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A B S T R A C T   

Building upon fractal theory and relying exclusively on analytical models, we develop models for predicting the 
permeability and effective thermal conductivity of two-directional (2-D) fibrous porous materials. In contrast to 
previous permeability and conductivity models, two hypothetical parameters (β and ζ) with physical meaning are 
introduced to consider the contact thermal resistance at the fiber interfaces, and analytical models for both in- 
plane and out-of-plane directions are developed. Relevant geometrical and physical parameters, including 
porosity, average tortuosity, and thermal resistance, are obtained by modeling the representative structure (RS) 
of the fibrous porous material. Good agreement with existing experimental data for fibrous materials over a wide 
range of porosity (from 0.50 to 0.99) validates the developed models, for both the permeability and effective 
thermal conductivity. It is demonstrated that, compared with previous models based on simplified geometries 
relying on periodic distribution assumptions, the current fractal model can better characterize the randomness of 
pore size and distribution commonly found in commercial fibrous materials.   

1. Introduction 

High porosity fibrous materials typically exhibit low density, form-
ability, high specific area, and high thermal conductivity, among other 
attributes [1–4], thus widely applied in the fields of electronics devices 
[5], thermal energy storage [6], heat transfer enhancement materials 
[7], insulation [8], chemical catalyst [9], fuel cells [10], aerospace 
transportation system [11], porous burner [12], waste heat recovery 
[13] and biomedical applications [14]. In such applications, the 
permeability and effective thermal conductivity of fibrous porous ma-
terials are key parameters affecting heat and fluid flow through the 
material. To characterize fibrous porous materials, numerous analytical, 
numerical and experimental studies have been carried out. Nonetheless, 
given the complex geometric morphology found in most commercial 
fibrous materials, using analytical methods to accurately determine 
their permeability and effective thermal conductivities remains a 

challenge. To meet the challenge, using fractal theory, we develop 
analytical models of predicting the permeability and effective thermal 
conductivity of two-directional (2-D) fibrous porous materials. To this 
end, as shown schematically in Fig. 1, we assume that the axes of the 2D 
fibrous structure are located in planes parallel to each other, and the 
positions and orientations of the cylindrical, infinitely long fibers are 
randomly distributed in these planes. Therefore, the 2-D fibrous mate-
rials considered are transversely isotropic such that models for both - in 
plane and out-of-plane directions need to be developed. 

Since the fibrous material of Fig. 1(b) is composed of randomly 
distributed fibers that form interconnected pores, directly solving the 
Navier-Stokes equations to obtain its permeability, or the Laplace heat 
conduction equation to obtain its effective thermal conductivity, is 
almost impossible. It is thus necessary to develop approximate theo-
retical schemes, not only for designing the morphology of the fibrous 
material for specific applications, but also for exploring physical 
mechanisms underlying its thermofludic characteristics. In previous 
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studies, for simplification, the complicated porous structure is usually 
assumed to be periodically distributed and a unit cell (UC) or part of the 
UC is selected to represent both the topological and morphological 
features of a bulk porous material. Two typical methods have been 
employed to determine the permeability and conductivity of a fibrous 
porous material. On the one hand, upon assuming that the randomly- 
distributed pore structure is represented by packed spheres, the 
permeability and thermal conductivity can be obtained by modifying the 
Kozeny-Carmen equation [15–17] and extending the Maxwell-Eucken 
equation [18], respectively. Empirical constants are nonetheless pre-
sent in the Kozeny-Carmen model for permeability and in the 
Maxwell-Eucken model for conductivity [15–17,19,20], which vary 
from one porous material to another. On the other hand, to account for 
the effect of fibrous microstructure, periodically distributed square, 
staggered and hexagonal arrays, and cubic lattice trusses have been 
adopted to construct the UC. The method of volume-averaging is then 

used to solve the Hagen-Poiseuille flow to obtain the permeability [21, 
22], while the thermal resistance network model is employed to model 
heat conduction in the UC [23]. There exists a multitude of predictive 
models for the permeability [16,17,20–22] and effective thermal con-
ductivity [23] of fibrous materials. Often, however, these models are 
made possible through the use of simplifying assumptions, thus inca-
pable of accounting for the randomness in the size and distribution of 
pores. For typical instance, the 2-D fibrous porous material of Fig. 1 is 
directional, with its permeability and effective thermal conductivity 
differing in the in-plane and out-of-plane directions. However, previous 
theoretical studies assumed that the permeability and conductivity do 
not vary with direction [24,25], which contradicted available experi-
mental data [26,27]. Therefore, for a 2-D fibrous porous material, new 
analytical models that can better reflect the stochastic nature of its pore 
size and distribution, as well as accurately predict its permeability and 
effective thermal conductivity in both in-plane and out-of-plane 

Nomenclature 

Symbols 
a Weight  value 
d Microscopic  length  scale(m)

dE Euclidean  dimension 
ds Ligament  thickness(m)

dp Pore  diameterofrepresentative  structure(m)

Df Fractal  dimension  of  the  pore  size  distribution 
DT Fractal  dimension  of  average  tortuosity 
K Permeability  (m2)

l Length  (m)

L0 Characteristic  length  (m)

P Perimeter  of  cross − section  (m)

p Pressure  (Pa)
S Cross  sectional  area  (m2)

V Volume  (m3)

Vtotal Total  volume  (m3)

Vpore Pore  volume  (m3)

Greek  symbols 
μ Dynamic  viscosity  (Pa⋅s)
λ Pore  diameter  (m)

ε Porosity 
τ Tortuosity 

Subscript 
av Average 
max Maximum 
min Minimum 
RS Representative  structure 
t Total  

Fig. 1. Structure of 2-D fibrous material: (a) photo of fiber felt [11]; (b) scanning electronic microscope (SEM) image [23]; (c) isometric view of fibrous material with 
random in-plane fiber orientation; (d) top view of fibrous material with random in-plane fiber orientation; (e) schematic of fibrous porous material with square pore 
and randomly-distributed solid ligaments; (f) representative structure (RS) for 2-D fibrous material. 
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directions, are needed, as attempted in the current study. 
One approach is to use fractal theory. It has been confirmed that 

fractal theory can describe and characterize the transport properties of 
porous media containing randomly distributed pores, such as fibrous 
materials [28], particulate porous media [29], cellular metal foams 
[30], Sierpinski structures [31,32], soil [33], oil/gas reservoir [34], etc. 
Therefore, considering that the pore structure, size, and distribution in a 
fibrous material are typically random, and that the pores have similar 
properties within a certain scale range, issues such as disorderly ar-
ranged pores, tortuous flow, and heat conduction at pore scale may be 
addressed using the fractal theory, as it enables accurate prediction of 
permeability [28,34–37] and effective thermal conductivity [14,29,32, 
38] of porous media. 

An analytical expression for the permeability of bi-dispersed porous 
media was established by applying the fractal distribution of capillaries 
to a capillary bundle model [35], being a generalized expression for the 
permeability [39] of porous media based on fractal theory. Subsequent 
theoretical studies have continuously enriched existing knowledge of 
physical mechanisms underlying transport flow in fractal porous media. 
Consequently, the effects of key parameters such as fractal porosity and 
pore volume distribution [40], tortuosity [35,41], maximum pore size 
[42], size distribution of contact areas [43], saturation of unsaturated 
porous media [44,45], and surface roughness [46] on fluid transport and 
permeability for various types of porous medium have been quantified 
and expressed analytically, as summarized in recent reviews [36,47]. In 
addition to the before-mentioned progress in fractal theory for fluid 
transport in porous media, numerical simulations based on, e.g., 
automata lattice gas (LG) [48], finite element (FM) method [49], 
effective medium theory [50], numerical reconstruction of real porous 
media [51], Lattice Boltzmann Method (LBM) [52], Monte Carlo simu-
lation [53], have also been applied to simulate and calculate the 
permeability of porous media. 

Thus far, the effective thermal conductivity of a porous medium has 
been obtained by experimental measurements and numerical simula-
tions of heat transfer through its complex microstructure. However, such 
experimental measurements and numerical simulations are often 
approximate and do not provide a deep understanding of heat conduc-
tion mechanisms in porous media. Therefore, finding analytical ex-
pressions for the effective thermal conductivity of porous media 
becomes an attractive and challenging research direction. Volkov and 
Zhigilei [54–56] developed the theoretical analysis and numerical cal-
culations of the effective thermal conductivity of random fiber mate-
rials. Although the fibers they studied are mainly for nanofiber 
materials, they also provide a new way to study the effective thermal 
conductivity of random fiber materials. In recent years, it has been 
demonstrated that the fractal theory provides a new method to predict 
the effective thermal conductivity of porous media having random pore 
sizes and distributions, such as particulate porous media [29], porous 
rocks [57], soil [58], tree-like bifurcated structures [59], and fibrous 
materials [60]. In particular, the geometric percolation model has been 
incorporated into the fractal theory to analyze thermal transport in 
porous media [61,62]. Another alternative is make use of the fractal 
characteristics of a porous media (e.g., microstructure, pore size, and 
distribution of pores), so that its effective thermal medium can be 
expressed as a function of porosity and parameters representing mi-
crostructures [29,32]. As to fibrous materials, although attempts of 
using fractal theory to predict the effective thermal conductivity have 
started, relevant parameters still need to be tuned based on the specific 
fibrous structure considered. Further research is therefore needed to 
improve the prediction accuracy of fractal theory and the applicability 
of thermal conductivity model for 2-D fibrous materials. 

In summary, previous investigations indicated that fractal theory 
plays an important role in understanding fluid and heat transport phe-
nomena in porous media, enabling in-depth study of permeability and 
effective thermal conductivity. However, little attention has been paid 
to the fractal characteristics of fibrous materials and the validity of using 

fractal theory to develop permeability and conductivity models against 
experimental measurements. In the current study, to address this defi-
ciency, focusing upon 2-D fibrous materials (Fig. 1), we apply pore-scale 
geometric characterizations to construct analytical fractal models for 
permeability and effective thermal conductivity, and validate the model 
predictions against existing test data. 

2. Theoretical model 

2.1. Theory for fractal porous media 

The fractal theory is developed to describe pore size that is distrib-
uted in a fractal fashion in a porous medium [63,64]. With reference to 
Fig. 1, given the microstructural features of a 2-D fibrous material, the 
fractal theory dictates that [63]: 

M(l)∝lDf (1)  

where M(l) denotes the measure of a fractal porous medium, l is the 
representative scale, and Df represents its fractal dimension. It follows 
that the number N and size λ of pores in the porous medium satisfy the 
fractal law, given by Ref. [35]: 

N(l≥ λ)= (λmax/λ)Df (2)  

where λmax represents the maximum pore size in the porous medium and 
N(l≥ λ) is the number of pores whose pore sizes are greater than or equal 
to λ. If the pore size λ is replaced by the minimum pore size λmin, then the 
total number of pores Nt can be expressed as [35]: 

Nt(l≥ λmin)= (λmax/λmin)
Df (3) 

Therefore, the numebr of pores in the infinitesimal range of λ to λ +
dλ can be obtained by differentiating Eq. (2) [28,64], as: 

− dN =Df λDf
maxλ− (Df +1)dλ (4)  

where − dN > 0. That is, the number of pores decreases with increasing 
pore size. Relative to the total pore count, the percentage of the number 
of pores in the range from λ to λ + dλ can be obtained by dividing (4) by 
(3), resulting in: 

−
dN
Nt

=Df λ
Df
minλ− (Df +1)dλ= f (λ)dλ (5)  

where f(λ) = Df λ
Df
minλ− (Df+1) is the probability density function of pores in 

the porous medium [35,40]. According to the probability theory, the 
law obtained by integrating the probability density function satisfies the 
normalization [35,40]: 
∫ +∞

− ∞
f (λ)dλ=

∫ λmax

λmin

f (λ)dλ = 1 −

(
λmin

λmax

)Df

≡ 1 (6) 

The prerequisite for Eq. (6) is 
(

λmin

λmax

)Df

≅ 0 (7) 

Equations (1)–(7) lay the theoretical foundation for fractal porous 
media, with Eq. (7) serving as the fundamental premise for applying the 
fractal geometry theory [40]. 

2.2. Fractal model of permeability 

Based on the fractal theory, a generalized expression for fractal 
permeability can be obtained by assuming that the flow rate of fluid 
through tortuous circular capillary tubes in a porous medium satisfies 
the modified Hagen-Poiseulle equation, as [35]: 
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K =
π

128
L0

1− DT

A
Df

3 + DT − Df
λ3+DT

max (8)  

where A is the unit cross-sectional area of a fractal pore set, L0 is the 
characteristic length containing all the fractal pores (from 
the  smallest  to  the  largest diameter), λmax is the maximum pore 
diameter, DT denotes the fractal  dimension  of  average tortuosity, and 
Df represents the fractal dimension  of  pore  size distribution. An 
expression of Df was further proposed, as [40]: 

Df = dE −
ln ε

ln(λmin/λmax)
(9)  

where ε is the porosity, and dE is the Euclidean dimension, e.g., dE = 2, 3 
are the two- and three-dimensional space, in respective. Therefore, for 
two-dimensional space, 1 < Df < 2; for three-dimensional space, 2 <

Df < 3. 
For a 2-D fibrous material, using the model of Eq. (8) to predict its 

permeability requires the determination of three key parameters: L0, DT 
and λmax. 

2.2.1. Characteristic length L0 
Within the characteristic length L0, all the fractal pores (from the 

smallest to the largest) are included. For a cubic fibrous material with 
side length L0, the porosity can be expressed as: 

ε=Vpore

L3
0

(10)  

where Vpore is the total volume of pores in the porous medium. In the 
current study, for simplicity, the pores are modeled as ideal spherical 
pores such that the total pore volume can be calculated as [36,65]: 

Vpore =
πDf ,3λ3

max

6
(
3 − Df ,3

) (1 − ε) (11)  

where Df ,3 = 3 − ln ε
ln(λmin/λmax)

. The characteristic length L0 can thence be 
obtained as: 

L0 = λmax

[
πDf ,3

6
(
3 − Df ,3

)
1 − ε

ε

]1
3

(12)  

2.2.2. Unit cross-sectional area A 
Fig. 1(a) and (b) depict both sample photographs and scanning 

electron microscopic (SEM) images for a typical fiber felt. Not only the 
solid ligaments but also the complex pores are seen to be randomly 
distributed (Fig. 1(b)) in the fibrous material, following the fundamental 
assumption of fractal theory. Axes of the 2-D random fibers are located 
in planes parallel to each other, with positions and orientations 
randomly distributed in these planes, as shown in Fig. 1(c) and (d). The 
anisotropic fibrous material is formed by stacking each layer of such 
randomly distributed fibers, thus exhibiting two main directions: in- 
plane and out-of-plane. To simplify the current analytical modeling, 
idealized square pores in each layer of the fibrous material are assumed, 
with random sizes and distributions, as shown in Fig. 1(e). Among the 
disordered pores, the joint with three struts (Fig. 1(f)) is selected as the 
representative structure (RS) for subsequent characterization analysis, 
and the circular fiber is simplified into the square. Let λ, b, ds and h 
represent separately the pore size, width, ligament thickness, and height 
of the RS. In Fig. 1(f), a different ligament in the z-direction of the 
representative structure is introduced to consider the thermal contact 
resistance between different fiber layers. The thermal contact resistance 
between 2-D fiber layers is estimated quantitatively by two hypothesis 
parameters b and h (i.e., β = b/ds and ζ = h/λ).  

(a) In-plane 

The total (in-plane) cross-sectional area is given by Ref. [66]: 

Ain =
Ap in

ε =
πDf ,2λ2

max(1 − ε)
4
(
2 − Df ,2

)
ε

(13)  

where Df ,2 = 2 − ln ε
ln(λmin/λmax)

.  

(b) Out-of-plane 

The pores in Fig. 1(e) may be considered as squares with varying size 
(λ), such that the total pore area Ap out in the out-of-plane direction may 
be calculated as: 

Ap out = −

∫λmax

λmin

aλdN =
Df ,2λ2

max(
2 − Df ,2

) (1 − ε) (14) 

Then, the total (out-of-plane) cross-sectional area Aout is: 

Aout =
Ap out

ε =
Df ,2λ2

max(1 − ε)
(
2 − Df ,2

)
ε

(15)  

2.2.3. Fractal dimension of average tortuosity DT 
The macroscopic transport parameters of a porous medium are 

commonly related to its tortuosity, i.e., the tortuous path of fluid flow. 
To represent the tortuosity of fluid flow through the present 2-D fibrous 
material of Fig. 1, we approximate the tortuous paths as a bundle of 
tortuous capillary tubes. Thus, using the analytical method for deter-
mining the fractal dimension (DT) of average tortuosity detailed in 
Ref. [67], we obtain: 

Fig. 2. Distribution of streamlines as seen from different angles of view: (a) 
three-dimensional configuration for square ligaments in a dislocated and 
equidistant arrangement and the corresponding unit cell; (b) side view of 
streamlines flowing around square ligaments in a dislocated and equidistant 
arrangement; (c) three-dimensional configuration for square ligaments in a 
square arrangement and the corresponding unit cell; (d) side view of stream-
lines flowing around square ligaments in a square arrangement. 
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DT = 1 +
ln τav

ln(L0/λav)
(16)  

where λav and τav are the average pore diameter and avergae tortuosity, 
respectively. Here, DT = 1 represents a straight channel/tube, DT = 2 
represents a tortuous channel/tube that fills the two-dimensional space, 
and DT = 3 represents a tortuous channel/tube that fills the three- 
dimensional space. Therefore, 1 < DT < 2 for a two-dimensional 
porous medium, and 1 < DT < 3 for a three-dimensional porous me-
dium. 

The average pore diameter of a porous medium can be calculated 
using the fractal theory combined with the probability density function, 
as [67]: 

λav =
Df ,3λmin

Df ,3 − 1
(17) 

When Df ,3 and L0 are determined, the only key parameter that needs 
to be solved is the average tortuosity τav. The tortuosity of a porous 
medium is defined as the ratio of the actual length for the real tortuous 
flow path to the straight (minimal) length [68,69]. However, calculating 
the tortuosity of each tortuous path to get the average tortuosity is 
prohibitively difficult. It had nonetheless been proven that the average 
tortuosity could be estimated using the average of representative 
streamlines [70]. For a 2-D fibrous material, Fig. 2 depicts the distri-
bution of two representative streamlines in its RS. Two representative 
structures of ligaments distribution are selected, as shown in Fig. 2(a) 
and (c)). In reality, the distribution of ligaments is complicated because 
the fibrous material is composed of randomly distributed fibers. 
Accordingly, to further simplify the calculation, both misaligned liga-
ments and equidistant ones are used to calculate the tortuosity as well as 
to simplify the irregularly distributed ligaments into a square arrange-
ment, as depicted in Fig. 2(a) and (c). 

The average tortuosity is obtained by a weighted average of all 
possible streamlines around two representative structure ligaments, as 
demonstrated in Fig. 2(b) and (d), yielding: 

τav =
∑n

i=1
aiτi (18)  

where a is the weight value (
∑n

i=1ai = 1), τi is the tortuosity of the i-th 
flow streamline, and n is the total number of possible streamlines. When 
a1 = a2 = ⋯ = an, Eq. (18) is reduced to a simple statistical average 
[70]. Generally speaking, given that a good deal of flow paths exist in an 
RS, finding and calculating all the fluid flow pathlines to obtain average 
tortuosity is almost impossible. Alternatively, it has been suggested [70] 
that the average tortuosity is related to the weighted averaged tortuosity 
for two representative flow paths: the longest and the shortest. For the 
representative structure (RS) of 2-D fibrous material, the numerical 
values of its length, width, height of are equal to λ, and the thickness of 
ligaments is ds, as shown in Fig. 2(a) and (c). Therefore, the pore volume 
of the RS can be calculated as: 

VRS− pore = λ3 − λ⋅d2
s (19)  

while its total volume is: 

VRS− total = λ3 (20) 

It follows that its porosity is given by: 

ε=VRS− pore

VRS− total
= 1 −

(
ds

λ

)2

(21)  

from which 

λs

λ
=

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
(22) 

For streamline 1 in Fig. 2(b), lAB = lCD = λ
2 and lBC = ds

2 . According to 

the definition of tortuosity, the tortuosity of streamline 1 can be 
expressed as: 

τ1− 1 =
lAB + lBC + lCD

lAB + lCD
= 1 +

1
2

λs

λ
= 1 +

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√

2
(23) 

Similarly, for streamline 2 in Fig. 2(b), as lEF = lGH = lIJ = lGI = ds

/2, 

lFI = λ − ds and lFG =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

l2GI + l2FI

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ds
2

)2

+ (λ − ds)
2

√

, its tortuosity can 

be obtained as: 

τ1− 2=
lEF+lFG+lGH

lEF+lFI+lIJ
=

ds+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ds
2

)2

+(λ− ds)
2

√

d
=

̅̅̅̅̅̅̅̅̅
1− ε

√
+

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

9− 5ε− 8
̅̅̅̅̅̅̅̅̅
1− ε

√
√

(24) 

For the distribution of solid ligaments depicted in Fig. 2(b), the 
weights of streamlines 1 and 2 are not affected by changes in porosity. 
No matter how the porosity is varied, streamlines 1 and 2 have the same 
weight: a1− 1=a1− 2 and a1− 1+ a1− 2 = 1. Therefore, the tortuosity can be 
obtained by using a simple weighted average, as: 

τ1 = a1− 1τ1− 1 + a1− 2τ1− 2 =
1
2
τ1− 1 +

1
2
τ1− 2

=
2 + 3

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9 − 5ε − 8

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√√

4
(25)  

where a1− 1 and a1− 2 are the value of the weight of streamlines 1 and 2, 
respectively. 

For streamline 1 in Fig. 2(d), the actual length lGH and the straight 
length of flow lGH are equal, yielding: 

τ2− 1 =
lGH

lGH
= 1 (26) 

With reference to Fig. 2(d), since boundary thickness is thin on lig-
ament surface, streamline 2 of the ligament boundary layer is thought to 
fit the ligament surface, as lMN = lQR = λ

2, lNO = lPQ = ds
2 and lOP = ds. The 

tortuosity of streamline 2 can thus be calculated by: 

τ2− 2 =
lMN + lNO + lOP + lPQ + lQR

lMN + lOP + lQR
=

λ + ds

λ
= 1 +

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
(27) 

In Fig. 2(d), the streamline is tortuous near the ligament but almost 
straight further away from it. As the porosity decreases, the ligament 
number density (per volume) increases, leading to less straight stream-
lines and more tortuous ones. The two weights for streamlines 1 and 2 in 
Fig. 2(d) are a2− 1 =

λ3 − λd2
s

λ3 and a2− 2 = λds
2

λ3 , respectively. Therefore, the 
average tortuosity τ2 in Fig. 2(d) can be derived as: 

τ2 = a2− 1τ2− 1 + a2− 2τ2− 2 =

(
λ3 − λd2

s

λ3

)

τ2− 1 +
λds

2

λ3 τ2− 2 = 1 + (1 − ε)
̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√

(28) 

In the present 2-D fibrous material, the pores are randomly distrib-
uted with varying pore sizes. Consequently, in practice, the proportions 
of the two ligament distributions shown in Fig. 2(a) and (c) cannot be 
directly measured. We therefore assume that the two distributions have 
the same proportion, i.e., a1 = a2 = 1

2, a1 being the weight value for the 
dislocated and equidistant arrangement of Fig. 2(a) and a2 the weight 
value for the square arrangement of Fig. 2(c). According to Eqs. (25) and 
(28), the average tortuosity is finalized as: 

τav = a1τ1 + a2τ2 =
1
2
τ1 +

1
2
τ2 =

6 + (7 − 4ε)
̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9 − 5ε − 8

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√√

8
(29) 

Eventually, from Eqs. (12), (16), (17) and (29), the fractal dimension 
of average tortuosity is obtained as: 
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DT = 1 +

ln
{

1
8

[
6 + (7 − 4ε)

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9 − 5ε − 8

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√√ ]}

ln
{

λmax
λmin

Df ,3 − 1
Df ,3

[
πDf ,3

6(3− Df ,3)
1− ε

ε

]1
3
} (30)  

2.2.4. The maximum pore diameter  

(a) In-plane 

With fractal theory, the pores of different sizes in a porous medium 
have similar shapes. Therefore, the largest pore volume corresponds to 
the maximum pore size. In the in-plane direction of the present fibrous 
material, with the cross-sectional shape of the stacked fibers taken as 

circular, it is assumed that the pore shape in the in-plane direction is 
mainly cylindrical. An equivalent cylindrical pore is therefore used to 
approximate the pore shape in the in-plane direction. It follows that the 
maximum pore volume Vmax− p can be expressed as: 

Vmax− p = π
(

hmax

2

)2

λmax =
π
4

ζ2λ3
max = Vtp − Vs = Vs

ε
1 − ε (31)  

where Vtp = Vs
1− ε is the total volume, and Vs is the volume of solid liga-

ments (i.e., fibers) given by: 

Vs =(2λ+ ds)d2
s + hb2 (32) 

According to Eqs. (31) and (32), the maximum equivalent pore 
diameter in the in-plane direction is: 

λmax = ds

[
4
(
2 + γ + ζβ2)ε
πζ2γ(1 − ε)

]1
3

(33)  

where ds = γλ, b = βds and h = ζλ.  

(b) Out-of-plane 

For the out-of-plane direction, the shape of the pores (which is 
determined mainly by randomly distributed fibers) is assumed to be 
rectangular, as shown in Fig. 1(e). The maximum pore volume Vmax− p is 
thence: 

Vmax− p = hmaxλ2
max = ζλ3

max = Vtp − Vs = Vs
ε

1 − ε (34)  

where Vtp = Vs
1− ε and Vs are the total volume of pores and the volume of 

solid ligaments, respectively. According to Eqs. (32) and (34), the 
maximum equivalent pore diameter λmax in the out-of-plane direction is 
given by: 

λmax = ds

[(
2 + γ + ζβ2)ε
αζγ(1 − ε)

]1
3

(35)  

2.2.5. The porosity 
For 2-D fibrous materials, the porosity ε can be calculated as: 

ε= 1 −
Vs

Vt
= 1 −

γ2
(
2 + γ + ζβ2)

(1 + γ)2
(ζ + γ)

(36)  

where γ = ds/λ (0 < γ ≤ 1), β = b/ds(0 < β ≤ 1) and ζ = h/λ 
(0 < ζ ≤ 1). 

2.2.6. Permeability correlation  

(a) In-plane 

Upon determining all key parameters as detailed above, the in-plane 
permeability of 2-D fibrous materials can be determined as: 

K
d2

s
=

1
32

(
2 − Df ,2

)

(
3+DT − Df ,2

)
ε

(1 − ε)

[
πDf ,3

6
(
3 − Df ,3

)
(1 − ε)

ε

]1− DT
3
[

4
(
2+ γ+ζβ2)ε
πζ2γ(1 − ε)

]2
3

(37)  

(b) Out-of-planeSimilarly, the out-of-plane permeability can be 
correlated as: 

K
d2

s
=

π
128

(
2 − Df ,2

)

(
3+DT − Df ,2

)
ε

(1 − ε)

[
πDf ,3

6
(
3 − Df ,3

)
(1 − ε)

ε

]1− DT
3
[(

2+ γ+ζβ2)ε
ζγ(1 − ε)

]2
3

(38)  

where Df ,2 = 2 − ln ε
ln(λmin/λmax)

and Df ,3 = 3 − ln ε
ln(λmin/λmax)

. 
It should be pointed out that, the above analytical model, obtained 

Fig. 3. Idealized pore structure model of 2-D fibrous material: (a) schematic of 
in-plane heat conduction; (b) top view of layer A in RS; (c) top view of layer B in 
RS; (d) top view of layer B1-2 in RS. 

Fig. 4. Idealized pore structure model of fibrous material: (a) schematic of out- 
of-plane heat conduction; (b) front view of layer A in RS; (c) front view of layer 
B in RS; (d) top view of layer B1-2 in RS. 
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based on the fractal theory and a set of simplifying assumptions con-
cerning the morphological details of 2-D fibrous materials, including 
two dimensionless parameters (β and ζ). Next, we move on to establish 
an analytical fractal model for effective thermal conductivity. 

2.3. Fractal of effective thermal conductivity 

2.3.1. Thermal resistance of representative structure (RS) 
The 2-D fibrous material considered in the current study is also 

thermally anisotropic, with heat flowing along mainly along in-plane 
and out-of-plane directions. Here, using the fractal theory and the 
technique of thermal-electrical analogy, we develop analytical models of 
effective thermal conductivity for both directions. 

Consider the idealized topology of Fig. 1(f), and its representative 
structure (RS) illustrated in Fig. 3(a) and Fig. 4(a). In Figs. 3 and 4, λ 
represents the pore size of the RS, ds denotes the thickness of each solid 
ligament, h is the height of the linked ligament in the z-direction, and b is 
the contact width of the linked ligament in the z-direction. The contact 
thermal resistance at the fiber interfaces makes the out-of-plane effec-
tive thermal conductivity less than the in-plane effective thermal con-
ductivity under the same porosity. To consider the influence of contact 
thermal resistance on the model, a different ligament is introduced in 
the z-direction of the representative structure (see Fig. 1(f)). The contact 
thermal resistance of different metal fiber materials is quantified by 
different combinations of dimensionless parameters (β and ζ). The 
dimensionless parameters β and ζ correspond to geometric parameters b 
and h, respectively. The source literatures of the effective thermal con-
ductivity experimental data also do not give specific methods for 
measuring or determining the contact thermal resistance at the fiber 
interfaces. In the current study, the model predictions are in good 
agreement with the experimental data by adjusting these two dimen-
sionless parameters β and ζ. Therefore, the dimensionless parameters (β 
and ζ) can also be regarded as one of the fitting parameters. But they 
have physical meaning. In this paper, two dimensionless fitting pa-

rameters (β and ζ) with physical meaning are called hypothetical 
parameters.  

(a) In-plane 

With heat flow imposed on the left of the RS in Fig. 3(a), heat is con-
ducted mainly along the x-axis with an in-plane effective thermal con-
ductivity with negligible lateral contact thermal resistance [71]. 
Therefore, we only need to consider thermal resistance along the di-
rection of heat flow (x-axis). Further, the effects of thermal radiation and 
convection are ignored. 

Regarding Fig. 3(a), the equivalent thermal resistance RA of the first 
layer (layer A) may be considered as the thermal resistance in parallel 
with RA1 and RA2, namely: 

1
RA

=
1

RA1
+

1
RA2

=
kf ksdsλ

ksλ + kf ds
+

ksd2
s

λ + ds
(39)  

where kf and ks are the thermal conductivity of the liquid and solid 
phase, respectively. Similarly, the equivalent thermal resistance of layer 
B may be considered as the thermal resistance in parallel with RB1 and 
RB2, where RB1 is composed of RB1-1 and RB1-2 in series and RB1-1 is given 
by: 

RB1− 1 =
λ

kf hds
(40) 

Concerning Fig. 3(d), the equivalent thermal resistance RB1-2 of the 
part B1-2 in layer B may be considered as that associated with the 
parallel connection of RB1-2-1, RB1-2-2 and RB1-2-3. Therefore, RB1-2 can be 
obtained by: 

1
RB1− 2

=
1

RB1− 2− 1
+

1
RB1− 2− 2

+
1

RB1− 2− 3
(41)  

where 

RB1− 2− 1 =RB1− 2− 3 =
2ds

kf h(ds − b)
(42)  

RB1− 2− 2 =
ds − b
kf hb

+
b

kshb
(43) 

Upon reorganizing, RB1-2 can be expressed as: 

1
RB1− 2

=
kf h(ds − b)

ds
+

kskf hb
ks(ds − b) + kf b

(44) 

Since the thermal resistance RB1 of the part B1 in layer B is associated 
with the series connection of RB1-1 and RB1-2, it can be calculated by: 

RB1 =RB1− 1 + RB1− 2 (45) 

The thermal resistance RB2 is simply given by: 

RB2 =
λ + ds

kf hλ
(46) 

With reference to Fig. 3(c), the equivalent thermal resistance RB of 
layer B may be taken as that connected by RB1 and RB2 in parallel, so 
that:   

The total in-plane thermal resistance of the RS shown in Fig. 3(a) can 
thence be obtained as: 

1
RRS− in

=
1

RA
+

1
RB

= λϕin (48)  

where 

ϕin =
kf ζ + ksγ2

1 + γ
+

kf ksγ
ks + kf γ

+
kf ζγ

[
ks(1 − β)2

+ ksβ + kf β(1 − β)
]

ks
[
(1 − β)(γ + 1) + β2]+ kf β(γ + 1 − β)

(49)  

ds = γλ, b = βds, h = ζλ (50)  

b) Out-of-plane 

To determine the out-of-plane effective thermal conductibity, it is 
assumed that heat flow is imposed on the top of the RS, as shown in 
Fig. 4(a), with negligible lateral contact thermal resistance [71]. 
Therefore, we only need to consider thermal resistance along the heat 
flow direction (z-axis). Further, we neglect the effects of thermal radi-
ation and convection. 

Concerning Fig. 4(a) and (b), the equivalent thermal resistance of 
layer A may be considered as that associated with the parallel connec-
tion of RA1 and RA2, so that its thermal resistance RA is given by: 

1
RB

=
1

RB1
+

1
RB2

=
kf hλ

λ + ds
+

kf hds
[
ks(ds − b)2

+ ksbds + kf b(ds − b)
]

ks
[
λbds + (ds − b)

(
d2

s + λds − λb
)]

+ kf
(
bd2

s + λbds − λb2
) (47)   
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1
RA

=
1

RA1
+

1
RA2

=
kf λ2

h + ds
+

kskf λds

ksh + kf ds
(51) 

Similarly, the equivalent thermal resistance RB1 of layer B may be 
taken as the thermal resistance in parallel with RB1 and RB2, where RB2 
consists of RB2-1 and RB2-2 in series, yielding: 

RB1 =
h

kf λds
+

ds

ksλds
(52) 

Other parts of the thermal resistance, such as RB2-1-1, RB2-1-3, RB2-1-2- 

1, RB2-1-2-2 and RB2-1-2-3 can be calculated as: 

RB2− 1− 1 =RB2− 1− 3 =
2h

kf ds(ds − b)
(53)  

RB2− 1− 2− 1 =RB2− 1− 2− 3 =
2h

kf b(ds − b)
(54)  

RB2− 1− 2− 2 =
h

ksb2 (55) 

The equivalent thermal resistance RB2-1-2 is composed of thermal 
resistance RB2-1-2-1, RB2-1-2-2 and RB2-1-2-3 in parallel, namely: 

1
RB2− 1− 2

=
1

RB2− 1− 2− 1
+

1
RB2− 1− 2− 2

+
1

RB2− 1− 2− 3
=

kf b(ds − b)
h

+
ksb2

h
(56) 

Similarly, the thermal resistance RB2-1 is obtained by connecting RB2- 

1-1, RB2-1-2 and RB2-1-3 in parallel: 

1
RB2− 1

=
1

RB2− 1− 1
+

1
RB2− 1− 2

+
1

RB2− 1− 3
=

kf
(
d2

s − b2
)

h
+

ksb2

h
(57) 

Hence, the equivalent thermal resistance RB2-2 can be calculated by: 

RB2− 2 =
ds

ksd2
s

(58) 

Since RB2-1- and RB2-2 are connected in series to form the thermal 
resistance RB2 of the part B2 in layer B, it can be calculated as: 

RB2 =RB2− 1 +RB2− 2 =
h

kf
(
d2

s − b2
)
+ ksb2

+
ds

ksd2
s

(59) 

It follows that the equivalent thermal resistance of layer B can be 
obtained as: 

Fig. 5. Schematic of effective thermal conductivity for fibrous materials: (a) 
typical particle chain [29]; (b) fibrous material chain. 

Fig. 6. Dimensionless permeability plotted as a function of porosity: (a) in- 
plane; (b) out-of-plane. 

Fig. 7. Comparison of average RDs calculated with different values of dimen-
sionless permeability: (a) in-plane; (b) out of plane. 
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Table 1 
Experimental data of permeability for fibrous materials.  

References Porosity, ε K/d2
s  ds (mm) Material Direction 

Davies [25] 0.862 2.975 N/A N/A In-plane 
0.810 1.438 N/A N/A 

Young et al. [72] 0.600 0.271 N/A N/A In-plane 
0.700 0.383 N/A N/A 
0.789 0.676 N/A N/A 

Skamser et al. [73] 0.537 0.102 0.01 Alumina fiber In-plane 
0.610 0.282 0.01 Alumina fiber 
0.628 0.329 0.01 Alumina fiber 
0.670 0.533 0.01 Alumina fiber 
0.720 0.648 0.01 Alumina fiber 

Jackson and James [74] 0.9896 18.5 9.8 × 10− 7 Hyaluronic acid polymer In-plane 
0.99379 29.25 9.8 × 10− 7 Hyaluronic acid polymer 
0.99586 51 9.8 × 10− 7 Hyaluronic acid polymer 
0.99724 66.75 9.8 × 10− 7 Hyaluronic acid polymer 
0.99793 77 9.8 × 10− 7 Hyaluronic acid polymer 
0.99862 125 9.8 × 10− 7 Hyaluronic acid polymer 
0.99931 332.5 9.8 × 10− 7 Hyaluronic acid polymer 
0.999655 750 9.8 × 10− 7 Hyaluronic acid polymer 

Stenzel et al. [75] 0.761 0.3125 3.0 × 10− 6 Collagen In-plane 
0.893 0.675 3.0 × 10− 6 Collagen 

Ingmanson et al. [76] 0.742 0.075 0.193 Nylon fibers Out-of-plane 
0.768 0.0975 0.193 Nylon fibers 
0.79 0.125 0.193 Nylon fibers 
0.8 0.1375 0.193 Nylon fibers 
0.83 0.2 0.193 Nylon fibers 
0.85 0.2425 0.193 Nylon fibers 
0.86 0.2775 0.193 Nylon fibers 
0.87 0.3325 0.193 Nylon fibers 
0.9 0.48 0.193 Nylon fibers 
0.68 0.0375 0.164 Glass fibers 
0.71 0.055 0.164 Glass fibers 
0.81 0.155 0.164 Glass fibers 
0.8 0.1375 0.164 Glass fibers 
0.83 0.1975 0.164 Glass fibers 
0.85 0.25 0.164 Glass fibers 
0.87 0.375 0.164 Glass fibers 
0.9 0.475 0.164 Glass fibers 
0.91 0.625 0.164 Glass fibers 
0.92 0.75 0.164 Glass fibers 
0.93 0.95 0.164 Glass fibers 
0.94 1.3 0.164 Glass fibers 
0.955 2 0.164 Glass fibers 

Wheat [77] 0.747 0.11875 7.8 × 10− 5 Glass fibers Out-of-plane 
0.769 0.103 1.44 × 10− 4 Glass fibers 

Labrecque [78] 0.725 0.07 0.0024 Nylon fibers Out-of-plane 
0.765 0.1025 0.0024 Nylon fibers 
0.8 0.1425 0.0024 Nylon fibers 
0.84 0.2375 0.0024 Nylon fibers 

Tahir and Vahedi Tafreshi [79] 0.945 1.344 0.01 N/A Out-of-plane 
0.927 0.903 0.01 N/A 
0.908 0.588 0.01 N/A 
0.890 0.445 0.01 N/A 
0.872 0.357 0.01 N/A 
0.835 0.213 0.01 N/A 
0.799 0.147 0.01 N/A 
0.762 0.103 0.01 N/A 

Carman [80] 0.681 0.035 0.328 Stainless steel wire crimps Out-of-plane 
0.688 0.03975 0.328 Stainless steel wire crimps 
0.722 0.0585 0.328 Stainless steel wire crimps 
0.731 0.06125 0.328 Stainless steel wire crimps 
0.757 0.0805 0.328 Stainless steel wire crimps 
0.765 0.09475 0.328 Stainless steel wire crimps 

(continued on next page) 
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1
RB

=
1

RB1
+

1
RB2

=
kskf λds

ksh + kf ds
+

[
kf
(
d2

s − b2
)
+ ksb2

]
ksds

kf
(
d2

s − b2
)
+ ks

(
hds + b2

) (60) 

Finally, the total out-of-plane thermal resistance of the RS shown in 
Fig. 4(a) is obtained as: 

1
RRS− out

=
1

RA
+

1
RB

=λ

{
kf

ζ+ γ
+

2kskf γ
ksζ+ kf γ

+
ksγ2
[
kf
(
1 − β2)+ ksβ2]

kf γ
(
1 − β2)+ ks

(
ζ+ γβ2)

}

=λϕout

(61)  

where 

ϕout =
kf

ζ + γ
+

2kskf γ
ksζ + kf γ

+
ksγ2
[
kf
(
1 − β2)+ ksβ2]

kf γ
(
1 − β2)+ ks

(
ζ + γβ2) (62)  

ds = γλ, b = βds, h = ζλ (63)  

2.3.2. The RS chain model 
With heat conduction paths described as multiple tortuous heat 

chains in parallel, previous research has established an analytical ther-
mal conductivity model for particulate porous media [29]. Each chain 
was consisted of particles in close contact, as shown in Fig. 5(a). Built 
upon this theoretical concept, for the present idealized topological 
structure of 2-D fibrous materials (Fig. 3 and 4), heat conduction along 
randomly-distributed RSs in close contact, as shown in Fig. 5(b), may be 
treated as heat flow along multiple RS chains in parallel. We first use the 
series model to derive the effective thermal conductivity of a single RS 
chain, and then use the parallel model to derive the effective conduc-
tivity of the 2-D fibrous material consisted of multiple RS chains having 
different pore sizes. 

Since fibrous materials are typically anisotropic, we mainly consider 
in-plane and out-of-plane effective thermal conductivities, assuming the 
curved RS chains obey the fractal distribution law in both directions.  

a) In-plane 

As a curved chain with the length of Lt(λ) = λ1− DT LDT
0 contains a number 

of Lt(λ) /(a+ds) RSs in the in-plane direction, applying the Fourier law of 
heat conduction dictates that the in-plane thermal resistance is given by: 

Rchain− in =
Lt(λ)
λ + ds

RRS− in =
λ− 1− DT LDT

0

1 + γ
ϕ− 1

in (64) 

Within the infinitesimal range from λ to λ + dλ for pore sizes, the 
number of curved chains is − dN. These chains are connected in parallel 
so that their total in-plane thermal resistance Rt− in is calculated as: 

1
Rt− in

=

∫ λmax

λmin

Df ,2λDf
maxλ− (Df ,2+1)dλ
Rchain− in

=
(1 + γ)Df ,2λ1+DT

max

LDT
0
(
1 + DT − Df ,2

)

(

1 − ε
1+DT − Df ,2

2− Df ,2

)

ϕin

(65)  

b) Out-of-plane 

Similarly, given that a curved chain with the length of Lt(λ) = λ1− DT LDT
0 

contains a number of Lt(λ) /(h+ds) RSs in the out-of-plane direction, its 
out-of-plane thermal resistance is: 

Table 2 
Relative deviations (RDs) between dimensionless permeability and experimental 
data for fibrous materials.  

Direction Model RD range Average 
RD 

In-plane Present study 3.78–233.93% 61.93% 
Gostick et al. [26] 12.51–53979.38% 7060.62% 
Drummond and Tahir [27] 1.04–91.64% 66.19% 
Happel [84] 0.27–92.46% 66.66% 
Gebart [85] 13.37–38050.63% 4981.19% 
Van der Westhuizen and Du 
Plessis [86] 

38.20–17703.60% 2329.82% 

Out-of- 
plane 

Present study 0.18–96.82% 25.00% 
Kuwabara [24] 7.95–86.68% 42.78% 
Davies [25] 1.49–163.04% 21.37% 
Gostick et al. [26] 92.70–2760.67% 373.98% 
Drummond and Tahir [27] 7.59–91.80% 42.03% 
Happel [84] 1.27–132.33% 25.87% 
Gebart [85] 4.17–198.43% 31.51% 
Van der Westhuizen and Du 
Plessis [86] 

0.44–252.17% 34.50% 

Tamayol and Bahrami [87] 2.16–300.37% 50.40%  

Table 1 (continued ) 

References Porosity, ε K/d2
s  ds (mm) Material Direction 

Brown [81] 0.738 0.0625 0.072 Glass wool Out-of-plane 
0.742 0.065 0.072 Glass wool 
0.779 0.1 0.072 Glass wool 
0.782 0.1025 0.072 Glass wool 
0.828 0.2 0.072 Glass wool 
0.828 0.1875 0.072 Glass wool 
0.869 0.3425 0.072 Glass wool 
0.871 0.4 0.072 Glass wool 
0.911 0.7 0.072 Glass wool 
0.912 0.85 0.072 Glass wool 

White [82] 0.755 0.05 7.0 × 10− 7 Acrylamide polymergel Out-of-plane 
0.79 0.1025 7.0 × 10− 7 Acrylamide polymergel 
0.825 0.0835 7.0 × 10− 7 Acrylamide polymergel 
0.86 0.2095 7.0 × 10− 7 Acrylamide polymergel 
0.895 0.3325 7.0 × 10− 7 Acrylamide polymergel 
0.93 0.435 7.0 × 10− 7 Acrylamide polymergel 
0.946 0.6425 7.0 × 10− 7 Acrylamide polymergel 
0.965 0.905 7.0 × 10− 7 Acrylamide polymergel 

Viswanadham et al. [83] 0.73 0.079 3.01 × 10− 6 Collagen Out-of-plane 
0.785 0.12375 2.90 × 10− 6 Collagen 
0.88 0.4275 2.30 × 10− 6 Collagen 
0.883 0.4 2.00 × 10− 6 Collagen 
0.899 0.45 2.00 × 10− 6 Collagen 
0.9125 0.52 2.00 × 10− 6 Collagen  
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Fig. 8. Comparisons between predictions ob-
tained with effective thermal conductivity 
models and open literature data for air- 
saturated metallic fibrous materials: (a) in- 
plane effective and (b) out-of-plane effective 
conductivity of air-saturated Al (aluminum) 
fibers; (c) in-plane and (d) out-of-plane 
effective conductivity of air-saturated Cu 
(copper) fibers; (e) in-plane and (f) out-of- 
plane effective conductivity of air-saturated 
Ni (nickel) fibers; (g) in-plane and (h) out- 
of-plane effective conductivity of air- 
saturated stainless steel fibers; (i) in-plane 
and (j) out-of-plane effective conductivity of 
air-saturated Zn (zinc) fibers.   
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Rchain− out =
Lt(λ)
h + ds

RRS− out =
λ− 1− DT LDT

0

ζ + γ
ϕ− 1

out (66) 

Within the infinitesimal range from λ to λ + dλ for pore sizes, the 
number of curved chains is − dN. These chains are also connected in 
parallel so that their total out-of-plane thermal resistance Rt− out 

becomes: 

1
Rt− out

=

∫ λmax

λmin

Df ,2λDf
maxλ− (Df ,2+1)dλ
Rchain− out

=
(ζ + γ)Df ,2λ1+DT

max

LDT
0
(
1 + DT − Df ,2

)

(

1 − ε
1+DT − Df ,2

2− Df ,2

)

ϕout

(67)  

2.3.3. The effective thermal conductivity  

a) In-plane 

The in-plane effective thermal conductivity can be calculated as ke− in =
L0

AinRt− in
. According to Eqs. (12), (13) and (65), the in-plane effective 

thermal conductivity is then given by: 

ke− in=
4(1+ γ)

(
2 − Df ,2

)
ε

ζπ
(
1+DT − Df ,2

)
(1 − ε)

[
πDf ,3

6
(
3 − Df ,3

)
(1 − ε)

ε

]1− DT
3
(

1 − ε
1+DT − Df ,2

2− Df ,2

)

ϕin

(68)  

or, expressed in dimensionless form: 

ke− in

ks
=

4(1+ γ)
(
2 − Df ,2

)
ε

ζπ
(
1+DT − Df ,2

)
(1 − ε)

[
πDf ,3

6
(
3 − Df ,3

)
(1 − ε)

ε

]1− DT
3
(

1 − ε
1+DT − Df ,2

2− Df ,2

)

ϕ+
in

(69)  

where 

ϕ+
in =

k+ζ + γ2

1 + γ
+

k+γ
1 + k+γ

+
k+ζγ

[
(1 − β)2

+ β + k+β(1 − β)
]

(1 − β)(γ + 1) + β2 + k+β(γ + 1 − αβ)
(70)  

k+ = kf
/

ks (71)  

(a) Out-of-plane 

With the out-of-plane effective thermal conductivity given by ke− out =
L0

AoutRt− out
, from Eqs. (12), (15) and (67) we arrive at: 

ke− out =
(ζ+ γ)

(
2 − Df ,2

)
ε

(
1+DT − Df ,2

)
(1 − ε)

[
πDf ,3

6
(
3 − Df ,3

)
(1 − ε)

ε

]1− DT
3
(

1 − ε
1+DT − Df ,2

2− Df ,2

)

ϕout

(72) 

Table 3 
Thermal conductivities of materials makes used for analytical model predictions.  

Material k (W/(m-K)) Material k (W/(m-K)) 

Aluminum 203 Stainless steel 14.8 
Copper 398 Zinc 121 
Nickle 91.4 Air 0.026  

Table 4 
Experimental and simulation data of effective thermal conductivity for air- 
saturated metallic fibrous materials (Al, Cu, Ni, Steel, Zn).  

References Porosity, ε ke/ks Remark 

Harukai et al. [89] 0.829 0.0760 Al-air (In-plane) 
0.863 0.0523 
0.909 0.0345 
0.932 0.0213 

Harukai et al. [89] 0.772 0.0031 Al-air (Out-of-plane) 
0.863 0.0021 
0.915 0.0010 

Harukai et al. [89] 0.984 0.0105 Cu-air (In-plane) 
0.988 0.0075 

Harukai et al. [89] 0.921 0.0574 Ni-air (In-plane) 
0.950 0.0417 
0.960 0.0273 
0.973 0.0102 
0.980 0.0081 

Harukai et al. [89] 0.934 0.0019 Ni-air (Out-of-plane) 
0.960 0.0013 
0.976 0.0010 
0.981 0.0008 

Harukai et al. [89] 0.923 0.0595 Zn-air (In-plane) 
0.949 0.0348 
0.962 0.0288 
0.974 0.0243 
0.981 0.0099 

Harukai et al. [89] 0.936 0.0021 Zn-air (Out-of-plane) 
0.961 0.0015 
0.976 0.0010 
0.981 0.0009 

Huang et al. [90] 0.908 0.0360 Cu-air (In-plane) 
0.861 0.0546 
0.831 0.0750 
0.778 0.1004 
0.739 0.1211 
0.705 0.1406 
0.900 0.0343 
0.800 0.0889 
0.700 0.1135 

Huang et al. [90] 0.908 0.0008 Cu-air (Out-of-plane) 
0.861 0.0017 
0.831 0.0038 
0.778 0.0085 
0.739 0.0140 
0.705 0.0229 

Tadrist et al. [91] 0.470 0.340 Cu-air (In-plane) 

Semena and Zaripov [92] 0.198 0.4395 Cu-air (Out-of-plane) 
0.359 0.1835 
0.495 0.0836 
0.649 0.0245 
0.781 0.0121 

Koh et al. [93] 0.440 0.1709 Ni-air (Out-of-plane) 
0.579 0.0889 
0.769 0.0328 

Veyhl et al. [94] 0.804 0.0841 Steel-air (In-plane) 
0.725 0.107 
0.554 0.167 

Veyhl et al. [94] 0.804 0.0332 Steel-air (Out-of-plane) 
0.725 0.0580 
0.554 0.1080  

Table 5 
The Mean Squared Error results between effective conductivity models and 
experimental data.  

Models Al-air Cu-air Ni-air Steel- 
air 

Zn- 
air 

Direction 

Shen et al. 
[95] 

91.212 109.057 9.197 0.631 1.467 In-plane 

Halpin [96] 11.763 113.547 0.949 1.344 1.890 
Present study 0.176 25.651 0.549 0.131 0.197 

Mantle and 
Chang [88] 

0.808 3.397 8.015 0.407 0.003 Out-of- 
plane 

Semena and 
Zaripov [92] 

1.039 1398.859 15.657 0.465 0.016 

Koh et al. [93] 11.165 184.987 0.326 0.026 0.005 
Shen et al. 

[95] 
0.187 2989.596 36.956 0.904 0.002 

Acton [97] 37.449 2091.687 34.348 0.667 0.018 
Alexander 

[98] 
10.961 204.085 6.131 1.130 0.078 

Berenson et al. 
[99] 

17.565 1469.456 4.828 0.292 0.286 

Present study 0.006 91.606 1.402 0.011 0.001  
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Rearranging, we have: 

ke− out

ks
=

(ζ+ γ)
(
2 − Df ,2

)
ε

(
1+DT − Df ,2

)
(1 − ε)

[
πDf ,3

6
(
3 − Df ,3

)
(1 − ε)

ε

]1− DT
3
(

1 − ε
1+DT − Df ,2

2− Df ,2

)

ϕ+
out

(73)  

where 

ϕ+
out =

k+

ζ + γ
+

2k+γ
ζ + k+γ

+
γ2
[
k+
(
1 − β2)+ β2]

k+γ
(
1 − β2)+

(
ζ + γβ2) (74)  

3. Results and discussion 

3.1. Permeability as a function of porosity 

For validation, predictions of the present analytical fractal model are 
compared with not only existing experimental data [25,72–83], but also 
predictions obtained using alternative analytical models proposed by 
others [24–27,84–87]. Comparison of the present model predictions and 
experimental data is presented in Fig. 6, where it is seen that the 
dimensionless permeability always increases with increasing porosity. 
When the porosity increases, the percentage of fibers (solid ligaments) 
decreases if the volume of fibrous material remains fixed. Thus, the 
obstruction effect of the solid on fluid flow is reduced. Fig. 6(a) and (b) 
display separately the in-plane and out-of-plane dimensionless perme-
ability. By comparing with alternative permeability models, we note 
that predictions of the present fractal model are in good agreement with 
experimental data over the whole range of porosity considered. For 
example, in the high porosity range of 0.95 < ε < 1.00, the Happel 
model, the Drummond-Tahir model and the present model are in good 
agreement with experimental data for in-plane dimensionless perme-
ability (Fig. 6(a)), while other models always overestimate. At smaller 

Table 6 
Relative deviations (RDs) between effective conductivity models and experi-
mental data for air-saturated metallic fibrous materials.  

Sample Model RD range Average 
RD 

Direction 

Al-air Present study 1.25–8.28% 5.02% In-plane 
Shen et al. [95] 91.33–93.90% 92.74% 
Halpin [96] 23.22–65.68% 42.07% 

Cu-air Present study 0.96–65.92% 20.14% In-plane 
Shen et al. [95] 11.85–59.79% 27.31% 
Halpin [96] 6.06–55.56% 28.95% 

Ni-air Present study 15.90–33.64% 25.08% In-plane 
Shen et al. [95] 92.21–96.66% 94.65% 
Halpin [96] 24.28–37.89% 30.98% 

Steel- 
air 

Present study 15.35–33.36% 21.68% In-plane 
Shen et al. [95] 28.83–46.68% 39.03% 
Halpin [96] 31.25–72.82% 51.55% 

Zn-air Present study 2.70–28.85% 14.00% In-plane 
Shen et al. [95] 6.51–40.85% 24.58% 
Halpin [96] 1.05–44.97% 26.93% 

Al-air Present study 5.61–17.85% 13.02% Out-of- 
plane Mantle and Chang 

[88] 
156.64–268.61% 209.96% 

Semena and 
Zaripov [92] 

66.34–267.53% 144.83% 

Koh et al. [93] 363.70–850.87% 551.81% 
Shen et al. [95] 78.43–138.87% 104.51% 
Acton [97] 663.20–1557.93% 1010.26% 
Alexander [98] 488.22–821.40% 616.51% 
Berenson et al. [99] 823.32–1123.28% 961.00% 

Cu-air Present study 1.65–281.84% 74.82% Out-of- 
plane Mantle and Chang 

[88] 
1.48–340.58% 66.02% 

Semena and 
Zaripov [92] 

8.41–153.67% 51.90% 

Koh et al. [93] 363.70–850.87% 217.99% 
Shen et al. [95] 20.00–194.17% 78.30% 
Acton [97] 46.36–1045.35% 493.95% 
Alexander [98] 13.39–458.02% 160.24% 
Berenson et al. [99] 13.10–1363.01% 340.33% 

Ni-air Present study 15.05–90.06% 38.80% Out-of- 
plane Mantle and Chang 

[88] 
36.34–69.59% 53.36% 

Semena and 
Zaripov [92] 

48.54–89.71% 68.07% 

Koh et al. [93] 6.53–69.71% 31.99% 
Shen et al. [95] 4.98–91.14% 49.71% 
Acton [97] 12.91–148.32% 67.49% 
Alexander [98] 23.76–286.02% 144.60% 
Berenson et al. [99] 11.64–423.51% 199.54% 

Steel- 
air 

Present study 4.38–17.69% 12.23% Out-of- 
plane Mantle and Chang 

[88] 
52.53–73.30% 65.47% 

Semena and 
Zaripov [92] 

59.04–74.27% 68.10% 

Koh et al. [93] 3.99–32.62% 20.86% 
Shen et al. [95] 82.59–88.42% 85.82% 
Mantle and Chang 
[88] 

52.53–73.30% 65.47% 

Acton [97] 22.46–86.29% 47.71% 
Alexander [98] 81.00–102.66% 95.18% 
Berenson et al. [99] 41.03–60.43% 50.81% 

Zn-air Present study 2.53–23.47% 11.81% Out-of- 
plane Mantle and Chang 

[88] 
25.84–35.91% 33.27% 

Semena and 
Zaripov [92] 

57.48–90.87% 74.06% 

Koh et al. [93] 20.41–73.13% 39.28% 
Shen et al. [95] 18.17–35.70% 25.38% 
Acton [97] 15.00–102.38% 45.17% 
Alexander [98] 119.42–176.55% 148.53% 
Berenson et al. [99] 222.33–331.99% 288.25%  
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Fig. 9. Comparison of RDs for metallic fibrous materials and different models: 
(a) in-plane; (b) out-of-plane. 
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porosity levels (0.50 < ε < 0.80), the present model can also accurately 
predict the experimentally measured variation trend of in-plane 
dimensionless permeability with porosity, while other models always 
underestimate as shown in Fig. 6(a). As for the out-of-plane dimen-
sionless permeability, while the model of Gostick et al. consistently 
overestimates, predictions obtained using the remaining models agree 
quite well with experimental data (in Fig. 6(b)). 

For quantitative comparison, relative deviation (RD) is applied to 
evaluate different permeability models, defined by: 

RD=

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(

K
d2

s

)

pre

−

(

K
d2

s

)

exp
(

K
d2

s

)

exp

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(75)  

where the subscripts “exp” and “pre” denote separately experimental 
measurements and analytical model predictions (see Table 1). 

Upon averaging all the RD values for each analytical model, Fig. 7 
compares the average RDs calculated with different models. Apparently, 
with an average deviation of 61.93%, our model of in-plane perme-
ability presents the smallest RD among all the models considered, fol-
lowed by the model of the Drummond-Tahir model (66.19%), the 
Happel model (66.66%), the Van der Westhuizen-Du Plessis model 
(2329.19%), the Gebart model (4918.19%), and the Gostick et al. 
(7060.62%). As for the out-of-plane permeability, the average deviation 
of our model is 25.00%, followed by the Davies model (21.37%), the 
Happel model (25.87%), the Gebart model (31.51%), the Van der 
Westhuizen-Du Plessis model (34.50%), the Drummond-Tahir model 
(42.03%), the Kuwarbara model (42.78%), the Tamayol and Bahrami 
model (50.40%), and the Gostick et al. model (374.00%). Note that, 
while the average deviation of the Davies model is the smallest among 
these models for out-of-plane dimensionless permeability, the model did 
not consider in-plane permeability model for fibrous materials. The re-
sults show that the present fractal model can give better predictions of 
dimensionless permeability compared to other models. More detailed 
relative deviation results on dimensionless permeability are listed in 
Table 2 to further compare the present model with alternative analytical 
models. It should be noted here that the experimental data for fibrous 
porous media permeability have strong diversity and divergence, since 
they are measured based on different kinds of fibrous porous media with 
various pore shapes and diameter distributions. Therefore, the perme-
ability predicted by the models will bring huge deviation due to indi-
vidual data points. It is inadequate to judge a model only according to 
RD and average RD (see Table 2). One should select a proper model 
according to the specific porosity range when predicting permeability. 

The permeability model developed in this study on the basis of 
fractal theory applies to fibers with random in-plane fiber orientation, 
because random size and distribution of the pores is the starting point of 
the fractal theory. Specifically, the analytical permeability model of 
Eqs. (37) and (38) is mainly related to the fractal dimension of pore 
distribution Df , the fractal dimension of average tortuosity DT, the 
porosity ε, the pore size ratio λmin/λmax, and the geometric parameters γ, 
β and ζ. 

3.2. Effective thermal conductivity 

For air-saturated metallic fibrous materials, Fig. 8 compares the 

Fig. 10. Comparison of average RDs calculated with different effective con-
ductivity models for air-saturated metallic fibrous materials: (a) in-plane; (b) 
out-of-plane. 

Fig. 11. Dimensionless effective thermal conductivity plotted as a function of ζ and β for selected values of γ: (a) in-plane; (b) out-of-plane.  
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predictions of effective thermal conductivity obtained from both the 
current model and existing models, as well as the available experimental 
and simulated data (also listed in Table 4). The analytical model pre-
dictions are developed using material properties of Table 3. As seen, 
while the effective thermal conductivity decreases with increasing 
porosity, at high porosities (ε > 0.75), it decreases almost linearly with 
porosity. For fibrous materials made of different parent materials 
(aluminum, copper, or nickel), predictions of the present fractal model 
are in fairly good agreement with experimental and simulated data as 
manifested in Fig. 8. For the in-plane effective conductivity of air- 
saturated Al and Stainless steel fibrous materials, the Haplain model 
and the Shen et al. model both overestimate, as shown in Fig. 8(a) and 
(g). In contrast, for the in-plane effective conductivity of Ni and Zn 
fibrous materials saturated with air, the Haplain model and the Shen 
et al. model both significantly underpredict, as shown in Fig. 8(e) and 
(i)). For Cu fibers saturated with air, the two models predicted relatively 
better; Fig. 8(c). Regardless of material make (Al, Ni, Cu, stainless steel, 
or Zn), predictions of the Acton model and the Alexander model always 
overestimate the effective out-of-plane conductivity, while the model of 
Shen et al. always underestimates when the porosity is less than 0.9, as 
shown in Fig. 8(b), (d), (f), (h) and (j)). According to Fig. 8(b), the 
present model predictions are in good agreement with experimental 
data, while the alternative models tend to overpredict. The model pro-
posed by Mantle and Chang [88] can correctly predict the trend of 
out-of-plane effective conductivity with porosity for Cu fibers, as shown 
in Fig. 8(d). Moreover, as per Fig. 8(f) and (h), the Koh et al. model can 
accurately predict the trend of out-of-plane effective conductivity. 

In Fig. 8, at fixed porosity, the in-plane effective conductivity of a 
given fibrous material is generally larger than the out-of-plane effective 
conductivity. The main reason is that the former is mainly along the 
direction of in-plane fibers, while the latter is mainly influenced by the 
contact thermal resistance of fiber layers and the air layer between fiber 
gaps. 

To assess the precision of different effective conductivity models, two 
systems are applied, namely, the Mean Square Error (MSE) system and 
the relative deviations (RDs) system. The MSE results are summarized in 
Table 5. The overall MSE values of our fractal model are relatively low. 
For in-plane effective conductivity, our model achieves the lowest MES. 
For the out-of-plane effective conductivity excluding Cu-air, our model 
also has low MES values (see Table 6). 

Fig. 9 (a) and (b) present separately the RD values of in-plane and 
out-of-plane effective conductivity for different models. Upon averaging 
all the RD values for each model, Fig. 10 compares the average RDs 
calculated with different models. For in-plane effective conductivity, 
with an average deviation of 18.01%, our model presents the lowest RD 
value, followed by the Haplin model (33.10%) and the Shen et al. model 
(48.69%). For out-of-plane effective conductivity, with an average de-
viation of 43.49%, our model also presents the lowest RD value, 

followed by the Shen et al. model (67.21%), the Semena-Zaripov model 
(70.80%), the Mantle-Chang model (73.54%), the Koh et al. model 
(160.61%), the Alexander model (196.57%), the Acton model 
(309.52%), and the Berenson et al. model (333.17%). The results clearly 
show that, compared to existing models, our model can provide better 
predictions of effective thermal conductivity for metallic fibrous 
materials. 

Fig. 11 demonstrates how the dimensionless effective thermal con-
ductivity varies with dimensionless parameters γ, β and ζ. In Fig. 11(a), 
the in-plane effective conductivity is seen to increase with increasing ζ 
when γ = 0.2 and β = 0.5, but the in-plane conductivity slightly de-
creases with increasing β when γ = 0.2 and ζ = 0.5. When 0 < ζ < 0.2, 
the in-plane conductivity sharply increases with ζ. Further, when 
0.2 < ζ < 1.0, the dimensionless in-plane conductivity steadily in-
creases with ζ. The main factor affecting the in-plane conductivity is the 
thermal conductivity along fibers. In Fig. 11(b), the out-of-plane con-
ductivity decreases with ζ when γ = 0.2 and β = 0.5, but increases with 
β when γ = 0.2 and ζ = 0.5. The out-of-plane conductivity sharply de-
creases with ζ when 0 < ζ < 0.2, and slightly decreases with ζ when 
0.2 < ζ < 1.0. The out-of-plane conductivity is mainly affected by the 
contact thermal resistance caused by different fiber layers. With γ and β 
both fixed, the value of ζ indicates the spacing between fiber layers. 
Thus, the out-of-plane effective thermal conductivity is reduced as ζ is 
increased. 

Fig. 12 shows the variation of dimensionless effective thermal con-
ductivity with porosity for different dimensionless parameters. In Fig. 12 
(a), when β = 0.5, the in-plane conductivity increases with ζ at the same 
porosity; when ζ = 0.5, the in-plane conductivity decreases with β at the 
same porosity. In Fig. 12(b), the out-of-plane conductivity increases 
with ζ for the same porosity when β = 0.5, and the situation is similar 
when ζ = 0.5. When β is increased, the original porosity is reduced. 
Thus, to maintain a constant porosity, γ needs to be reduced accordingly. 
As the main influencing factor for in-plane conductivity is γ, it decreases 
when γ is decreased as shown in Fig. 12(a). Further, as shown in Fig. 12 
(b), as the out-of-plane conductivity is mainly affected by β, it increases 
with increasing β. 

For a 2-D fibrous material, different values of γ, β, and ζ correspond 
to different morphological structures. Here, ζ indicates the spacing be-
tween fiber layers while γ denotes the fiber percentage in the pore. That 
is, when γ is increased, the fiber diameter is larger at the same pore size 
and heat conduction along the fiber is stronger. Fiber contact area (when 
different fiber layers overlap) is represented by β. A higher β means that 
the fibers of different fiber layers have a larger contact area with each 
other, and hence the thermal contact resistance between fibers is 
reduced. The out-of-plane effective conductivity is mainly influenced by 
thermal contact resistance between fibers, thus β is the dominant 
influencing factor. 

Fig. 12. Dimensionless effective thermal conductivity plotted as a function of porosity for selected values of dimensionless parameters β and ζ: (a) in-plane; (b) out- 
of-plane. 
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4. Conclusions 

The fractal theory has been used to first characterize randomly- 
distributed pores in a 2-D fibrous material and then develop analytical 
models for predicting its permeability and effective thermal conductiv-
ity, for both in-plane and out-of-plane directions. The permeability is 
analytically expressed as a function of porosity, average tortuosity, pore 
size distribution, and fractal dimension. The effective thermal conduc-
tivity is analytically expressed as a function of porosity, thermal con-
ductivity of the solid and filling medium, average tortuosity, pore size 
distribution, and fractal dimension. In contrast to previous permeability 
models and effective conductivity models, the present models contain 
two hypothetical parameters (β and ζ) with physical meaning to 
consider the contact thermal resistance. The model predictions of 
permeability compare well with existing experimental data for fibrous 
metallic materials over a wide range of porosity (from 0.50 to 0.99). 
Relative to existing analytical models, the present fractal model exhibits 
the smallest relative deviations from experimental data, 61.93% and 
25.00% for in-plane and out-of-plane directions, respectively. Similarly, 
compared with existing effective conductivity models, the present model 
exhibits good accuracy (relative deviation 18.01% and 43.49% from 
experimental data for in-plane and out-of-plane directions, respectively) 
for aluminum, copper, nickel, stainless steel and zinc fibrous materials 
saturated with air. 
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