ψ z w η z φ

w w w g z φ

( , ; ) ( ) ( )

( )

k
b x k s x k z x

k
b s z

( )
0 , , ,

( )
(14)

where u0
(0), wb

(0), ws
(0), and ϕz

(0) are replaced by u0, wb, ws, and ϕz, re-
spectively; ψ z( )k and η z( )k denote two piecewise zigzag functions, ex-
pressed as
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Upon setting =f z( ) 0, the zigzag first-order (linear) shear de-
formation beam theory (FSDT) is obtained. On the other hand, by
taking =ψ z f z( ) ( )k and =η z( ) 0k , Eq. (14) is reduced to the quasi-3D
shear deformation beam theory of Eq. (3), as a kind of equivalent single
layer (ESL) theories. In the present study, a combined hyperbolic si-
nusoidal and polynomial shape function for the quasi-3D zigzag shear
deformation beam theory (HSPSDT) [49], as illustrated in Fig. 2, is
chosen as: Fig. 3

Fig. 2. Schematic representation of the proposed refined zigzag higher-order shear beam theory. Thickness distribution of zigzag function (a) ψ z( )k , (b) η z( )k , and
zigzag axial displacement (c) u k( ) of a three-layered laminated beam.
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Based on this formulation, the strain-displacement relationships are:
Fig. 4
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In contrast to the displacement field of Eq. (3), the quasi-3D zigzag
shear deformation beam theory of Eq. (14) allows the interlaminar
continuity of transverse shear stresses. It should also be noted that all
interface and boundary conditions are exactly satisfied for displace-
ments and transverse shear stress.

2.3. Stress resultants

The constitutive equations relating the force and moment resultants
to strains and curvatures of the reference surface are given in the fol-
lowing form:
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Upon inserting (14) and (17) into (19), the force and moment re-
sultants are written as:
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where

Fig. 3. Effect of face-to-thickness ratio h hf on (a) fundamental frequency and (b) critical temperature variation of sandwich beams ( =face core face L h[ / / ], 5,
Material 3) with selected boundary conditions.

Fig. 4. Effect of length-to-thickness ratio L h on (a) fundamental frequency and (b) critical temperature variation of laminated beams ( ∘ ∘ ∘[0 /90 /0 ], Material 1) with
selected boundary conditions.
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2.4. Ritz solution of vibration and stability problems

The Ritz method provides a convenient methodology for obtaining
approximate solutions to boundary value problems. This approach is
equally applicable to the buckling and free vibration problems of multi-
layered composite beams. In the present study, application of the Ritz
method requires the total potential energy ∏:

∏ = + −U V T (22)

where U is the strain energy, T denotes the kinetic energy, and V refers
to the potential energies of external axial forces induced by thermal or
mechanical loading. The strain energy of a multi-layered composite
beam can be expressed as:
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The potential energy of external axial load ̂Nx due to uniform tem-
perature variation or axially mechanical loading can be written as:
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where ̂ =N Nx x
T for thermal loading or ̂ = + −N P q L x( )x for axial me-

chanical loading, which acts along the central axis of the beam. Here, q
and P refer to the axially distributed load and terminal force, respec-
tively.

The kinematic energy T of the beam is:
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In the present study, the adopted admissible Ritz functions which
satisfy at least the geometric boundary conditions for deflections and
rotations of the beam are given by:
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where c d e f, , ,n n n n are unknown undetermined coefficients, =ξ x L/ is
the non-dimensional coordinate, and the basic functions are defined as

= −−ϕ ξ ϕ ξ ϕ ξ ϕ ξ ξ ξ ξ ξ ξ ξ{ ( ), ( ), ( ), ( )} { , , , } ( 1)n
c

n
d

n
e

n
f i r l j n B10 0 0 0 (28)

The value of B is taken as 0, 1, or 2, which corresponds to free (F),
simply supported (S)/hinged (H), and clamped (C) edge conditions,
respectively [50]. The displacement components in the Ritz method
should satisfy the edge boundary conditions, as tabulated in Table 1.
Nine different boundary conditions are considered, namely: FF, SF, SS,
SC, CF, CS, CC, HH and HC. It is noticed that if loaded by the axially
distributed load, the loading direction points from the second end to the
first end, e.g., from S-end to C-end for CS cases. (Here, SC and CS are
different for beams under axially distributed load). The kinematic
boundary conditions given in Table 1 can be satisfied by careful se-
lection of specific indices (i.e., i0, r0, l0, j0) of the series in Eq. (28), with
details illustrated in Table 2 for the boundary conditions considered.
Free boundary conditions are approximately satisfied. In the present
study, the upper limits of the series in Eq. (27) are defined to be equal,
i.e., I= R= L= J, which determine the convergence of the following
vibration or buckling problems.

According to the Ritz method, minimizing the total potential energy
with respect to unknown displacement parameters yields

∂ ∏
∂

∂ ∏
∂

∂ ∏
∂

∂ ∏
∂

= 〈 〉
c d f e

, , , 0, 0, 0, 0
n n n n (29)

Substitution of Eq. (27) into Eqs. (22)–(26) and then into Eq. (29),
yields the 4I dynamic equations as the following eigenvalue problem:

− − =ω([K] [K ] [M]){Δ} 0G
2 (30)

Table 1
Kinematic conditions corresponding to different beam end conditions.

Boundary condition type At ξ=0, 1

Simply supported (S) u0≠ 0, wb=ws=φz=0
Clamped (C) u0=wb=ws=φz=wb, ξ=ws, ξ=φz, ξ=0
Free (F) u0≠ 0, wb≠ 0, ws≠ 0, φz≠ 0 (no constraints)
Hinged (H) u0= 0, wb=ws=φz=0
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where [K] is the structural stiffness matrix, [KG] is the geometric
stiffness matrix induced by external axial load (i.e., thermal stress, or
axially distributed load and terminal force), [M] denotes the mass
matrix, and Δ refers to the column vector of unknown coefficients of Eq.
(27). For stability analysis, Eq. (30) is reduced to:

− =([K] [K ]){Δ} 0G (31)

For the present study, although all the eigenvalues and eigenvectors
can be computed using the above method for each deformation mode,
special focus is placed upon the dominant eigenvalues corresponding to
the lowest natural frequencies ω and minimum critical temperature
variations TΔ cr or critical buckling load Pcr or qcr . For vibration and
buckling analysis, it has been demonstrated that convergence of the
present solutions can be ensured with the selected upper limit of series I
not exceeding 10.

3. Validation studies

3.1. Comparison with literature results

In this section, the theories denoted with superscripts ‘ds’ and ‘cs’
correspond to the cases that consider discontinuous interlaminar
stresses and continuous interlaminar stresses, respectively. The natural
frequencies, critical temperature changes and buckling loads predicted
by the present quasi-3D zigzag theory (i.e., HSPSDT) are compared with
existing results in Tables 4–9, with relevant material properties listed in
Table 3. The numbers in parentheses in these tables refer to the per-
centage errors of the present results relative to those from the literature.
Tables 4–7 present dimensionless natural frequencies of laminated and
sandwich beams for selected length-to-thickness ratios L h, fiber-
stacking sequences, vibration modal m and boundary conditions. Tables
8 and 9 present dimensionless critical temperature variations and cri-
tical buckling terminal forces of laminated beams with different
boundary conditions.

It is observed from Tables 4–6 and 8 that the natural frequencies
and critical buckling temperature variations obtained with the con-
tinuous theory take the lower values than the corresponding dis-
continuous case, which are consistent with the results of Aydogdu
[18,19]. Tables 4 and 8 show that the present theory with thickness
expansion included predicts slightly lower natural frequencies and
critical temperature variations relative to those obtained with the
theory neglecting thickness stretching [18,19]. The results of Tables 5
and 6 demonstrate that, HSPSDTcs could provide accurate predictions of
natural frequencies (even for the higher-order vibration modals),
compared with those obtained using 3D elasticity solutions [51,52]. As
tabulated in Tables 7 and 9, comparison of the present HSPSDTcs with

Table 2
Displacement field indices for different boundary conditions.*

Boundary condition i0 r0 l0 j0 B

FF 0 0 0 0 0
SF 0 1 1 1 0
SS 0 1 1 1 1
SC 0 1 1 1 2
CF 1 2 2 2 0
CS 1 2 2 2 1
CC 1 2 2 2 2
HH 1 1 1 1 1
HC 1 1 1 1 2

* In the present study, HH and HC boundary conditions are only discussed
for beams under thermal loading.

Table 3
Material properties used in the present study.

Material 1
=E E1 2 open, =E E3 2, = =G G E0.612 13 2, =G E0.523 2, = = =υ υ υ 0.2512 13 23 ,

=α α 32 1 , =α α3 2
Material 2

= = = = = =

= = = =

E E E G G G

υ υ υ ρ

181GPa, 10.3GPa, 7.17GPa, 2.87GPa,

0.25, 1578kg/m
1 2 3 12 13 23

12 13 23
3

Material 3
Face sheets

= = = = =

=

= = = = = =

E E E G G

G

υ υ υ ρ α α α α

131.1GPa, 6.9GPa, 3.588GPa, 3.088GPa,

2.3322GPa,

0.32, 0.49, 1000kg/m , 3,

1 2 3 12 13

23

12 13 23
3

2 1 3 2

Core
*

= = = = =

= = = = = =

= =

E E E G G

G υ υ υ ρ α α

α α α α

0.2208MPa, 0.2001MPa, 2760MPa, 16.56MPa, 545.1MPa,

455.4MPa, 0.99, 0.00003, 70kg/m , 1.36,

3,

f

1 2 3 12 13

23 12 13 23
3

1 2

2 1 3 2
Material 4
Fiber

= = = =

= = = = − × = ×− ∘ − ∘

E E G G

υ υ ρ α α

796.552GPa, 7.241GPa, 6.897GPa, 2.621GPa,

0.2, 0.4, 2100kg/m , 1.404 10 / C, 6.84 10 / C
f f f f

f f f f f

1 2 12 23

12 23
3

1
6

2
6 Epoxy

= − = =

= × + × − ∘

E T υ ρ

α T

(4.345 0.003Δ )GPa, 0.37, 1304kg/m ,

43.92 (1 0.001Δ ) 10 / C
m m m

m

3

6

Material 5
Al layer (Al2024-T3)

= = = = = × − ∘E G υ ρ α72.4GPa,  27.6GPa,  0.33,  2780kg/m , 22.4 10 / C3 6 GFRP layer (Glass-polyster)

= = = = = =

= = =

= = × = × =− ∘ − ∘

E E E G G G

υ υ υ

ρ α α α α

24.51GPa, 7.77GPa, 3.34GPa, 1.34GPa,

0.078

1800kg/m , 6.34 10 / C, 23.3 10 / C,

1 2 3 12 13 23

12 13 23
3

1
6

2
6

3 2

* For Material 3, α f2 refers to the thermal expansion coefficient of face sheet along the 2-principal direction of
material.
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alternative quasi-3D higher-order shear theory [40] shows that the
Zigzag theory gives slightly lower predictions of natural frequencies
and critical buckling load for beams with all kinds of angle-ply lami-
nations and boundary conditions. However, the errors between the
frequencies calculated using the two theories are large for the case of SF
boundary condition.

3.2. Finite element validation

To further ensure the validity and accuracy of the method presented
in this paper, finite element (FE) simulations via the commercially
available FE code ABAQUS are carried out. Eight-noded plane strain
quadrilateral elements with reduced integration (CPE8R) are used, with
mesh convergence guaranteed for each calculation. Perfect bonding
between two adjacent layers is assumed. The linear perturbation ana-
lysis is applied to extract the natural frequency, critical temperature
variation, or critical buckling load, similar to [8,53]. Specifically, to
determine the stability of beams under combined axially distributed
load and terminal force, or the vibration of beams under axial me-
chanical or thermal loading, a two-step analysis is employed: a general
step of static analysis is firstly carried out for calculating the initial
stress field under the prescribed axially distributed load, terminal force
or uniform temperature variation; subsequently, a linear perturbation
step of buckle or frequency analysis is applied, and eigenvalue extrac-
tion procedure is carried out using the Lanczos solver. For the case of
vibration analysis for beams under no axial loading (i.e., neither me-
chanical nor thermal loading), or the case of thermal stability for beams
subject to uniform temperature variation, only a buckle analysis is

needed to obtain the natural frequency or the critical temperature
variation.

As illustrated in Tables 7 and 9, compared with FE simulations, the
zigzag HSPSDT theory (HSPSDTcs) gives better predictions than the
quasi-3D theory of Canales and Mantari [40], for all the boundary
conditions considered. Additional FE simulations are also carried out to
validate the proposed theory, as shown in Figs. 5–8. Unless otherwise
stated, HSPSDTcs is employed in all subsequent discussions.

4. Results and discussions

In this section, the quasi-3D zigzag shear deformation beam theory
HSPSDTcs is applied to selected free vibration and stability examples. A
variety of boundary conditions, geometric parameters and material

Table 4
Comparison of non-dimensional fundamental frequencies =ω ωL h ρ E¯ ( )2

2 of a three-layer symmetric cross-ply laminated beam ( =∘ ∘ ∘ E E[0 /90 /0 ], 401 2 , Material
1).*

L/h Theory Boundary condition

FF CC SF CS SS CF

5 Ads 19.391 11.637 13.538 10.236 9.207 4.233
HSPSDTds 19.296 (−0.490) 11.511 (−1.083) 13.526 (−0.089) 10.530 (2.872) 9.211 (0.043) 4.228 (−0.118)
Acs 18.976 11.446 13.206 10.032 8.968 4.158
HSPSDTcs 18.663 (−1.649) 11.205 (−2.106) 12.790 (−3.150) 9.924 (−1.077) 8.719 (−2.777) 4.057 (−2.429)

20 Ads 36.285 29.926 25.180 22.907 16.337 6.070
HSPSDTds 36.288 (0.008) 29.675 (−0.839) 25.183 (0.012) 23.364 (1.995) 16.340 (0.018) 6.068 (−0.033)
Acs 36.024 29.407 25.005 22.637 16.237 6.052
HSPSDTcs 35.776 (−0.688) 28.647 (−2.584) 24.843 (−0.649) 22.853 (0.954) 16.145 (−0.567) 6.032 (−0.330)

* A: Results from [19].

Table 5
Comparison of non-dimensional natural frequencies =ω ω L h ρ E¯ ( )m

2
2 of a

four-layer SS symmetric cross-ply laminated beam ( =∘ ∘ ∘ ∘ E E[0 /90 /90 /0 ], 401 2 ,
Material 2).*

L/h m Theory

A HSPSDTds HSPSDTcs

5 1 6.806 6.987 (2.659) 6.845 (0.573)
2 16.515 16.892 (2.283) 16.659 (0.872)
3 26.688 27.164 (1.784) 26.932 (0.914)

10 1 9.343 9.486 (1.531) 9.370 (0.289)
2 27.224 27.947 (2.656) 27.379 (0.569)
3 46.419 47.665 (2.652) 46.947 (1.137)

20 1 10.640 10.707 (0.630) 10.662 (0.207)
2 37.374 37.944 (1.525) 37.480 (0.284)
3 71.744 73.366 (2.261) 72.032 (0.401)

100 1 11.193 11.215 (0.197) 11.213 (0.179)
2 44.477 44.589 (0.252) 44.556 (0.178)
3 98.988 99.336 (0.352) 99.174 (0.188)

* A: Exact solutions from [51].

Table 6
Comparison of non-dimensional natural frequencies =ω ω L h ρ E¯ ( )m f f

2
2 of a

thick sandwich beam ( = =face core face L h h h[ / / ], 5, 8c f , Material 3).*

Boundary
condition

Theory m

1 2 3

FF A 16.072 23.631 34.324
HSPSDTds 16.679

(3.777)
24.580
(4.016)

35.696 (3.997)

HSPSDTcs 16.091
(0.118)

23.591
(−0.169)

34.171
(−0.446)

SF A 11.307 20.961 29.974
HSPSDTds 11.722

(3.670)
21.780
(3.907)

31.132 (3.863)

HSPSDTcs 11.305
(−0.018)

20.919
(−0.200)

29.878
(−0.320)

CF A 3.636 11.638 21.837
HSPSDTds 3.759 (3.383) 12.137

(4.288)
22.879 (4.772)

HSPSDTcs 3.655 (0.523) 11.739
(0.868)

22.014 (0.811)

SS A 7.815 17.243 26.820
HSPSDTds 8.096 (3.596) 17.915

(3.897)
27.830 (3.766)

HSPSDTcs 7.815 (0.000) 17.194
(−0.284)

26.722
(−0.365)

CS A 8.252 17.669 27.352
HSPSDTds 8.924 (8.143) 18.552

(4.997)
28.682 (4.863)

HSPSDTcs 8.326 (0.897) 17.829
(0.906)

27.587 (0.859)

CC A 8.965 18.084 27.917
HSPSDTds 9.442 (5.321) 19.341

(6.951)
29.577 (5.946)

HSPSDTcs 9.070 (1.171) 18.376
(1.614)

28.468 (1.974)

* A: Elasticity solutions from [52].
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properties are considered.

4.1. Sandwich and laminated composite beams with different boundary
conditions

Consider first the vibration and stability of sandwich and laminated
composite beams. For convenience, dimensionless natural frequency ω̄,
temperature variation TΔ , distributed load q̄ and terminal force P̄ are
introduced, as:

= = × = =ω ω L
h

ρ
E

T Tα q
qL
bh E

P PL
bh E

¯ , Δ Δ 10 , ¯
10

, ¯
2

2
1

3
3

3
2

2

3
2 (32)

For sandwich beams, ρ and E2 refer to the density and elastic
modulus of the face sheets, respectively.

Fig. 3 presents the influence of face-to-beam thickness ratio h hf on
the fundamental frequencies and critical temperature variations of
thick sandwich beams with various boundary conditions. The natural
frequencies initially increase rapidly and then gradually decrease as
h hf is increased; while critical temperature variations decrease
monotonously with increasing h hf .

As for three-layered cross-ply laminated beams with varying
boundary conditions, the effect of length-to-thickness ratio L h on the
fundamental frequencies and critical temperature variations are pre-
sented in Fig. 4. As L h is increased to 40, the fundamental frequencies
and critical temperature variations rapidly increase and decrease, re-
spectively, both exhibiting an asymptotic behavior when L h exceeds
40.

The effects of axially distributed load and temperature variation on
the fundamental and higher-order frequencies of laminated beams are

shown in Figs. 5 and 6. The fundamental frequencies associated with
different boundary conditions decrease monotonically to zero when the
axially distributed load or temperature variation is increased to the
critical buckling one, because the geometric stiffness matrix [KG] of Eq.
(30) induced by external axial load (i.e., axially distributed load, or
thermal stress) increases rapidly as soon as the axially distributed load
or the temperature variation reaches to the critical one. In contrast, the
higher-order frequencies are not sensitive to the axially distributed load
or temperature variation, as shown in Fig. 7.

In Fig. 7a, the buckling capacity of laminated beams under com-
bined axially distributed load and terminal force is depicted. The case of
CS shares the same critical terminal load Pcr with that of SC when the
distributed force =q 0cr , but diverges when qcr is increased. The re-
lationship between the distributed load qcr and the terminal force Pcr is
nearly linear for the types of boundary conditions considered. It is also
noticed that the critical buckling load is higher for stronger end con-
straints, with the greatest one gained by the beams with CC boundary
conditions. As a specific case, Fig. 7b plots further a comprehensive 3D
interaction diagram of the fundamental frequency, terminal force and
distributed load of a CC laminated beam. Concurrent terminal force and
distributed load are seen to cause rapid decrease of the fundamental
frequency.

4.2. Micromechanics-based thermo-mechanical model with hinged-hinged
boundary condition

Different from the previous case of laminated beams with specified
material properties, a micromechanics-based thermo-mechanical model
is employed in this subsection. The material parameters can be sys-
tematically varied by varying the fiber volume fractionVf (or the matrix
volume fraction =V V 1 -m f ). In the micromechanical model, the fibers
are assumed transversely isotropic while the matrix is assumed iso-
tropic. The effective material properties of a fiber-reinforced composite
(FRC) can be written as [54]:
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Based upon the micromechanical model, a three-layered cross-ply

Table 7
Comparison of non-dimensional fundamental frequencies =ω ωL h ρ E¯ ( )2

2 of
an angle-ply laminated beam ( = =∘ ∘θ L h E E[0 / /0 ], 10, 401 2 , Material 1)*

Lamination Theory SS CC CF CS FF SF

0°/30°/0° A 13.882 20.242 5.580 17.005 29.916 29.934
HSPSDTcs 13.792 20.033 5.562 16.496 29.703 20.785
FEM 13.750 19.891 5.544 16.599 29.744 20.857

0°/45°/0° A 13.780 20.050 5.542 16.858 29.687 29.704
HSPSDTcs 13.586 19.580 5.500 16.401 29.230 20.458
FEM 13.448 19.201 5.508 16.450 29.114 20.698

0°/60°/0° A 13.689 19.860 5.512 16.716 29.408 29.497
HSPSDTcs 13.385 19.121 5.443 16.331 28.764 20.135
FEM 13.301 19.010 5.479 16.249 28.514 20.260

0°/90°/0° A 13.610 19.672 5.491 16.580 29.295 29.313
HSPSDTcs 13.283 18.767 5.389 16.279 28.310 19.825
FEM 13.147 18.510 5.329 16.119 28.379 20.242

* A: Results from [40].

Table 8
Comparison of non-dimensional critical temperature variations

=T T L α hΔ Δcr cr
2

1
2 of a three-layer cross-ply laminated beam

( =∘ ∘ ∘ E E[0 /90 /0 ], 201 2 , Material 1).*

L/h Theory Boundary condition

HH HC CC

10 Ads 0.791 1.230 1.797
HSPSDTds 0.783 (−1.011) 1.248 (1.135) 1.759 (−2.114)
Acs 0.775 1.193 1.511
HSPSDTcs 0.766 (−1.161) 1.181 (−1.006) 1.497 (−0.927)

50 Ads 1.049 2.110 4.030
HSPSDTds 1.036 (−1.240) 2.049 (−2.891) 3.906 (−3.077)
Acs 1.048 2.105 3.842
HSPSDTcs 1.024 (−2.290) 2.081 (−1.140) 3.796 (−1.197)

* A: Results from [18].

Table 9
Comparison of non-dimensional critical buckling load P L bh E( )cr

2 3
2 of an angle-

ply laminated beam ( = =∘ ∘θ L h E E[0 / /0 ], 10, 401 2 , Material 1).*

Lamination Theory Boundary condition

SS CC CF CS

0°/30°/0° A 19.614 36.260 6.882 27.165
HSPSDTcs 19.574 36.308 6.836 27.429
FEM 19.514 36.051 6.814 27.600

0°/45°/0° A 19.319 35.598 6.796 26.707
HSPSDTcs 19.285 35.557 6.725 26.464
FEM 19.089 35.368 6.703 26.543

0°/60°/0° A 19.060 34.933 6.732 26.265
HSPSDTcs 19.032 34.769 6.625 25.806
FEM 18.877 34.593 6.669 25.617

0°/90°/0° A 18.829 34.263 6.692 25.835
HSPSDTcs 18.761 34.009 6.604 25.231
FEM 18.569 33.843 6.576 25.461

* A: Results from [40].

B. Han et al. Composite Structures 204 (2018) 620–633

628



FRC laminated beam with hinged-hinged boundary conditions is con-
sidered, for which the fiber volume fraction of each ply is identical. As
listed in Table 3 (see Material 3), the materials properties are tem-
perature-dependent for the matrix, but temperature-independent for
the fiber with a negative coefficient of thermal expansion along the
fiber direction. Both the cases considering temperature-independent
and temperature-dependent material properties are discussed, which
are referred to below as TI and TD cases, respectively. For the latter case
(TD), an iterative procedure is utilized to obtain convergent critical
temperature variations.

Fig. 8 shows the influence of fiber volume fraction on fundamental
frequency ω̄ and critical temperature variation TΔ cr of the HH laminated
beam as predicted by the micromechanical model. As shown in Fig. 8a,
the fundamental frequency ω̄ under selected temperature variations TΔ
increases with increasing Vf . The TI case gives higher predictions of ω̄
and TΔ cr than the TD case. As Vf is increased, the difference in the two
cases tends to vanish, attributed to the decreased volume fraction of the
TD matrix. It is interesting to notice that, as TΔ is increased, ω̄ de-
creases when <V 0.37f , but increases when >V 0.37f . With =V 0.37f , ω̄
seems insensitive to TΔ . Correspondingly, as shown in Fig. 8b, the re-
lationship between TΔ cr and Vf is approximately hyperbolic, with TΔ cr
converging towards positive or negative infinity when Vf approaches
0.37. The laminated beam buckles upon heating when <V 0.37f , but

buckles upon cooling when >V 0.37f , which is attributed to the ap-
pearance of negative α α2 1 at large Vf . As Vf reaches 0.37, the laminated
beam may not buckle whether they are heated or cooled, i.e., the so-
called non-thermal buckling occurs. For specific material properties, the
axial thermal loading Nx

T as shown in Eq. (21) may vanish, thus causing
the non-thermal buckling. Similar behaviors were observed for composite
plates and beams [18,55].

4.3. Fiber metal laminated (FML) beams with hinged-hinged boundary
condition

The FML beams studied here are hinged-hinged symmetric GLARE
beams, which are consisted of cross-ply glass fiber-reinforced plastic
(polyster) composite (GFRP) and aluminum (Al) layers, with material
properties listed in Table 3. The GFRP has a lay-up of ∘ ∘ ∘ ∘ ∘[0 /90 /0 /90 /0 ]s.
Each FML beam has 10 layers that are numbered from top to bottom, of
which only 2 are Al layers. The 2 Al layers are placed symmetrically in
the FML, with their positions systematically varied as (1, 10), (2, 9), (3,
8), (4, 7), and (5, 6) to evaulate their position effect on free vibration
and stability of the FML structure.

Fig. 9a and b present separately the effects of Al layer stacking se-
quence and length-to-thickness ratio of the structure on the funda-
mental frequency (under thermal loading) and critical temperature

Fig. 5. Effects of (a) axially distributed load and (b) temperature variation on fundamental frequency of a laminated beam ( =∘ ∘ ∘ L h[0 /90 /0 ], / 100, Material 1).

Fig. 6. Effects of (a) axially distributed load and (b) temperature variation on the first three natural frequencies (normalized by the corresponding frequency ω̄m0

without mechanical or thermal loading) of a SS/HH laminated beam ( =∘ ∘ ∘ L h[0 /90 /0 ], / 100, Material 1). The parameter m refers to the number of vibration modal.
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variation of FML beams. For reference, the case that no Al layers are
inserted is also included. The results of Fig. 9 demonstrate that, repla-
cing only the outer layers (i.e., layers (1, 10)) of a 10-layer GFRP la-
minated beam with the Al layers leads to the highest fundamental
frequency and critical temperature variation, since this arrangement of
the Al layers with the highest elastic modulus (see Material 5 of
Table 3) can always result in the maximum flexural rigidity, which
maximizes the structural stiffness matrix [K]. Interestingly, this con-
clusion coincides with the previous finding that placing Al sheets in the
outer layers always results in the best impact resistance of the FML
[56,57]. In other words, these results imply that placing Al sheets in the
outer layers of a FML structure enables it to exhibit the highest fun-
damental frequency, best thermal buckling and impact resistance.

5. Conclusions

A generalized refined quasi-3D zigzag beam theory, with con-
sideration of thickness stretching and interlaminar continuity of both
transverse shear stress and displacements, has been developed to study

the free vibration and buckling behaviors of multilayered composite
beams subjected to axially distributed load, terminal force and/or
uniform thermal loading. A combined hyperbolic sinusoidal and poly-
nomial shear shape function was employed to construct the theory. The
types of composite beam considered included laminated composite
beams, sandwich beams with composite face sheets, and fiber metal
laminates (FML). Solutions were obtained for different boundary con-
ditions by using the Ritz method in terms of boundary characteristic
orthogonal polynomial functions. For validation, the theoretical pre-
dictions were compared with exiting results and the present FE simu-
lations, and good agreements were achieved. The effects of axially
distributed force and terminal load, together with temperature varia-
tion on free vibration and buckling of the composite beam were
quantified for various boundary conditions, geometric parameters and
material properties. It has been demonstrated that the proposed theory
can be considered as an appropriate and highly efficient method for
analyzing the vibration and stability behaviors of various multilayered
beams under mechanical/thermal loadings.

Fig. 7. (a) Buckling capacity of laminated beams under combined axially distributed load and terminal force; (b) fundamental frequency - terminal force – distributed
load interaction curves of a CC laminated beam ( =∘ ∘ ∘ L h[0 /90 /0 ], / 100, Material 1).

Fig. 8. Effect of fiber volume fraction on (a) fundamental frequency =ω ωL h ρ E¯ / ( )m m
2 1/2 and (b) critical temperature variation =T T L α hΔ Δcr cr f

2
2

2 of a HH lami-
nated beam based upon the micromechanical model ( =∘ ∘ ∘ L h[0 /90 /0 ], 50, Material 4; TI and TD refer to the cases of temperature-independent and temperature-
dependent material properties, respectively).

B. Han et al. Composite Structures 204 (2018) 620–633

630



Acknowledgments

This work was supported by the National Natural Science
Foundation of China (51375369, 11472209, 11702326 and 11472208),
China Postdoctoral Science Foundation (2016M600782), Postdoctoral

Scientific Research Project of Shaanxi Province (2016BSHYDZZ18),
Zhejiang Provincial Natural Science Foundation of China
(LGG18A020001), Natural Science Basic Research Plan in Shaanxi
Province of China (2018JQ1078), and the Fundamental Research Funds
for Xi’an Jiaotong University (xjj2015102).

Appendix A. Elements of [K], [M], and [KG] matrices

The structural stiffness matrix is
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The geometric stiffness matrix induced by external axial load is

=
⎡

⎣
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K K K K
K K K
K K K

[ ]

0 0 0 0
0
0
0

G
ddg deg dfg

deg eeg efg

dfg efg ffg (A.3)

where

Fig. 9. (a) Effect of temperature variation =T α TΔ 1000 Δf1 on fundamental frequency =ω ωL h ρ E¯ ( ) f f
2

2 ( =L h 20), and (b) effect of length-to-thickness ratio L h
on critical temperature variation TΔ cr of HH FML beams with different Al layer sequences (Material 5). The subscript f refers to the corresponding material properties
of GFRP.
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The mass matrix is
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Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.compstruct.2018.08.005.
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