
 

Journal Pre-proof

A CUBOIDAL OPEN CELL MODEL FOR CONSTITUTIVE
MODELING OF SURFACE EFFECTS IN FLUID-SATURATED
POROUS MATERIALS

Fei Ti , Xin Chen , Moxiao Li , Shaobao Liu , Tian Jian Lu

PII: S0022-5096(23)00050-9
DOI: https://doi.org/10.1016/j.jmps.2023.105246
Reference: MPS 105246

To appear in: Journal of the Mechanics and Physics of Solids

Received date: 12 October 2022
Revised date: 17 January 2023
Accepted date: 9 February 2023

Please cite this article as: Fei Ti , Xin Chen , Moxiao Li , Shaobao Liu , Tian Jian Lu , A CUBOIDAL
OPEN CELL MODEL FOR CONSTITUTIVE MODELING OF SURFACE EFFECTS IN FLUID-
SATURATED POROUS MATERIALS, Journal of the Mechanics and Physics of Solids (2023), doi:
https://doi.org/10.1016/j.jmps.2023.105246

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Ltd.

https://doi.org/10.1016/j.jmps.2023.105246
https://doi.org/10.1016/j.jmps.2023.105246


A CUBOIDAL OPEN CELL MODEL FOR 

CONSTITUTIVE MODELING OF SURFACE EFFECTS 

IN FLUID-SATURATED POROUS MATERIALS  

Fei Ti
a,b

, Xin Chen
c*

, Moxiao Li
a,b

, Shaobao Liu
a,b

, Tian Jian Lu
a,b* 

a 
State Key Laboratory of Mechanics and Control of Mechanical Structures, 

Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China 
b 

MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing 

University of Aeronautics and Astronautics, Nanjing 210016, P.R. China 
c
 Xi’an Modern Chemistry Research Institute, Xi’an, 710065, P.R. China 

*
 Corresponding authors: tjlu@nuaa.edu.cn; xinchern@126.com 

Abstract 

Fluid-saturated porous elastic materials, made up of connected networks of solid ligaments 

and characteristically having open pores, are commonly found in geological, biological and 

engineering materials. Surface effects can affect significantly the mechanical performance of 

such porous materials at macro scale, especially when the solid ligaments and the pores have 

micro or nano scale sizes. In the present study, in order to explicitly link pore-level 

geometrical parameters and surface effects with effective poroelastic properties as well as 

constitutive equations governing poroelastic deformation, we combine the top-down 

homogenization approach presented a previous study (Chen et al., 2021) with the bottom-up 

micromechanics approach. Inspired by the Gibson-Ashby cubic cell model for open-cell 

foams and the cellular networks typically found in fluid-saturated porous materials, we 

propose a cuboidal open cell model, with surface effects and fluid compressibility accounted 

for. For two limiting cases, i.e., the undrained state and the drained state, we demonstrate that 

both the surface moduli and residual surface stress (i.e., surface tension) prevent the 

deformation of solid ligaments, thus stiffening the porous material with enlarged effective 

Young’s moduli. Further, we reveal that the two surface effect parameters (i.e., residual 

surface stress versus surface moduli) exhibit a coupling effect on effective moduli: when one 

parameter is large enough, the variation of the other affects significantly the effective moduli. 

As applications of the proposed model, we characterize mechanical behaviors of the porous 

material under typical loadings (e.g., uniaxial and non-proportional multiaxial tension) in both 

undrained and drained states; we also describe, for the first time, the stress concentration of a 

compressible liquid inclusion (e.g., a cell) with surface tension embedded in a fluid-saturated 

porous material with surface effects. Results of this study are beneficial for understanding and 

investigating how surface effects influence the poroelastic parameters of fluid-saturated 

porous materials having sufficiently small open pores. 
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1. Introduction  

Fluid-saturated porous materials are plentiful in nature, engineering and biology, e.g., soil, 

porous metal, bread, paper, and brain tissue (Hicsasmaz and Clayton, 1992; Hu et al., 2014; 

Su et al., 2022; Ye et al., 2016), which are typically composed of connected networks of soft 

solid ligaments and compressible fluid trapped in open pores. When such a porous material is 

loaded by external forces, the deformation of solid ligaments and the flow of fluid in the open 

pores influence each other. This leads to fluid-solid mechanical coupling that influences the 

poroelastic behavior of the porous material and, consequently, its functions (e.g., load support 

and mass transfer). For fluid-saturated porous materials such as soil, Biot (Biot, 1941) 

presented his classical phenomenological theory of three-dimensional (3D) consolidation 

under small deformation, with surface effects neglected. Subsequently, Rice and Cleary (Rice 

and Cleary, 1976) reformulated Biot's constitutive relationships using macroscopic effective 

poroelastic parameters obtained for two limiting cases (i.e., drained and undrained states), 

including the shear modulus, undrained and drained Poisson ratio, and Skempton pore 

pressure coefficient. The undrained Poisson ratio and the Skempton pore pressure coefficient 

describe the behavior of the porous material in undrained state when the time scale is too 

short and the pore fluid has no loss or gain in weight (i.e., 0m  ). In contrast, the drained 

Poisson ratio describes the behavior of the porous material in drained state when the time 

scale is long enough and the excess pore pressure is equal to its initial value (i.e., 0p  ). 

These macroscopic effective poroelastic parameters are dependent upon the mechanical 

properties of each constituent as well as the pore topological parameters of the fluid-saturated 

porous material, which can be obtained experimentally (Biot and Willis, 1957), or predicted 

theoretically by developing suitable micromechanical models (Dormieux et al., 2006). 

The development of high-resolution imaging techniques in vitro such as atomic force 

microscopy (AFM), scanning electron microscopy (SEM), and transmission electron 

microscopy (TEM), and in vivo imaging systems such as magnetic resonance imaging (MRI), 

computed tomography (CT) and superconducting quantum interference devices (Deck et al., 

1989; Jin et al., 2010), has enabled observing and characterizing pore morphologies of porous 

materials at micro and even nano scales. Table 1 lists representative porous materials having 

micro or nano scale pores. For illustration, the ligament size varies from 38 nm to 350 nm for 

nanoporous metal (Liu et al., 2016b; Seok et al., 2018), from 6 to 200 μm for bread 

(Hicsasmaz and Clayton, 1992), and from 10 to 50 μm for paper (Bennis et al., 2010). For 

such size scales, surface effects between solid ligaments and pore fluid are inevitable and can 

even play dominant roles. Surface effects are usually evaluated using a dimensionless 

elastocapillary number / ER , where   is the surface energy, E  is the Young’s modulus of 

                  



the material made of solid ligaments, and R  is the characteristic size of the porous material. 

That is, surface effects are dependent upon surface parameters, material stiffness, and 

morphological parameters. When / 1ER , the surface effects on the effective poroelastic 

parameters of a fluid-saturated porous material is no longer negligible, especially for soft 

materials where the stiffness of solid ligaments is close to that of the fluid filling the pores. 

For typical instance, / ER  varies from -53.24 10  to -44.70 10  for nanoporous metal 

(Champion et al., 2019; Liu et al., 2016b; Seok et al., 2018; Shenoy, 2005), from -82.69 10  

to -78.19 10  for bread (Hicsasmaz and Clayton, 1992; Sahi, 2003; Scanlon and Zghal, 2001), 

and from -41.65 10  to -25.05 10  for paper (Bennis et al., 2010; Eichhorn et al., 2001; 

Westerlind and Berg, 1988).  

Built upon the mixture theory, the present authors (Chen et al., 2021) developed a 

theoretical model to understand and quantify the influence of surface effects on poroelastic 

performance of fluid-saturated porous materials. We demonstrated that, under small 

deformation, the classical constitutive equations of the Biot-type remain valid, at least in 

formality, for porous materials having sufficiently small pores (i.e., surface effects are not 

negligible), so long as solid deformation and fluid flow at the pore level obey continuum 

description. Nevertheless, the effective poroelastic parameters appearing in the Biot-type 

constitutive equations are functions of surface effects. Therefore, to complete the constitutive 

modeling, additional theoretcial/numerical/experimental efforts are needed to determine the 

dependence of these effective poroelastic parameters upon surface effects. If relationships 

between effective poroelastic parameters and pore morphological parameters can be reliably 

established using micromechanical models, the daunting task of experimental measurements 

may be avoided.   

In the presence of surface effects, three main types of micromechanical models have 

hitherto been employed to construct relationships between the microstructure and effective 

poroelastic parameters of a fluid-saturated porous material: the model of macromolecular 

network, the model of liquid inclusions, and the granular model. The macromolecular network 

model dated back to the pioneering studies on polymer solutions by Flory (Flory, 1942, 1953; 

Flory and Rehner Jr, 1943) and Huggins (Huggins, 1941), which was extended more recently 

by Hong et al. (Hong et al., 2008) to describe large deformation of hydrogels. Then, based on 

the classical inclusion theory of Eshelby (Eshelby, 1959; Eshelby, 1957) and the 

homogenization theory of Hill (Hill, 1965) in solid mechanics, Krichen et al. (Krichen et al., 

2019) derived the effective moduli of soft composites containing liquid inclusions. For the 

two microstructures mentioned above, i.e., polymer and liquid inclusions, the present authors 

quantified the effects of surface tension on the effective poroelastic parameters of fluid-

                  



saturated porous materials in both drained and undrained states (Chen et al., 2021). Finally, 

built upon the classical theory of contact (Hertz, 1882; Mindlin, 1949; Walton, 1978), the 

effective elastic moduli of granular porous media modeled by a random distribution of 

identical elastic spherical solid particles were derived (Digby, 1981; Walton, 1987); the 

dependence of these effective elastic properties upon surface effects was subsequently 

evaluated, also based on the contact theory (Kendall et al., 1987; Thornton, 1993).  

The macromolecular network model assumes a microstructure of free and random 

macromolecular chains, in which surface effects between solid and fluid act at molecular 

scale. The liquid inclusion model assumes a microstructure of liquid-filled pores that are 

closed and randomly distributed in a soft matrix, while the granular model assumes a 

microstructure of randomly packed elastic solid particles. For fluid-saturated cellular 

materials listed in Table 1, however, the three micromechanical models described above are 

not suitable. Therefore, establishing a new micromechanical model considering surface effects 

becomes a necessity, whose connected network of solid skeleton is much larger than 

molecular chains (e.g., entanglements of molecular chains) and the pores are open (fluid-

through), as opposed to closed. 

In the present study, inspired by the cubic open cell model developed by Gibson and 

Ashby (Gibson and Ashby, 1982) for high porosity cellular foams with open cells, particular 

focus is placed upon establishing a micromechanical model for fluid-saturated porous 

materials having cellular morphologies, such as those shown in Table 1. The cubic open cell 

model was originally proposed to estimate the macroscopic mechanical behaviors of an 

idealized cellular foam by considering the bending and tension of its solid ligaments to 

describe the stress state of a real foam, the latter exhibiting a cellular morphology similar to 

those of the porous materials shown in Fig. 1. Subsequently, the cubic open cell model was 

applied to investigate hierarchical porous solids (Lakes, 1993), cancellous bones (Gibson, 

1985), and even nanoporous metallic foams (Feng et al., 2009; Xia et al., 2011a), with surface 

effects characterized using the surface stress model of Gurtin and Murdoch (Gurtin and 

Murdoch, 1975)). In addition to mechanical analysis, the cubic open cell model (and its 

variations) has also been adopted by the present authors to study convective heat transfer, 

effective thermal conductivity, and sound absorption of open-cell metallic foams (Dupère et 

al., 2005; Lu et al., 1998; Lu et al., 2013). However, existing studies based on the cubic open 

cell model all ignored solid-fluid mechanical coupling when surface effects are no longer 

negligible; in addition, while existing studies focused on isotropic porous materials, biological 

porous materials usually exhibit highly anisotropic microstructures (Ambrosi et al., 2011; 

Bischoff et al., 2002; O'Shea et al., 2019). In the present study, to squarely address these 

issues, we first develop a micromechanics model of cuboidal open cell considering fluid 

pressure to estimate, from bottom-up, the effective poroelastic parameters of orthotropic fluid-

saturated porous materials with surface effects. Subsequently, together with our 

                  



phenomenological constitutive model developed on the basis of homogenization and balance 

laws (Chen et al., 2021), we integrate the bottom-up and top-down approaches to quantify, for 

illustration, how surface effects influence the stress versus strain response of a fluid-saturated 

porous material subjected uniaxial and multiaxial external loadings as well as the stress 

concentration of a compressible liquid inclusion with surface tension (e.g., a cell) embedded 

in a fluid-saturated porous material with surface effects. 

The paper is organized as follows. Built upon the theoretical framework developed in our 

previous study (Chen et al., 2021) for fluid-saturated porous materials under surface effects, 

Section 2 presents, from top-down, the linear constitutive equations of anisotropic fluid-

saturated porous materials with surface effects and, for isotropic porous materials, the 

commonly adopted relationships among a wide variety of poroelastic parameters. Section 3 

presents first the cuboidal open cell model for orthotropic porous materials saturated with 

compressible fluid, and then applies the model to estimate, from bottom-up, the effective 

poroelastic parameters of the porous material in drained and undrained states. In Section 4, 

the influence of surface parameters and fluid compressibility on these effective poroelastic 

parameters is quantified. For illustration, the constitutive relationships obtained by integrating 

the top-down and bottom-up approaches are adopted to calculate the stress versus strain 

behavior of fluid-saturated porous material subjected to uniaxial tension and non-proportional 

multiaxial tension, in both undrained and drained states. The proposed model is further 

utilized to calculate the stress concentration of a small compressive liquid inclusion embedded 

in a fluid-saturated porous material. Although this problem is important for a range of 

geological, biological and engineering applications, a theoretical solution is yet hitherto 

unavailable due to challenges in mathematical modeling, as not only surface tension of liquid 

inclusion but also surface effects (surface moduli and residual surface stress) in porous 

material need to be accounted for. Finally, in Section 5, a discussion of the cuboidal open cell 

model is presented and challenging issues for extending the model to complex biological 

systems are raised. 

 

2. Theoretical framework of constitutive modeling for fluid-saturated porous materials 

with surface effects 

Built upon the classical mixture theory and the homogenization approach, the present 

authors developed a theoretical framework to characterize surface effects on poroelastic 

behaviors of fluid-saturated porous materials (Chen et al., 2021). In addition to solid and fluid 

phases, the fluid-solid interface was modeled as a third phase of zero thickness and zero mass. 

Figure 2 outlines the framework in terms of balance of mass, balance of momentum for each 

phase, balance of energy, and the second law of thermodynamics. With the solid phase 

attached with fluid-solid surface taken as a particular type of solid, we proved that the 

                  



constitutive equations of poroelastic materials exhibit the same form as those without 

considering surface effects (Coussy et al., 1998). In particular, for small deformation of 

anisotropic fluid-saturated porous materials, the linearized form of constitutive equations can 

be expressed as (Chen et al., 2021):  

 
 

,

,

u

ij ijkl kl ij

ij ij
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p M
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where ij  is the stress, ij  is the strain, p  is the fluid pressure,   is the fluid variation, 
u

ijklM  

is the modulus tensor under undrained state (i.e., when the fluid cannot flow out of the porous 

media, yielding 0m  ), which has 21 coefficients (same as the modulus tensor for an 

anisotropic elastic solid), M  is the Biot modulus, and ij  is the Biot coefficient of effective 

stress. The Biot coefficient relates the volume change of fluid to the volume change of a 

porous material element under drained state, i.e., when excess fluid pressure is completely 

released such that 0p  , and has 6 coefficients (Cheng, 1997). We must point out that, while 

the constitutive equations presented above are identical in formality to the classical Biot’s 

constitutive equations, the poroelastic parameters appearing in Eq. (1) are all functions of 

surface effects. 

In addition to the poroelastic parameters for undrained state presented in Eq. (1), there 

exist alternative poroelastic coefficients such as the drained moduli. In the following, the 

constitutive equations of (1) are re-expressed using the drained moduli. With fluid variation   

replaced by pore pressure p , the constitutive equation for stress can be rewritten in terms of 

strain, as:  

   ,u

ij ijkl ij kl kl ijM M p        (2) 

The term 
u

ijkl ij klM M   can be expressed as 
d

ijklM , which stands for the drained modulus 

tensor: 

 .d u

ijkl ijkl ij klM M M    (3) 

It follows that Eq. (2) can be rewritten as:  

 .d

ij ijkl kl ijM p     (4) 

For isotropic porous materials, the constitutive equations simplify to (Chen et al., 2021): 
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where uK  is the undrained bulk modulus, G  is the shear modulus (same in drained and 

undrained states), M  is the Biot modulus, and   is the Biot coefficient of effective stress. In 

addition, Eq. (4) becomes:  

 
2

2 ,
3

ij d kk ij ij ijK G G p     


    
 

 (6) 

where dK  is the drained bulk modulus.  

 For anisotropic porous materials, three types of poroelastic parameter - ,u

ijklM M  and ij  

under undrained state or ,d

ijklM M  and ij  under drained state - completely govern the 

mechanical behavior under small deformation, for other poroelastic parameters can be 

obtained using these parameters. To introduce poroelastic parameters other than those 

presented above, the strains are expressed as functions of stresses as:  

 
1

,
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u
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where 
u

ijklC  is the undrained compliance tensor, C  is a kind of storage coefficient (defined as 

fluid variation per unit fluid pressure in a unit volume of porous material under zero stresses), 

and ijB  is the Skempton pore pressure coefficient that describes the relationship between the 

change of fluid pressure and the change of applied stress (Rice and Cleary, 1976; Skempton, 

1954). In terms of the drained compliance tensor 
d

ijklC , Eq. (7) can be rewritten as:  
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.
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For isotropic porous materials, Eqs. (7) and (8) simplify to:  
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while Eq. (9) becomes:  
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For isotropic porous materials, four poroelastic parameters - , , ,uK G M   or , , ,dK G M   - 

completely govern the mechanical behaviors. In addition to the drained bulk modulus 
dK , the 

undrained bulk modulus uK , the Biot coefficient of effective stress  , the Biot modulus M , 

and the Skempton pore pressure coefficient B , alternative poroelastic parameters having 

different physical meanings have also been introduced, such as the drained Poisson ratio  , 

the undrained Poisson ratio u , the poroelastic stress coefficient  , which relates the 

increment of fluid pressure to the poroelastic confining stress developed (Cheng et al., 1993), 

and another storage coefficient S , defined as fluid variation in a unit volume of a porous 

material per unit fluid pressure under uniaxial strain and constant normal stress in the strain 

direction (Green and Wang, 1990; Mathias et al., 2019).  

Table 2 summarizes relationships among a wide variety of poroelastic parameters that 

have been proposed for isotropic porous materials saturated with fluid: the first column 

contains parameters found in poroelasticity, while the first row contains several combinations 

of poroelastic parameters often used in poroelasticity.  

In the section to follow, with surface effects accounted for, we propose a cuboidal open 

cell model to describe specific microstructures of fluid-saturated porous materials listed in 

Table 1. The cuboidal model is then adopted to estimate from bottom-up the effective 

poroelastic parameters appearing in Eqs. (1) and (4), or Eqs. (5) and (6), derived from top-

down for isotropic porous materials, thus completing the constitutive modeling.  

 

3. Cuboidal open cell model and effective poroelastic parameters with surface effects 

In this section, for anisotropic porous materials saturated with compressible fluid, we 

adopt a bottom-up approach to determine explicitly the effective poroelastic parameters 

appearing in phenomenological constitutive equations presented above. Firstly, in Section 3.1, 

inspired by the cubic open cell model (Gibson and Ashby, 1982), cellular microstructures of 

fluid-saturated porous materials listed in Table 1 are described and idealized using a cuboidal 

open cell model. Secondly, in Section 3.2, as deformations of the idealized porous material 

are largely dictated by solid ligaments constituting the cuboidal cell, stretching/bending of a 

single ligament with both residual surface stress and surface moduli accounted for is analyzed. 

Finally, in Section 3.3, based upon the results of ligament deformation, effective poroelastic 

parameters are explicitly determined as functions of porosity, surface parameters, and fluid 

compressibility.  

 

                  



3.1 Cuboidal open cell model 

The fluid-saturated porous materials of Table 1 exhibit complex cellular structures such 

that, under external loading, solid ligaments constituting the open-cell network experience 

both bending and stretching deformations. For high porosity cellular solids with open cells, 

such as metallic foams, Gibson and Ashby (Gibson and Ashby, 1982) proposed a cubic open 

cell model to consider bending/stretching displacements of solid ligaments and then used the 

theoretical results to calculate the dependence of effective mechanical properties, such as 

stiffness and strength, on key morphological parameters. In the present study, built upon this 

conception, to simplify the analysis of anisotropic fluid-saturated porous materials, we 

propose a cuboidal open cell model in which a ligament connecting to the middle of another 

ligament is assumed to account for both bending and stretching deformations, as shown in Fig. 

3(a).  

Three aspects should be noted about the proposed cuboidal open cell model. Firstly, the 

model is similar to the Gibson-Ashby model, but different from the cubic open cell model 

developed by the present authors (Lu et al., 1998) for heat transfer in metallic foams. The 

latter does not need to consider ligament bending and hence connecting one ligament to the 

middle of another is not necessary as in the Gibson-Ashby model. Secondly, due to the 

anisotropic (orientation-dependent) material properties of several porous materials, for 

instance, porous hydroxyapatite (HA) scaffolds (Silva et al., 2006),  the fluid-saturated porous 

material with open pores is idealized as a 3D lattice structure consisting of a cuboidal array 

(having different lengths along three orthogonal directions) of solid ligaments, with the pores 

filled with compressible fluid; further, for simplicity, identical uniform ligaments having axial 

length L and a square cross-section with side length t is assumed (alternative cross-sectional 

shapes can of course be considered, but not analyzed in the current study). While the cuboidal 

model can be used to describe orthotropic porous materials, it can be degenerated into 

transverse isotropic and isotropic cases by simply altering ligament lengths. Thirdly, to further 

simplify the problem, small elastic deformation is assumed, the deformation of nodes and the 

fracture of ligaments are neglected, and each ligament experiencing bending is assumed to 

satisfy clamped-clamped boundary condition.  

It should be pointed out that, from the view of poromechanics, the properties of the pore-

filling fluid significantly influence the mechanical performance of the porous material. 

However, as illustrated in the following sections, particular focus of this study is placed upon 

two limiting quasi-static states, i.e., the drained state and the undrained state. Consequently, 

the fluid filling the pores of a porous material affects its mechanical behavior only via fluid-

solid surface parameters and fluid compressibility, which are the key issues described in 

Sections 3.2 and 3.3.2, respectively. 

 

                  



3.2 Deformation of solid ligaments 

To calculate the effective poroelastic parameters of the cuboidal structure depicted in Fig. 

3(a), the influence of surface effects on ligament stretching/bending are firstly determined. 

Under external loading, two different kinds of solid ligaments are present in the cuboidal cell, 

i.e., ligaments under axial tensile force F and ligaments under transverse concentrated force F. 

For soft materials having nano and micro structures (Style et al., 2017; Wang et al., 2011), 

it has been established that deformation of the material is dependent significantly upon 

surface effects. To describe mathematically such surface effects, Gurtin and Murdoch (Gurtin 

and Murdoch, 1975, 1978) established a surface stress model by assuming that the surface is a 

negligibly thin object that adheres to the bulk without slipping. Surface moduli are then 

introduced to describe the stiffness properties of the surface, which are distinct from those of 

the bulk material, since atoms at and near a solid's surface face a different local environment 

than those further away (Nix and Gao, 1998; Wang et al., 2011). Besides, due to the existence 

of residual surface stress (i.e., surface tension), a stress component perpendicular to the 

surface is present once it is deformed. It follows that the surface stresses can be written as 

(Gurtin and Murdoch, 1975, 1978):  
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where   and   are the in-plane coordinates, 3 is the normal direction of the plane, s  and s  

are the surface moduli, which represent stress required for per unit strain, and s  is the 

residual surface stress, which can be viewed as the surface energy.  

With the effects of surface stresses accounted for, the axial strain of a ligament loaded by 

tensile force F can be obtained, as (Feng et al., 2009): 

 = ,
eff

m

F

E A
  (14) 

where 
2A t  is the cross-sectional area and 

2
4eff s s

m mE E
t

 
   is the effective Young’s 

modulus of the ligament, where the first term mE  is the Young’s modulus of the material 

make of the ligament and the second term is caused by surface moduli. 

Next, to determine the deformation of a ligament under bending, e.g., under a 

concentrated force F at its middle point, how to describe theoretically the ligament (beam) 

should be firstly determined on the basis of its aspect ratio /L t . According to the proposed 

cuboidal model, for isotropic porous materials, the porosity   is given by:  
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where the second term on the right-hand side is the volume fraction of solid. For a porous 

material with high porosity (e.g.,  > 98%), its ligaments satisfy / 10L t   and hence could be 

considered as slender beams, i.e., the Euler-Bernoulli beam. In reality, however, the porosities 

of common fluid-saturated porous materials are considerably lower, varying usually between 

60% and 90% (Fig. 1). For example, the porosity is about  35-75% for nanoporous metal (Liu 

et al., 2016b; Seok et al., 2018), 88-93% for bread  (Scanlon and Zghal, 2001), and 57.1-73.6  

% for paper (Tanpichai et al., 2019). For such porous materials, the ligaments need to be 

considered as stubby beams (i.e., the Timoshenko beam with an aspect ratio of / 10L t  ) 

such that the effect of shear deformation is accounted for (Hutchinson, 2001).  

Based on the Gurtin-Murdoch model of surface stress, the mechanical behavior of a 

nanobeam under surface effects has been studied in recent years. For instance, with surface 

stress taken as a distributed force, explicit solutions of a Euler-Bernoulli beam were obtained 

(He and Lilley, 2008) for different boundary conditions: fixed-fixed, cantilever, and simply 

supported; similarly, analytical solutions for both transverse vibration and axial buckling of a 

Timoshenko beam under surface effects were obtained (Wang and Feng, 2009). Nonetheless, 

in these studies, the Poisson effect induced by surface stress (Lu et al., 2006) was neglected, 

which may significantly influence the mechanical behavior of the beam. With such Poisson 

effect induced by surface stressing accounted for, closed-form theoretical solutions for the 

static response and free vibration of both Euler and Timeshenko beams were obtained by 

analyzing the force equilibrium of an incremental beam (bulk) element (Liu and Rajapakse, 

2009). Further, postbuckling of a Timoshenko beam was analyzed using the principle of 

virtual work (Ansari et al., 2014). In the present study, based on a previous work (Liu and 

Rajapakse, 2009), we analyze a Timoshenko beam by considering both surface stress and 

Poisson effect to calculate the deformation experienced by each bending ligament in the 

cuboidal model of Fig. 3(a). 

For a Timoshenko beam with surface effects as depicted in Fig. 3(b), let x represent the 

axial direction, and let y and z denote the directions orthogonal to the axial direction. For 

simplification, the surface stresses are modeled as distributed forces on the beam, which are 

deformation dependent in subsequent analysis of incremental beam element. Consequently, 

the surface stresses may be expressed as (Liu and Rajapakse, 2009): 

   , ,2 ,   ,s n

xx s s x x s xz s x zu u          (16) 

                  



where s

xx  and n

xz  represent the stress along the x direction and the direction perpendicular 

to the surface, respectively, and xu  is the displacement along the x direction. 

 Equations governing the bending deformation of a Timoshenko beam with surface effects 

can be written as (Ansari et al., 2014):  
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where the terms 
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d
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
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are the moments considering surface stresses, in which 
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sI t , and the terms 
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dw

Q kGA
dx




  
 

 (20) 

 2 ,s

s

dw
Q t

dx
  (21) 

are separately the shear force defined in the classical beam theory and the additional shear 

force induced by surface stress, in which 
2A t . 

The boundary conditions are:  

    0 0 0,  0,  .
2 2

sL F
w Q Q 


     

 
 (22) 

Following Liu and Rajapakse (Liu and Rajapakse, 2009), for a clamped-clamped 

Timoshenko beam subjected to a concentrated load F at its center, the deflection of the beam 

can be obtained from Eqs. (17) and (22) as:  
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 (23) 

where ,V kGA    is the Poisson ratio, and G  is the shear modulus while 2 ,sH t  

   1/ ,
eff

EI H V sV    
 

    2   m s s seff
EI E I I  and 

31

6
ss t   are terms 

                  



modified by surface effects. The shear coefficient 
 5 1

6 5
k









 is introduced to estimate the 

shear stress acting on the cross-section of the beam, which is dependent upon beam geometry 

(Hutchinson, 2001). In the section to follow, the solution of (23) is used to calculate the 

effective poroelastic parameters.  

In passing, it is worth noting that, when shear deformation of the beam is negligible (i.e., 

shear stiffness tends to infinity, V  ), Eq. (23) degrades to the solution for Euler-Bernoulli 

beams under surface effects (Liu and Rajapakse, 2009): 
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where  1 1/   
 eff

EI s . Further, in the absence of surface effects (i.e., 0s s s     ), 

Eq. (23) becomes the classical solution for Timoshenko beams:   
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while Eq. (24) becomes the classical solution for Euler-Bernoulli beams: 

   2 3 4
.

48

L x
w x Fx

EI


  (26) 

 

3.3 Effective poroelastic parameters 

The proposed cuboidal model detailed in Section 3.1 represents an orthotropic fluid-

saturated elastic porous material having open (fluid-through) cells. Correspondingly, the 

macroscopic effective modulus tensor u

ijklM  (or d

ijklM ) has nine independent coefficients, the 

Biot coefficient of effective stress ij  (which describes relationship between the volume 

change of fluid in pore and that of the element under drained state) has one independent 

coefficient, and the Biot modulus M  (which describes the relationship between fluid 

pressure and fluid variation under constant volumetric strain) has one independent coefficient 

(Cheng, 1997). For a transversely isotropic or isotropic fluid-saturated porous material, its 

effective poroelastic parameters can be obtained by altering ligament length(s) in the cuboidal 

model. For a transversely isotropic porous material, the modulus tensor u

ijklM  (or d

ijklM ) has 

five independent coefficients, while the Biot coefficient ij  has two coefficients. For an 

                  



isotropic porous material, the modulus tensor u

ijklM  (or d

ijklM ) has two coefficients and the Biot 

coefficient ij  has only one coefficient. 

Next, the deformations of solid ligaments in the cuboidal model are obtained to calculate 

the effective poroelastic parameters detailed above. For a fluid-saturated porous material, its 

mechanical response possesses two limiting states, namely, the drained state when excess pore 

pressure vanishes and the undrained state when the fluid cannot escape the pore of the 

material. Inspired by the classical work of Rice and Cleary (Rice and Cleary, 1976), the 

present study lays a strong emphasis on obtaining effective poroelastic parameters in two 

limiting states, as other types of effective parameter can be obtained using the drained and 

undrained parameters. In the following, the drained Young’s moduli are derived first, which 

are then used to derive the undrained Young’s moduli. In addition to the drained and 

undrained moduli, key poroelastic parameters representing fluid-solid coupling are also 

obtained. 

3.3.1 Drained Young’s moduli 

For the drained state, Xia et al. (Xia et al., 2011a; Xia et al., 2011b) calculated the 

effective Young’s modulus using the isotropic unit cell model shown in Fig. 3(a); they 

considered bending and axial displacements of solid ligaments (beams) under surface stress, 

but neglected Poisson effect due to surface stress. To obtain the effective drained moduli for 

more general cases (e.g., material anisotropy and Poisson effect induced by surface stress), the 

stresses and strains of the proposed cuboidal model need to be calculated.  

When the cuboidal model is subjected to uniaxial tension (compression), its stresses and 

strains can be obtained straightforwardly. Specifically, with a volume of 

     2 2 2cell x y zV L t L t L t      , the cuboidal cell of Fig. 3(a) is subjected to a tensile 

force   2z z x yF L t L t    acting along the z direction, leading to an axial stress given by:  
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 (27) 

It follows that the effective Young’s modulus of the cell is:  
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where the strain  z  is calculated as: 
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This strain is consisted of three parts: (i) tensile strain 
2

 
z

z
L eff

m

F

E A
 of beam with length 

2zL t , (ii) tensile strain /2 
z

z
L eff

m

F

E A
 of beam with length / 2zL , and (iii) deflection 

 / 2xw L  at the middle of bending beam with length xL , which can be obtained via Eq. (23). 

The effective drained Young’s modulus can then be obtained as:  
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(30) 

Following similar procedures, the drained Young’s moduli for the y and x directions, ,d yE  

and ,d xE , are determined. When the ligaments along three orthogonal directions (i.e., x, y and 

z) have identical lengths, the model becomes isotropic, yielding  
, , ,d z d y d x

E E E . 

Due to the topological properties of the cuboidal model (Hedayati et al., 2018), the 

bending beams experience no axial deformation and hence the effective Poisson ratios 

 , , , 0.    d zy d zx d yx  (31)  

To obtain the effective shear modulus zxG , a tensile stress z  and a compressive stress 

x  are applied simultaneously along the z and x directions, thus enabling the strains of the 

two directions to satisfy z x   . It follows that zxG  can be calculated by (Li et al., 2006): 
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,

2
z x
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z x
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where the stresses ( z , x ) and the strains ( z , x ) can be obtained using the method 

analogous to that detailed above. The other two shear moduli, 
yz
G and xy

G , are similarly 

obtained, as:  
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Finally, the drained modulus tensor of Eq. (4) is expressed using the nine parameters 

obtained hitherto for orthotropic porous materials, i.e.,   
, , , , , ,
, , , , , , ,

d z d y d x d zy d zx d yx zx
E E E G

yz
G , 

and 
xy
G , as: 
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where 
2 2 2 2

, , , , , , , , , , , , ,2 .d y d z d x d z yx d x d y zx d y d zy d x d y d yx d zx d zyA E E E E E E E E E           

3.3.2 Undrained Young’s moduli and Poisson ratio  

In this section, the method based on the cuboidal model (i.e., unit cell) considering fluid 

pressure is adopted to calculate the undrained poroelastic parameters for fluid-saturated 

porous materials that exhibit cellular microstructures similar to open-celled foams. Note that, 

for the undrained state, the time scale is too short to allow the fluid to escape from an element 

to neighboring elements of the porous material, i.e., there is no loss or gain of fluid in the unit 

cell model. Nonetheless, the time scale is long enough to allow the fluid pressure and solid 

stress to be balanced within the elements constituting a ‘point’ in the continuum model of the 

porous material (Rice and Cleary, 1976). Therefore, besides the external force F, the 

deformation of the unit cell is also influenced by fluid pressure, which depends on solid-fluid 

                  



coupling in the unit cell when F is applied. In the following, the volume change induced by 

both the external force and fluid pressure is determined first, and relationships between the 

strains of the unit cell and the fluid pressure are derived. The effective moduli and Poisson 

ratio of the unit cell are then expressed by the strains of the unit cell. Finally, the effective 

moduli and Poisson ratio are calculated by solving the resulting simultaneous equations. 

For an orthotropic fluid-saturated porous material, the undrained Young’s modulus along 

the z direction is determined by:  
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,
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


 zF d z

u z

z

E p
E  (35) 

where ,
zF d zE  is the stress under drained state, and  z  is the total strain of the unit cell 

experiencing tensile force and fluid pressure. In the present study, in order to obtain results 

with general applicability, the fluid is assumed to be linearly compressible (Chen et al., 2018; 

Detournay and Cheng, 1993) while the pressure p  is expressed as  

 ,


 
f

f

f

V
p K

V
 (36) 

where fK  is the fluid bulk modulus, and  fV  and fV  are separately the volume change and 

initial volume of fluid, respectively.  

Due to the additional deformation of solid beams by fluid pressure, the effective bulk 

modulus of the beam should be defined. Under hydrostatic loading, as the linear strain in one 

direction is   and the volumetric strain is 3 , force balance dictates that:  

  2 23 3 4 ,      eff

m m s sK t K t t  (37) 

where mK  is the solid bulk modulus. The effective bulk modulus of the beam can be written 

as: 
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In addition, the effective Poisson ratio of the beam can be defined as: 
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When the unit cell is subjected to a tensile force   2  z z x yF L t L t  along the z 

direction, the total strain  z  is:  

 ,   
zz F p  (40) 

                  



where 
zF  is the strain caused by the tensile force and  p  is the linear strain of the beam 

induced by fluid pressure: 

 .
3

  p eff

m

p

K
 (41) 

From Eq. (28), the balance of tensile forces leads to: 

   ,2 2 2 2 2 .  
zz F d z x yF E L t L t  (42) 

The fluid pressure p  can be rewritten as:  
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where  cellV  is the total volume change of unit cell,  mV  is the volume change of solid matrix, 

and ,u zy  and ,u zx  are two effective undrained Poisson ratios along zy and zx directions for 

orthotropic fluid-saturated porous materials.  

It should be noticed that, upon applying the tensile force zF , the pressure p  is applied to 

the y and x directions of the unit cell due to the influence of fluid, and hence the unit cell is 

not under the state of uniaxial tension. To ensure uniaxial tension, opposing pressure p  

acting on the unit cell along x and y directions needs to be applied. Therefore, the volume 

change of solid matrix is consisted of three parts: volume change caused by tensile forces 

,
zm FV , volume change caused by pressure , m pV , and volume change caused by opposing 

pressure , m pV . The volume change caused by tensile forces ,
zm FV  can be calculated as: 

                  



 

   

  

     

 

 

2

, /2

2

2

,

,

,

2 4 2 1 2

          4 1 2

1 1
          4 1 2 2 2 2 2

2

          1 2

          1 2
3

  



 




 

      

  

    

 

  

z z z

z

z

eff

m F L z L z m

eff z
z m eff

m

eff

z m d z F x yeff

m

d z F eff

cell meff

m

d z eff

cell m zeff

m

V L L t t

F
L t t

E t

L t E L t L t
E

E
V

E

E p
V

E K

,          ,
3 3



 
 
 

 
  

 

eff

m

cell
d z zeff eff

m m

V p
E

K K

 (44) 

where 
,

3
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K
 can be considered as the stress caused by tensile force zF . 

The volumetric change of the solid caused by pressure , m pV  is given by: 
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The volumetric change , m pV  caused by opposite pressure can be obtained by setting 
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According to Eqs. (44)-(46), the total volume change of the solid beam can be obtained as: 
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Substituting (47) into (43) yields:  

 

 

 

,

, ,

,

1
3

,
11

2
3 3

 

  

  


 

   
 

d z

u zy u zx eff

m

d zz

eff eff eff

m m m

E

Kp

E

K K K Kf

 (48) 

where the undrained Young’s modulus can be expressed using (35), as: 
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Using similar method, we write the strains in y and x directions as:  
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where 
yF
 and 

xF  are the strains induced by the opposite pressure, given by:  
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The effective undrained Poisson ratios ,u zy  and ,u zx  can be determined by: 
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When the unit cell is subjected to a tensile force yF  in the y direction, the undrained 

Young’s modulus ,u yE  and Poisson ratio ,u yx  are determined by:  
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Similarly, the undrained Young’s modulus ,u xE  is determined by: 
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Solving Eqs. (49) and (52)-(54) enables determining the six independent parameters for 

orthotropic fluid-saturated porous materials; as the fluid pressure remains unchanged under 

shear forces, the three undrained shear moduli are the same as the three drained ones. 

                  



Therefore, the nine undrained parameters, i.e., , , , , , ,, , , , , , , ,  u z u y u x u zy u zx u yx zx yz xyE E E G G G , are 

all determined for orthotropic cases. When 0fK , the influence of fluid pressure vanishes 

such that the undrained parameters degenerate into the drained parameters. 

Similar with Eq. (34), the parameters appearing in the undrained modulus tensor for 

orthotropic cases can be expressed using the undrained moduli and undrained Poisson ratios. 

In the following, the influence of fluid pressure is considered to calculate the effective 

undrained modulus tensor.  

3.3.3 Key poroelastic parameters representing fluid-solid coupling 

For a fluid-saturated porous material, in addition to the standard parameters of linear 

elasticity, several parameters of poroelasticity are needed to characterize solid-fluid coupling. 

Here, two commonly applied parameters, i.e., the Biot coefficient of effective stress i  for i 

direction ( , ,i x y z ) and the Biot modulus M , are calculated since both parameters exhibit 

clear physical meanings.  

The Biot coefficient i  is defined as the ratio of fluid volumetric change in a unit cell to 

the total volumetric change of that cell under drained state when a load is applied in i 

( , ,i x y z ) direction, namely: 

 
 

  
 

1 .f m
i

cell cell

V V

V V
 (55) 

Given that the drained Poisson ratios are zero (i.e., , , 0d zy d zx   ), the volume change 

V  of the unit cell can be expressed as:  

  , ,1 .cell cell z d zy d zx cell zV V V         (56) 

Substituting Eq. (44) (setting 0p  ) into Eq. (55) yields the Biot coefficient: 

   
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3
d i

i eff
m

E

K
 (57) 

Next, according to Eq. (1), for undrained cases (i.e., 0  ), the Biot modulus M  can be 

defined as:   

 .
ij ij

p
M

 
   (58) 

For orthotropic porous materials, the Biot modulus can be expressed as  

 .
x x y y x x

p
M

     
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 
 (59) 

                  



Then, using Eq. (50), (51) and (57), we rewrite Eq. (59) as:  
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where 
 z

p
 can be obtained by Eq. (48). 

  

4. Results 

Thus far, all the effective poroelastic parameters that govern the mechanical behavior of 

an orthotropic fluid-saturated porous material experiencing small linear elastic deformation 

have been obtained using a bottom-up approach, with surface effects accounted for. In this 

section, for the sake of analysis, only the effective poroelastic parameters for isotropic porous 

materials are analyzed. Firstly, the influence of surface parameters on effective drained 

parameters is quantified. Secondly, the influence of both surface parameters and fluid 

compressibility on effective undrained parameters is quantified. Finally, stress versus strain 

curves of the porous material in both undrained and drained states are analyzed. 

4.1 Effective poroelastic parameters under drained state 

Under the drained state, the effective Poisson ratio is null, and hence only the effective 

drained Young’s modulus and the Biot coefficient of effective stress need to be determined. 

From Eqs. (30) and (57), the two poroelastic parameters depend on three dimensionless 

parameters: the porosity  , the residual surface stress / s mE t , and the surface moduli 

 2 / s s mE t .  

The influence of residual surface stress on effective drained Young’s modulus is 

displayed in Fig. 4(a) for different values of surface moduli. The effective drained modulus 

increases with the increase of surface moduli. The influence of residual surface stress can be 

considered as a distributed force acting on a bending beam along the opposite direction of 

external load (Liu and Rajapakse, 2009), as shown in Fig. 5(a). Therefore, the residual surface 

stress increases the effective modulus by reducing the deflection of the beam, thus increasing 

its effective modulus. In contrast, for a poroelastic material embedded with cylindrical 

compressible liquid inclusions, its effective modulus initially increases and then decreases 

with the increase of surface tension, i.e., residual surface stress (Ti et al., 2022). The different 

influencing trends exhibited by residual surface stress on effective Young’s modulus may be 

attributed to the different pore morphologies (open cell versus closed cell) considered by the 

present study and an earlier study (Ti et al., 2022).  

                  



For selected residual surface stresses, Fig. 4(b) reveals that the effective drained Young’s 

modulus increases with the increase of surface moduli. Similar to residual surface stress, the 

influence of surface moduli can be considered as a film that enhances the effective bending 

stiffness EI  of a beam (Liu and Rajapakse, 2009), as shown in Fig. 5(a). Besides, the surface 

moduli can also increase the Young’s modulus of a stretched beam, as shown in Fig. 5(b). The 

increasing bending stiffness as well as Young’s modulus induced by surface moduli can 

reduce the deformation of the beam under either bending or stretching, thus increasing its 

effective modulus.  

For large residual surface stresses, it is observed that the influence of surface moduli 

become more significant, whereas for large surface moduli, residual surface stress plays a 

more significant role (Figs. 4(a, b)). This implies that certain coupling effect is present 

between the two surface parameters. To explain the mechanism underlying such coupling, Fig. 

5 displays a beam with surface effects under loading. First, the deformation of a Timoshenko 

beam subjected to bending and tension is shown in Figs. 5(a, b). It can be seen from the 

classical result of Fig. 5(a) that, if the residual surface stress and surface moduli have similar 

magnitudes, the influence of residual surface stress on deformation is larger than that of 

surface moduli. Specifically, as the dimensionless surface parameters 
+2 

 s s

m

a
E t

 and 


 s

m

b
E t

 are varied, the deflection of the bending beam varies as: 
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where  0, 0  classicalw w a b  and 0.3  . Compared with surface moduli, residual surface 

stress is seen to play a more dominant role in the deformation of a bending beam. For a beam 

under uniaxial tension (Fig. 5(b)), while surface moduli increase its Young’s modulus, 

residual surface stress has no influence on beam deformation: that is, surface moduli dominate 

the deformation of a stretching beam. If the surface parameter dominating either bending or 

stretching has a small magnitude, its influence on the deformation and effective Young’s 

modulus of the beam is small and, correspondingly, the other surface parameter also has little 

influence. In sharp contrast, the influence of one surface parameter (either surface moduli or 

residual surface stress) becomes significant when the other surface parameter is large. The 

parallel structure illustrated in Fig. 5(c) is commonly found in physics, e.g., the beam 

displacement, surface parameter, and external load exhibit relationships similar to those 

among the current, electrical resistance and voltage in electricity. 

                  



Next, the proposed cuboidal model is employed to investigate the drained Young’s 

modulus of nanoporous gold. The predicted effective drained Young’s modulus is plotted in 

Fig. 6 as a function of the volume fraction of solid matrix m , i.e., 1  , and compared with 

existing experimental data (Liu et al., 2016b). The SEM image of nanoporous gold inserted in 

Fig. 6 shows that it exhibits a network structure consisted of approximately cylindrical solid 

ligaments. For the nanoporous gold samples tested (Liu et al., 2016b), the ligament size 

(diameter) ranges from 15 nm to 500 nm: correspondingly, the porosity varies in the range of 

77%-98% (Liu et al., 2016b). Given that the microstructures of these nanoporous gold 

samples are intrinsically irregular, the present study provides an approximate method to 

estimate effective poroelastic parameters by converting the characteristic sizes of sample 

microstructures into dimensionless parameters. The tested samples having varying porosities 

also have different ligament sizes (t), resulting in the upper and lower bounds of 

dimensionless parameters  +2 / s s mE t  and / s mE t . For bulk gold, the surface parameters 

determined via atomistic simulations are constant: 2 5.3 N/m   s s  and 1.4 N/m s  

(Liu et al., 2016b; Shenoy, 2005). It follows that, as the ligament size t is altered, 

 +2 / s s mE t  varies from 
41.2 10   to 

36.1 10   while / s mE t  varies from 
53.2 10  to 

31.6 10 . It is seen from Fig. 6 that the present theoretical results fit well with existing 

experimental measurements. Further, as gold has large stiffness relative to liquid (water), the 

dimensionless surface parameters have small values (
31.6 10  ) and hence affect negligibly 

the effective poroelastic properties of nanoporous gold. 

Figure 7(a) plots the influence of porosity on the Biot coefficient of effective stress for 

selected dimensionless surface parameters. The Biot coefficient is seen to increase with 

increasing porosity, which can be explained by the definition of the coefficient itself. With 

surface moduli fixed, Fig. 7(b) shows that the Biot coefficient decreases as the residual 

surface stress is increased. Such influence of residual surface stress on effective stress is 

related to the shear strength of the porous material (Khalili et al., 2004). Increasing the 

residual surface stress leads to larger effective modulus of the cuboidal cell and hence smaller 

deformation, such that pressure should be increased to ensure that the strain of the cell 

remains unchanged. Therefore, the change in fluid volume should be increased, thus 

increasing the Biot coefficient.  

For selected values of residual surface stress, the results of Fig. 7(c) show that the Biot 

coefficient first decreases, reaching a local minimum, and then increases as surface moduli are 

increased. According to Eq. (57), this tendency is attributed to the fact that surface moduli 

                  



influence the effective drained Young’s modulus of the unit cell ( dE ) in a way different from 

that on the bulk modulus of solid ligament ( eff

mK ). 

4.2 Effective poroelastic parameters under undrained state 

 In undrained state, due to the presence of fluid pressure, the effective Poisson ratio of a 

fluid-saturated porous material with open cells is no longer null. Further, in undrained state, 

the effective Young’s modulus and other parameters not only depend upon three 

dimensionless parameters, i.e., the porosity   and two surface parameters expressed as 

/ s mE t  and  2 / s s mE t , but also upon the bulk modulus of fluid /f mK E , which is 

similar to the results obtained for an elastic matrix embedded with compressible liquid 

inclusions (Chen et al., 2020; Ti et al., 2022). When surface effects are absent, the undrained 

parameters can be degraded into the classical results (Cheng, 1997).  

 The influence of porosity and fluid compressibility on the effective undrained Young’s 

modulus for selected surface parameters are presented separately in Fig. 8(a) and (b), 

respectively. The undrained Young’s modulus decreases with increasing porosity but increases 

with increasing fluid bulk modulus (due to increasing fluid pressure). The variation trends of 

the undrained Young’s modulus with residual surface stress and surface moduli are similar to 

those of the drained Young’s modulus shown in Fig. 7.  

 The effective undrained Poisson ratio increases with the increase of the porosity (Fig. 

9(a)). To ensure the strain experienced by the unit cell remains unchanged, the external load 

should be reduced due to the decrescent undrained Young’s modulus induced by increasing 

porosity, the latter causing decreased volume change of solid ligaments. The larger fluid 

pressure induced by increased volume change of fluid leads to larger lateral deformation of 

the unit cell. When the porosity of the porous material tends to 1.0, the undrained Poisson 

ratio approaches to the limit of 0.5, which means the fluid volume has no change in the 

limiting case.  

The influence of fluid bulk moduli on the effective undrained Poisson ratio is depicted in 

Fig. 9(b) for chosen surface parameters. The undrained Poisson ratio increases with the 

increase of fluid bulk modulus, for the latter leads to larger fluid pressure. As shown further in 

Figs. 9(c, d), the undrained Poisson ratio decreases with the increase of the residual stress or 

surface moduli. Again, for the case of fixed strain of unit cell, since increasing either the 

residual surface stress or surface moduli increases the effective undrained Young’s modulus, 

the external load should be increased and, correspondingly, the volume change of the solid 

also increases. As a result, lateral deformation of the unit cell is reduced, for the smaller fluid 

volume change enables the fluid pressure to decrease. 

                  



 Finally, the results of Fig. 10(a) reveal that the effective Biot modulus decreases with 

increasing porosity for relatively small fluid bulk modulus, e.g., / 0.01f mK K , but increases 

with porosity for larger fluid bulk modulus, e.g., / 100f mK K . For selected surface 

parameters, Fig. 10(b) displays the influence of fluid compressibility on the effective Biot 

modulus while Figs. 10(c, d) illustrate how residual surface stress and surface moduli 

influence the effective Biot modulus.   

4.3 Mechanical response of fluid-saturated porous material with surface effects under 

uniaxial/multiaxial stretching  

The proposed cuboidal model is next applied to describe the mechanical response of an 

isotropic fluid-saturated porous material in either undrained or drained state. For these two 

limiting cases, there is no fluid flow and hence the mechanical response may be taken as 

linear elastic.  

For illustration, consider first the case of quasi-static uniaxial stretching,  x , 

0  y z . The stress versus strain relations for both drained and undrained states can be 

expressed as:  
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As shown in Fig. 11(a), for fixed strain, the presence of surface effects enlarges the stress or, 

equivalently, stiffens the fluid-saturated porous material. Further, at the same strain level, the 

stress in the undrained state is larger than that in the drained state. This implies that, under 

loading, the force of the fluid-saturated porous material eventually attenuates when the strain 

remains fixed, causing the so-called poroelastic relaxation (Hu and Suo, 2012; Wang et al., 

2020).  

Consider next the case of quasi-static non-proportional stretching,  x , 

0.5   y z . Corresponding stress versus strain relations for drained and undrained states 

become: 
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Again, as shown in Fig. 11(b), for non-proportional stretching, surface effects increase the 

stress compared to that without surface effects at the same strain, and the stress in the 

                  



undrained state is larger than that in the drained state (poroelastic relaxation). Compared with 

uniaxial stretching (blue lines in Fig. 11(a)), the stress 
x

  with non-proportional stretching 

(blue lines in Fig. 11(b)) is larger for the same strain 
x
 . Besides, as the porous material has a 

zero drained Poisson ratio, non-proportional stretching has no influence on 
x

 , i.e., the red 

lines of Fig. 11(b) coincide with the red lines of Fig. 11(a). In contrast, in the undrained state, 

the Poisson effect enables a larger stress 
x

  with non-proportional stretching relative to that 

with uniaxial stretching. That is, the variation of fluid volume between undrained and drained 

states, namely, the difference between the blue line and the corresponding red line, increases 

with the lateral stretch. 

4.4 Stress concentration of small liquid inclusion embedded in fluid-saturated medium 

with surface effects 

As another application, the cuboidal open cell model is employed to describe stress 

concentration generated by a small liquid inclusion with non-negligible surface tension (e.g., 

a cell), embedded in a fluid-saturated porous material that contains distributed small pores and 

hence exhibits surface effects. Due to challenges in mathematically modeling such double 

influence of surface effects, how such stress concentration is dependent upon surface effects 

remains elusive, especially when surface effects play a significant role in the deformation and 

stressing of the porous material surrounding the liquid inclusion.  

Built upon our previous work (Ti et al., 2021), consider a compressible spherical liquid 

inclusion that is surrounded by an infinite, isotropic, fluid-saturated porous material, with 

surface tension acting on its surface, as shown schematically in Fig. 12(a). Further, it is 

assumed that the fluid-saturated porous matrix is idealized and can be modeled using the 

proposed cuboidal open cell model. It should be pointed out that, for the first time, we 

consider the case when both the liquid inclusion and the matrix exhibit surface effects. To 

solve this complex problem, we consider again two limiting cases (undrained state and 

drained state) of the matrix, such that no fluid flow needs to be considered and the mechanical 

response may be taken as linear elastic. 

With uniaxial stretching applied at remote, the stress fields of a spherical liquid inclusion 

in a poroelastic matrix considering surface effects can be obtained straightforwardly using the 

theoretical results presented in our previous work (Ti et al., 2021). Specifically, we replace the 

mechanical parameters of continuum solid matrix considered in our previous study with the 

effective mechanical properties derived in the present study for fluid-saturated porous matrix. 

                  



The results show that stress concentration most likely occurs at point A located on the 

inclusion-matrix interface in the direction of far-filed stretching; Fig. 12(a). To quantify the 

stress concentration, the explicit solution for the radial stress component at point A is 

presented below: 
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where p dE E  (or uE ) and  p d  (or u ) are the Young’s modulus and Poisson ratio of the 

porous matrix material in drained (undrained) state, analytically estimated in Section 3.3 of 

this study,    is the strain of far field,   is the surface tension, R  is the radius of liquid 

inclusion, and iK  is the bulk modulus of liquid inclusion. When surface tension of the liquid 

inclusion is negligible, the present results are consistent with existing results (Chen et al., 

2018). 

Based on the result of (65), we show in Figs. 12(b) and (c) how surface effects can 

influence the stress concentration of the small liquid inclusion in terms of radial stress 
,rr A  at 

point A. For the plotting, surface tension at inclusion-matrix interface is taken as 0.1 mE R   

while surface moduli and residual surface stress in the matrix are systematically varied, with 

the remaining parameters fixed at 0.1i mK K , 0.3m   and 0.8  . We observe that the 

stress concentration (i.e., radial stress  ,rr A  at point A) monotonically increases as either 

residual surface stress or surface moduli of the fluid-saturated porous matrix are increased; 

Figs. 12(b) and (c). Besides, the stress concentration decreases significantly from undrained 

state to drained state due to fluid flow of the porous matrix, which means the presence of fluid 

enhances stress concentration around the inclusion. 

 

5. Discussion 

The poroelastic behaviors of a porous material saturated with compressible fluid can be 

affected significantly by surface effects, especially if its porous network of solid ligaments is 

                  



soft. According to our previous work (Chen et al., 2021), due to the surface effects induced by 

interaction between fluid and solid skeleton, hydrogel can exhibit swelling and snap-though 

instability (Cai and Suo, 2011; Hong et al., 2009; Hong et al., 2008). Therefore, for a fluid-

saturated porous material with large surface parameters (or small elastic moduli), surface 

effects play a significant role in its mechanical behavior. To help understand the extent to 

which surface effects influence the mechanical behavior, Fig. 13 displays dimensionless 

residual stresses (i.e., surface tension) and porosities for common porous materials. (It should 

be noticed that, due to lack of available test data, the surface stresses shown in Fig. 13 are for 

the fluid and vapor, but in the current study they are for the fluid and solid).  

In our previous studies (Chen et al., 2021; Ti et al., 2022), the dependence of effective 

poroelastic parameters upon surface effects was quantified theoretically for two common 

microstructures: liquid inclusions and macromolecular network. In the current study, we 

provide another microstructure (i.e., open-celled cellular structure) for mechanical analysis. It 

is therefore of interest to compare theoretical models developed for different microstructures 

exhibiting surface effects. For the macromolecular network model, the macromolecular chains 

are assumed to be free and random, so that the model is valid when the porosity is close to 

100% (typically > 99%). On the contrary, the liquid inclusions model is applicable for porous 

materials with relatively low porosities (typically < 70%) or closed pores. The proposed 

cuboidal model fills the gap of the two microstructures, i.e., it can be used to calculate the 

effective poroelastic parameters of fluid-saturated porous materials when the other two 

models are not applicable.  

The cuboidal open cell model can be extended to cover a wide variety of pore 

morphologies, such as tetrahedron, hexagonal prism, pentagonal dodecahedron and 

tetrakaidekahedron (Gibson and Ashby, 1997). Nonetheless, among the different pore 

morphologies considered, the cuboidal model is the simplest and can accurately describe the 

main features of the poroelasticity problem, i.e., deformation of stretching/bending ligaments, 

and explore physical mechanisms underlying the influence of surface effects on the 

poroelastic parameters of fluid-saturated porous materials with small pores. In addition, the 

model can be used to not only study the viscous-poroelastic and dynamical behaviors of fluid-

saturated porous materials with surface effects, but also analyze cross-disciplinary problems 

such as thermo-solid-fluidic coupling and acoustic-solid-fluidic coupling. However, it must be 

emphasized that, in practice, many poroelastic materials are soft and largely deformable and 

hence it is necessary to extend the present theoretical model to analyze the role played by 

surface effect in the large deformation of soft poroelastic materials. To this end, the cuboidal 

model depicted in Fig. 1 may be linked to the theory developed previously to quantify surface 

effects on large deflection of elastic nanobeam (e.g., (Liu et al., 2016a; Zeng and Zheng, 

2010)). Besides, as these soft materials often exhibit viscoelastic behaviors due to say 

                  



entangled chains (Liu et al., 2019), viscoelasticity should also be considered in addition to 

large deformation.  

Lastly but not lest importantly, it should be noted that extending our model to fluid-

saturated biological systems requires squarely addressing challenging issues such as solvent 

flow and charge. For typical instance, in addition to filament system, the protein content, 

charged molecules (e.g., vimentin and actin), and solvent flow cannot be ignored in cytoplasm 

(Blüher et al., 2004). Besides, collagen is packed so tightly in hierarchical structures like 

tendon that the flow of interstitial fluid is heavily restricted (O'brien, 1997). Further, interface 

properties (e.g., residual surface stress and surface moduli) are dependent upon temperature 

(Kezwon and Wojciechowski, 2014). Therefore, for complex biological systems, substantial 

additional justification is needed to extend the current model, with the effects of solvent flow, 

charge and other factors duly accounted for.  

 

6. Conclusion 

A micromechanics model of cuboidal open cell has been proposed to analyze how surface 

stresses and fluid compressibility affect the effective poroelastic parameters of fluid-saturated 

porous elastic materials. Together with our Biot-type phenomenological constitutive model 

developed in an earlier study (Chen et al., 2021), an integrated bottom-up and top-down 

approach is developed to analyze stress versus strain responses of the porous material 

subjected to multiaxial loading as well as stress concentration of a liquid inclusion embedded 

in porous materials. Main conclusions drawn are: 

(1) Effective poroelastic moduli for orthotropic, transverse isotropic, and isotropic porous 

materials saturated with fluid are derived, and the influence of both fluid compressibility 

and surface stresses on these poroelastic parameters is quantified. 

(2) The effects of two different surface parameters - residual surface stress and surface 

moduli - are coupled: the former dominates the deformation of a bending beam, while the 

latter dominates the deformation of a stretching beam and has little influence on a 

bending beam. 

(3) The influence of surface stresses on undrained moduli is significant when the bulk 

modulus of fluid is small, but negligible if the fluid is nearly incompressible. 

(4) Key parameters characterizing solid-fluid coupling, i.e., the Biot modulus and the Biot 

coefficient of effective stress, are determined for isotropic porous materials. 

(5) The proposed model is applied to calculate stress versus strain responses of the porous 

material in both undrained and drained states. Under either uniaxial tension or non-

proportional multiaxial tension, surface effects increase the stress compared to that 

without surface effects at the same strain, and the stress in the undrained state is larger 

than that in the drained state (poroelastic relaxation). 

                  



(6) The model is also applied to demonstrate that the stress concentration of a small liquid 

inclusion with non-negligible surface tension embedded in a fluid-saturated porous 

material with surface effects increases as either residual surface stress or surface moduli 

of the material are increased. 

The model developed in this study lays a solid theoretical foundation for exploring how 

surface effects influence the effective poroelastic parameters of a fluid-saturated porous 

material as well as its mechanical response when subjected to multiaxial external loadings. 
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Table 1. Relevant parameters for common porous materials 

 Residual 

surface stress 

(N/m) 

Ligament size Young’s 

modulus of solid  

Porosity 

(%) 

Nanoporous 

gold 

1.41  

(Shenoy, 2005) 

38-48 nm  

(Liu et al., 

2016b) 

79 GPa  

(Liu et al., 

2016b) 

65-75  

(Liu et al., 

2016b) 

Nanoporous 

sliver  

0.89  

(Shenoy, 2005) 

50-350 nm  

(Seok et al., 

2018) 

73.5-78.5 GPa  

(Champion et 

al., 2019) 

35-65  

(Seok et al., 

2018) 

Aligned 

fibrin 

nanofiber 

hydrogel 

(AFG) 

0.051-0.066  

(Kar and Patra, 

2020) 

100 nm  

(Du et al., 2017) 

17-89 MPa  

(Baker et al., 

2016) 

98.5  

(Du et al., 

2017) 

Bread 0.028-0.04  

(Sahi, 2003) 

6-200 μm 

(Hicsasmaz and 

Clayton, 1992) 

132-851 kPa  

(Scanlon and 

Zghal, 2001) 

88-93 

(Scanlon 

and Zghal, 

2001) 

Rice 0.072  

(Hauner et al., 

2017) 

10-50μm 

(Oikonomopoul

ou et al., 2011) 

0.15-0.41 GPa  

(Jha and 

Tripathy, 2020) 

40-50  

(Oikonomo

poulou et 

al., 2011) 

Porous HA 

scaffolds 

0.047  

(Lopes et al., 

1999) 

10μm  

(Yoon et al., 

2007) 

63-100 GPa  

(Dey et al., 

2009) 

76  

(Yoon et al., 

2007) 

Paper 0.064-0.073  

(Westerlind 

and Berg, 

1988) 

10-50 μm 

(Bennis et al., 

2010) 

8.9-47.7 GPa  

(Eichhorn et al., 

2001) 

57.1-73.6  

(Tanpichai 

et al., 2019) 

                  



 

Table 2. Relations among poroelastic parameters for isotropic fluid-saturated porous 

materials 
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Figure 1. Ligament sizes and porosities of representative fluid-saturated porous media. 

 

                  



 

 

 

Figure 2. Theoretical framework of constitutive modeling for fluid-saturated porous 

media with surface effects (Chen et al., 2021).  

 

 

                  



 

 

 

 

Figure 3. Schematic diagram. (a) Unit cell model for fluid-saturated porous materials with 

open cells. (b) Timoshenko beam model with surface effects. 

                  



  

Figure 4. Influence of surface parameters on the effective drained Young’s modulus. (a) 

Influence of residual surface stress. The effective drained Young’s modulus increases with the 

increase of residual surface stress. (b) Influence of surface moduli, with different colors 

representing different residual surface stresses. The effective drained Young’s modulus 

increases with the increase of surface moduli. The two surface parameters have a coupling 

effect: the larger the surface moduli, the greater the influence of residual surface stress; and 

the larger the residual surface stress, the greater the influence of surface moduli. For the 

plotting, 0.3 m
 and 0.8   are selected. 

 

                  



 

  

 

Figure 5. Schematic diagram of the Timoshenko beam under loading. (a) Timoshenko 

beam under bending. According to the governing equations (Liu and Rajapakse, 2009), the 

residual surface stress can be considered as a deformation induced distributed force opposite 

to the concentrated load at the middle of the beam, and the surface moduli can be considered 

as a film with no thickness which can increase the bending stiffness of the beam EI. It can be 

seen from the classical results that when two surface parameters of the same magnitude, the 

residual surface stress has a greater impact on deformation than the surface moduli. Therefore, 

residual surface stress dominates for the bending beam. (b) Beam under tensile force. The 

beam with surface effects can be considered as to be covered by a film, which increases the 

Young’s modulus of the beam. And the residual surface stress has no influence on the 

deformation. Therefore, surface moduli dominate for the bending beam. (c) Schematic 

diagram of coupling effect. The strain of the unit cell model for the porous media consist of 

two parts: deflection of the bending beam and strain of the stretched beam. The beam 

displacement, surface parameter, and external load exhibit relationships similar to those 

among the current, electrical resistance and voltage in electricity. 

                  



 

 

 

Figure 6. Influence of volume fraction of solid on effective drained Young’s modulus 

(normalized by the modulus of solid matrix) for nanoporous gold. The experiment data 

and SEM image of nanoporous gold are from a previous study (Liu et al., 2016b). 

Nanoporous gold samples with different ligament sizes exhibit different effective porosities. 

For nanoporous materials under drained state, the effective mechanical parameters depend on 

the volume fraction of solid matrix m  and two dimensionless surface parameters 

 +2 / s s mE t  and / s mE t . Given that nanoporous samples with different porosities have 

different ligament sizes t, the dimensionless surface parameters are different. Therefore, the 

upper and lower bounds of  +2 / s s mE t  and / s mE t  used in theoretical modeling. The 

theoretical results fit well with experimental results and, due to the high stiffness of gold 

relative to water, surface effects have little influence the effective poroelastic parameters of 

nanoporous gold.   

 

                  



 

 

Figure 7. Dependence of Biot coefficient of effective stress on porosity and surface effects. 

(a) Influence of porosity, with the Biot coefficient increases with increasing porosity. (b) 

Influence of residual surface stress, with the Biot coefficient decreases with the increase of 

residual surface stress. (c) Influence of surface moduli, with the Biot coefficient decreasing 

first and then increasing as surface moduli are increased. For the plotting, 0.3 m
 and 

0.8   are selected. 

 

                  



 

 

Figure 8. Influence of porosity and fluid bulk moduli on effective undrained Young’s 

modulus. (a) Effective undrained Young’s modulus decreases with increasing porosity 

( 0.3 m
 and 0.1f mK K  ). (b) Effective undrained Young’s modulus increases with the 

increase of fluid bulk modulus ( 0.3 m
 and 0.8  ). 

                  



 

 

Figure 9. Influence of porosity, fluid bulk modulus and surface parameters on effective 

undrained Poisson ratio. (a) Influence of porosity, with the effective undrained Poisson ratio 

increasing with the increase of porosity. (b) Influence of fluid compressibility, with the 

effective undrained Poisson ratio increasing with the increase of fluid bulk modulus. (c) 

Influence of residual surface stress, with the effective undrained Poisson ratio decreasing with 

the increase of residual surface stress. (d) Influence of surface moduli, with the effective 

undrained Poisson ratio decreasing with the increase of surface moduli. For the plotting, 

0.3 m
 and 0.8   are selected. 

 

                  



 

 

 

Figure 10. Dependence of effective Biot modulus on porosity, fluid compressibility and 

surface stress. (a) Influence of porosity, with the effective Biot modulus decreasing for small 

fluid bulk modulus and increasing for large fluid bulk modulus as porosity is increased. (b) 

Influence of fluid compressibility, with the effective Biot modulus increasing with increasing 

fluid bulk modulus. (c) Influence of residual surface stress, with the effective Biot modulus 

increasing with the increase of residual surface stress. (d) Influence of surface moduli, with 

the effective Biot modulus increasing with increasing surface moduli. For the plotting, 

0.3 m
 and 0.8   are selected. 

                  



 

 

Figure 11. Stress versus strain curves under (a) uniaxial tension and (b) non-

proportional tension for porous materials under either undrained or drained state.  

 

                  



 

 

Figure 12. Dependence of radial stress of spherical liquid inclusion in fluid-saturated 

porous matrix on surface effects. (a) Schematic of a spherical liquid inclusion surrounded 

by an infinite saturated poroelastic matrix with double influence of surface effects surface 

effects, subjected to uniaxial stretching at remote. Surface tension on inclusion-matrix 

interface is denoted by  . (b) Influence of residual surface stress on radial stress 
rr  at point 

A, with different line styles representing different states and different colors representing 

different surface moduli. The radial stress increases with increasing residual surface stress. (c) 

Influence of surface moduli on radial stress 
rr  at point A, with different line styles 

representing different states and different colors representing different residual surface stress. 

The radial stress increases with increasing surface moduli. For the plotting, 0.3m  , 0.8  , 

0.1i mK K  and 0.1 mE R   are selected. 

                  



 

 

 

Figure 13. Residual surface stresses and porosities of common fluid-saturated porous 

materials. 

 

                  


