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Abstract
Capillaries in human brain and plants are often neither straight nor smooth, but exhibit conical tubes with numerous wall 
undulations. Under hypergravity, the dynamics of blood/water flow in such roughened conical capillaries remains elusive, 
which may affect the performance and health of pilots/astronauts and the growth of plants. This study aims to establish a 
theoretical model to characterize dynamic capillary rise in inclined conical tubes having idealized cosine-type undulated 
inner walls, with hypergravity effect duly accounted for. For validation, full numerical simulations are performed, and good 
agreement is achieved between theoretical and numerical results. Dynamic capillary rise in undulated conical tubes is shown 
to be strongly dependent upon three key morphology parameters: undulation amplitude and axial wave number of cosine-
type wall, and opening angle (either positive or negative) of conical tube. The steady height of capillary rise decreases with 
increasing opening angle (positive) and/or increasing undulation amplitude for moderate wave numbers, but increases when 
the opening angle is negative or the wave number is small. When the wave number becomes sufficiently large, the steady 
height increases with increasing amplitude and decreases with increasing wave number. In the presence of hypergravity 
effect, the dynamics of capillary rise in undulated conical tubes for several commonly used liquid types is explored to pro-
vide theoretical guidance for practical applications in the fields of aeronautical engineering, space exploitation, and the like.
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Introduction

Hypergravity is often encountered in aerospace engineering, 
e.g., during aerobatic maneuvers of aircrafts, launching of 
space vehicles, and re-orbiting maneuvers of spacecrafts. 

Correspondingly, the influence of hydrostatic forces on fluid 
flow in narrow channels becomes important, e.g., driving 
force of liquid flow in microfluidic devices (Culbertson et al. 
2005; Kundan et al. 2015), cooling capacity of electronic 
devices (Iceri et al. 2020), delivery of lubricating oil in aero-
crafts (Oikonomidou et al. 2019), and the like. Also, under 
such conditions, hypergravity can affect blood transport 
and cause severe health problems for pilots and astronauts 
(Bureau et al. 2017), such as headache, loss of vision, loss 
of consciousness, and even death (van Geel et al. 2010). 
Further, while numerous studies have shown that hyper-
gravity significantly affects the growth of plants (Downey 
et al. 2013; Vidyasagar et al. 2014), the dynamics of nutrient 
uptake by plants in hypergravity environment remains poorly 
understood. It is therefore of necessity and practical signifi-
cance to explore systematically the dynamics of capillary 
flow under hypergravity.

Assuming that a porous medium could be simplified as 
“a bundle of capillary tubes”, Lucas (1918) developed the 
model of capillary imbibition to reveal the dynamics underly-
ing capillary flow in porous media. Subsequently, Washburn 
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(1921) improved the model and presented an equation to 
quantify capillary height in a circular smooth tube. At pre-
sent, the Lucas-Washburn (LW) equation is one of the most 
commonly adopted models to study capillary rise in smooth 
tubes/channels. However, while inertia was neglected by the 
LW equation, it has now been well established that inertia has 
important influence on capillary height and velocity during 
the initial stage of capillary rise. For instance, Bosanquet 
(1923) and Quéré (1997) addressed this issue in detail and 
presented relevant analytical solutions. More recently, to 
further improve the understanding of spontaneous capillary 
phenomenon, dimensionless analysis of dynamic capillary 
rise in a circular tube and a rectangular channel, both hav-
ing smooth walls, were separately carried out by applying 
the Buckingham π theorem (Fries and Dreyer 2009; Ouali 
et al. 2013). Nonetheless, it must be pointed out that, while 
existing studies largely assumed that the flow channels have 
smooth walls, in realistic applications, they often exhibit 
undulated (roughened) inner walls, or have capillary ratchets. 
Non-smooth surface structures significantly affect the con-
tact angle, thus altering the capillary force and the dynamics 
of capillary flow (Heshmati and Piri 2014). For example, 
recently, it was found that the capillary ratchets of Araucaria 
leaf have the ability to control the spreading direction and 
capillary height for different fluids (Feng et al. 2021). Con-
sequently, in addition to hypergravity, it is also of importance 
to quantify the effect of wall morphology (surface roughness) 
on dynamic capillary flow.

With Wenzel’s law (Wenzel 1936) and the slope of wall 
profile (Shuttleworth and Bailey 1948) commonly employed 
to describe the relationship between static contact angle and 
surface roughness/undulation (Bico et al. 2002; Hay et al. 
2008; Malijevský 2014; Patel et al. 2019; Sudeepthi et al. 
2020), capillary flow in an undulated (roughened) channel/
tube has been investigated theoretically, numerically and 
experimentally: for instance, vertical capillary flow in tubes 
with nonuniform cross sections (Liou et al. 2009), horizontal 
capillary flow in conical tubes with smooth walls (Reyssat 
et al. 2008), capillary flow in vertical parabolic channels 
(Figliuzzi and Buie 2013), horizontal capillary flow in tubes 
with sinusoidal walls (Wang et al. 2013), vertical capillary 
rise in nano-channels having inherent surface roughness 
(Shen et al. 2017), and vertical capillary flow in a chan-
nel between two plates covered with cylindrical micropillar 
arrays (Kim et al. 2020). Recently, the present authors (Lei 
et al. 2021) presented a dimensionless analysis of dynamic 
capillary flow in circular tubes with cosinoidal wall undula-
tions; it was found that, relative to smooth tubes, properly 
designed undulations serve to increase the capillary rising 
height. However, when the amplitude of undulation (rough-
ness) becomes large, the Hagen-Poiseuille assumption 
adopted by previous theoretical model places a limitation 
on its applicability.

As aforementioned, during aerobatic maneuvers of air-
crafts and launching of space vehicles, the pilots and astro-
nauts often encounter hypergravity (van Geel et al. 2010). 
Further, as the vasculature of human brain is mainly com-
posed of intricate capillary networks lined by capillary peri-
cytes (Figs. 1a-d) (Hartmann et al. 2021; Cassot et al. 2006), 
capillary force is one of the important driving forces to pro-
mote blood flow and then task with delivery of oxygen and 
nutrients to billions of brain cells (Hartmann et al. 2021). 
Moreover, blood capillaries are neither straight nor smooth, 
but often exhibit conical tubes with numerous undulations on 
their inner walls (Figs. 1e and f) (Ando et al. 2018; Cassot 
et al. 2006). Up to now, the dynamics of blood flow in capil-
laries under hypergravity remains elusive, which may affect 
the performance and health of pilots and astronauts. In addi-
tion, the xylem network of plants often exhibits conical tubes 
with non-smooth walls, such as leaf veins (Fig. 2). Therefore, 
when studying the effect of hypergravity on growth of plants, 
the dynamics of capillary flow in undulated conical tubes 
must be accounted for (Kim et al. 2014; Guo et al. 2019). For 
both human being and plants, it is thus necessary to explore 
how hypergravity affects capillary flow in conical tubes with 
roughened inner walls.

The first goal of this study is to establish a theoretical 
model to quantify the effect of hypergravity upon capillary 
flow in conical tubes with idealized cosinoidal wall undula-
tions; to expand the values of key morphological parameters 
(i.e., undulation amplitude and axial wave number of cosine-
type wall, and opening angle of conical tube) beyond the 
range predicted by the model, numerical simulations are also 
performed. The second objective is to analyze capillary limi-
tations of different liquid types and the corresponding time, 
so as to provide theoretical guidance for practical applica-
tions in, say, aeronautical engineering and space exploita-
tion. For simplicity, the undulated wall of the conical tube 
is treated as rigid.

Model of Capillary Rise

According to the theorem of momentum, the dynamics of 
capillary flow in a smooth tube/channel can be described by 
(Bosanquet 1923; Shen et al. 2017):

where m is the mass in a control volume of concern, and 
Fcap, Fvis, and Fg are the capillary, viscous, and gravitational 
forces, respectively. The viscous force and gravity counter 
the rise of fluid and do negative work, thus having the “ − ” 
signs in the front.

(1)F =
d
(

mḣ
)

dt
= Fcap − Fvis − Fg,
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Figure 3 illustrates schematically the phenomenon of 
dynamic capillary rise in a conical tube with idealized cosi-
noidal undulations (roughness) on its inner wall, inserted 
into a bulk incompressible viscous Newtonian fluid. The 
tube is oriented at an arbitrary angle ϕ relative to the hori-
zontal surface of the fluid. Note that, the effect of hypergrav-
ity (large acceleration) directions on blood flow of pilots/
astronauts, water transport in plants, and liquids transport in 
aerospace engineering is typically anisotropic (Vidyasagar 

et al. 2014; Akparibo et al. 2021). For example, for pilots 
and astronauts in service, the acceleration acting along 
cephalad-to-foot direction + GZ (G: value of hypergravity/
acceleration, “ + ”: positive Z-direction) has more serious 
impact on blood flow than other directions, i.e., thoracic-to-
dorsal direction + GX and lateral direction + GY (Akparibo 
et al. 2021). Therefore, in the present study, particular focus 
is placed upon hypergravity in the + GZ direction, and its 
influence on dynamic capillary rise in an inclined conical 

(a)

(b)

(c)

(d) (f)
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1 μm
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0
0
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Fig. 1   Length scales for microvascular networks in human brain: 
a  Brain scale (~ 63 cm2 × 300  μm): 300  μm-thick cortical section, 
where blood vessels have been injected with India ink for contrast 
enhancement (Cassot et al. 2006; Peyrounette et al. 2018), b collateral 
sulcus in the temporal lobe (Cassot et al. 2006), c depth coded projec-
tion of the zone reconstructed by confocal microscopy with the out-

lines (Cassot et al. 2006), d  large vein extracted from network (left: 
side view, right: top view) (Cassot et  al. 2006), e  outlines of local 
blood vessel (red curves) (Cassot et al. 2006), and f cross section of 
blood capillary (upper: low magnification, lower: high magnification) 
(Ando et al. 2018)
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tube with roughened inner walls is quantified by varying the 
azimuthal angle ϕ (Fig. 3).

The mathematical model characterizing the idealized 
conical tube of Fig. 3 is given by:

where R0 is the mean radius of conical tube, e and b are the 
amplitude and wavelength of cosinoidal undulation, ε is the 
ratio of e to R0, � = 2�R0∕b is the dimensionless wave num-
ber of undulation, and � = ±d∕L is the cone opening angle. A  
positive β corresponds to the case of gradually expanding tube 
diameter (Fig. 3a), while a negative β implies the opposite 
(Fig. 3b). A small α indicates that the inner wall is slightly 
undulated and hence may be taken approximately as smooth.

Upon inserting the roughened conical tube into a fluid, 
the capillary force brings up the fluid instantaneously, the 
latter reaching a steady height over a relatively long period, 
as shown in Fig. 3. To study how key morphological param-
eters of the tube, such as opening angle and amplitude/wave 

(2)
R(z) = R0 + �z − e cos

(

2�

b
z
)

= R0

[

1 + �
z

R0

− � cos

(

�
z

R0

)] ,

number of undulations, may affect the dynamic capillary 
rise, the relationship between these parameters and instan-
taneous capillary height h(t) needs to be determined from 
Eq. (1).

With reference to Fig. 3, within the control volume enclosed 
by the undulated wall, z = 0 and z = h, the rate of change in 
momentum is given by:

where ρ is the density of fluid.
Due to the presence of wall undulations (Fig. 3), the 

apparent contact angle φ is different from the static contact 
angle θ, thus altering the capillary force relative to the case 
of a smooth conical tube. In the present study, the slope of 
wall profile is used to connect the two contact angles, as 
(Figliuzzi and Buie 2013; Shuttleworth and Bailey 1948):

(3)F =
d
(

mḣ
)

dt
=

d
(

𝜋𝜌∫ h

0
R2(z)dzḣ

)

dt
,

(4)� = � + arctan

(

dR

dz
(h)

)

.

Fig. 2   Leaf vein structure 
of Zelkova: a image of leaf, 
b secondary vein, c transverse 
microstructures of second-
ary vein: 1-parenchyma cell; 
2-vessel (~ 37 μm); 3-sieve tube 
(~ 55 μm); 4-collenchymatous 
cell, and d outlines of local 
veins (red curve: second-
ary vein; blue curve: tertiary 
vein (vessel: ~ 11 μm, sieve 
tube: ~ 18 μm)) (Guo et al. 
2019)

Fig. 3   Dynamic capillary rise in 
a conical tube with cosinoidally 
undulated inner wall: a positive 
opening angle and b negative 
opening angle. R0 is mean 
radius of tube, e is undula-
tion amplitude, b is undulation 
wavelength, � = ±d∕L is cone 
opening angle, ϕ (0 ≤ ϕ ≤ π/2) 
is inclination angle of tube, 
and + GZ is Z-direction acceler-
ation (G: value of hypergravity/
acceleration), and h(t) is height 
of meniscus at time t 
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It follows that the capillary force altered by wall undulations 
can be obtained by using the Young–Laplace equation, as:

where γ is the surface tension of fluid.
The Hagen-Poiseuille equation has been commonly 

employed to characterize capillary flow in smooth tubes. 
For non-smooth tubes, as the equation remains valid when 
|dR∕dz| << 1 (Figliuzzi and Buie 2013), the fully-developed 
fluid velocity along a conical tube with small undulations 
may be obtained as:

where η is the dynamic viscosity of fluid, and r is the radial 
position in cylindrical coordinates (Fig. 3).

The stress tension exerted on the undulated wall is given 
by � = � dw∕dr|r=R(z) , which includes an unknown factor 
dp∕dz (cf. Equation (6)). To express dp∕dz as a function of 
capillary height h, the concept that the volumetric flow rate 
is equal at every cross-section of the undulated conical tube 
is applied, yielding:

Thus, the viscous force exerted on the fluid can be obtained, 
as:

The gravity of the fluid in the control volume is:

Substituting Eqs. (3), (5), (8), and (9) into Eq. (1), and tak-
ing the capillary force as a scaler, leads to:

where

and

(5)Fcap = 2�
cos(�)

R(h)
�R2(h),

(6)w(r) =
1

4�

(

r2 − R2
)dp

dz
,

(7)Q = 𝜋R2(h)ḣ = −
𝜋R4(z)

8𝜂

dp

dz
.

(8)Fvis = 8𝜋𝜂R2(h)ḣ∫
h

0

1

R2(z)
dz.

(9)Fg = ��G sin(�)∫
h

0

R2(z)dz.

(10)
a

f0

d

(

∫ h

0

[

1+𝛽
z

R0
−𝜀cos

(

𝛼
z

R0

)]2

dzḣ

)

dt
,

+ b
f1

f0
hḣ + c

f2

f0
hsin(𝜙) = 1

a =
�R0

2�cos(�)
, b =

4�

R0�cos(�)
, c =

�GR0

2�cos(�)
,

f0(h) =
cos(�)

cos(�)

[

1 + �
h

R0

− �cos

(

�
h

R0

)]

,

In the limit when ε and β are both equal to 0, the problem 
becomes capillary flow in a smooth tube, with f1, f2, and f3 
all equaling to unity. Equation (10) then simplifies to:

which is consistent with existing results (e.g., Fries and 
Dreyer 2009). When t → ∞ , the rising fluid reaches a steady 
height, whereby both the inertial and viscous forces vanish. 
For a vertical conical tube, the steady height is obtained by 
solving heq = 2�cos(�)∕

(

�GR0

)

.
Dimensionless models of capillary rise in both smooth 

and roughened tubes can be developed by introducing a 
dimensionless number to quantify the influence of inertial 
force, defined as (Fries and Dreyer 2009):

Built upon this nondimensionalization approach, the 
effects of opening angle, amplitude and wave number of 
undulations on capillary flow are quantified using the theo-
retical model developed above. To this end, the viscous and 
gravitational forces are selected as scaling parameters, so 
that the dimensionless rising height h∗ and the corresponding 
dimensionless time t∗ can be expressed as:

The apparent contact angle φ expressed in terms of h∗ 
and t∗ is thence:

where Bo = �GR2

0

/

� is the Bond number measuring the rela-
tionship between gravity and surface tension, i.e., a small Bo 
(< < 1) indicates capillary force is dominant, while a large 
Bo means gravity is dominant. It follows that Eq. (10) can 
be rewritten in dimensionless form, as:

f1(h) =
R2(h)

h ∫
h

0

1

R2(z)
dz,

f2(h) =
1

R2

0
h∫

h

0

R2(z)dz.

(11)a
d
(

hḣ
)

dt
+ bhḣ + ch sin(𝜙) = 1,

Ω =

√

b2

ac2
=

√

128� cos(�)�2

�3G2R5

0

.

(12)h∗ = ch =
�GR0

2� cos(�)
h =

h

h0
,

(13)t∗ =
c2

b
t =

�2G2R3

0

16�� cos(�)
t =

t

t0
.

(14)� = � + arctan

[

2�

Bo
cos(�)

+�
2�

Bo
cos(�)sin

(

2�

Bo
cos(�)h∗

)

]

,
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where

As shown in Eq. (15), Ω appears in the inertial term to 
measure the effect of inertia. In other words, inertial effect 
is important if Ω is small (e.g., Ω = 0.1) and insignificant if 
Ω is large (e.g., Ω = 100).

Numerical Results and Discussion

A.	 Details of numerical simulation

To validate the theoretical model developed in the pre-
vious section, numerical simulations of dynamic capillary 
flow in roughened conical tubes are performed with the 
commercially available COMSOL Multiphysics. Due to 
axial symmetry, the problem is taken as two-dimensional 
(2D), and the corresponding physical model is displayed 
in Fig. 4. The “Laminar flow” of the module “Two-Phase 
Flow, Phase Field” in COMSOL is utilized, including 
“Laminar Flow” and “Phase Field”. The liquid is water at 
room temperature (ρl = 1000 kg·m−3, ηl = 0.001 Pa·s, γ = 72 
mN·m−1), and the gas is air (obtained in the Built-in mate-
rial). Boundary conditions adopted in “Laminar Flow” and 
“Phase Field” models are presented in Table 1. Depending 
surface treatment and surface properties, the static con-
tact angle θ between a given liquid and a given substrate 
material of channel wall typically exhibits a value vary-
ing within a range, e.g., 0° < θ < 90° for hydrophilic sur-
faces and 90° < θ < 180° for hydrophobic surfaces. In the 
current study, for the water–glass combination considered, 
the static contact angle is assumed to have a fixed value of 
67.5° (Martinez 2009). The simulation domain is meshed 
via a hybrid grid, with the fluid container modelled using 
a mapped mesh and the undulated component using a free 
triangular mesh (Fig. 4).

(15)
1

Ω2f0(h
∗)

d
(∫ h∗

0
R∗2(z∗)dz∗ḣ∗

)

dt∗

+
f1(h

∗)

f0(h
∗)
h∗ḣ∗ +

f2(h
∗)

f0(h
∗)
h∗sin(𝜙) = 1

,

(16)f0(h
∗) =

cos(�)

cos(�)

[

1 +
2�

Bo
cos(�)h∗

−�cos

(

2�

Bo
cos(�)h∗

)

]

,

(17)f1(h
∗) =

R∗2(h∗)

h∗ ∫
h∗

0

1

R∗2(z∗)
dz∗,

(18)f2(h
∗) =

1

h∗∫
h∗

0

R∗2(z∗)dz∗.

B.	 Theoretical model versus numerical simulation

For a smooth circular tube under normal gravity (G = 1 g), 
Fig. 5 compares the capillary heights, plotted as functions 
of time, that are separately obtained using numerical simu-
lations, the LW model, and the present theoretical model, 
i.e., Eq. (11). The mean radius R0 of the tube is selected 
as 500 μm and 250 μm, respectively. As shown in Fig. 5a, 
when the mean tube radius is relatively large (R0 = 500 μm), 
the capillary rising height increases with time, and exhibits 
oscillation during the initial stage (t < 0.2 s) except for that 
predicted with the LW model. When the radius is reduced 
to 250 μm, as shown in Fig. 5b, such oscillation does not 

Fig. 4   Schematic of numerical model for a circular conical tube with 
undulations on its inner wall meshed by a hybrid grid. The mean 
radius R0 is 0.5 mm, the cone opening angle β is 0.05, the dimension-
less amplitude ε is 0.2, and the dimensionless wave number α is 5

Table 1   Boundary conditions for numerical model (ρl is density of 
liquid, and Φ is phase field variable: liquid, 1; gas, -1)

Boundaries Laminar Flow Phase Field

Undulated wall No slip Wetted wall
Container wall No slip Wetted wall
Inlet p = GZρl Φ = 1
Outlet p = 0 Φ = -1
Symmetry type Axial symmetry Axial symmetry
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occur, which is consistent with the LW model that neglects 
inertial effect. That is, inertial effect becomes less significant 
as tube radius is reduced. For both tube radii considered, 
the numerically calculated capillary height is consistently 
smaller than that predicted using either the LW model or 
Eq. (11), including the steady height. This is attributed to 
the fact that both the LW model and Eq. (11) are established 
based on the assumption that the flow is fully developed 
and the effect of entry and exit losses is negligible. It is 
also found that, in the case of large radius (500 μm), the 
discrepancy between theoretical and numerical results is less 
than that of small radius (250 μm). The reason is that, the 
length-to-diameter ratio in the case of large radius is smaller 
and the exit/entry losses are less, thus enabling a smaller 
discrepancy (Han and Charles 1971). Nonetheless, overall, 
the numerical simulations confirm that Eq. (11) is viable for 
exploring the dynamics of capillary flow in smooth tubes. 
Next, for conical tubes having undulated inner walls, the 
numerical simulation results are compared with theoretical 
predictions (i.e., Eq. (15)).

	 III.	 Effect of undulation on capillary flow in conical tubes

1.	 Comparison of steady capillary height between theoreti-
cal and numerical results

With particular focus placed upon the effect of hypergrav-
ity on dynamic capillary rising, the case of G = 10 g gravity 
is taken as an example to check the validity of analytical 
model predictions against numerical simulation results. 
According to Eqs. (14)−(18), the dimensionless capillary 
rise h* is dependent upon the non-dimensional numbers Bo 
and Ω. The basic physical properties of several commonly 
used liquids at room temperature are summarized in Table 2, 
which are then used to calculate the values of Bo and Ω for 
selected channel sizes (Table 3).

For relatively small values of ε (≤ 0.1), α (≤ 1) and β 
(positive, ≤ 0.05), Table 4 compares the theoretically pre-
dicted dimensionless steady heights with numerical simu-
lation results. When α is sufficiently small (e.g., α = 0.1), 
the steady height in an undulated conical tube is larger than 
that in its smooth counterpart, increasing with increasing ε 
for all β values considered. For such small values of α, the 
wavelength of undulation is relatively large; correspondingly, 
the local radius on the undulated surface of a conical tube 
is smaller than R0 + �h , which remains almost unchanged 
during the whole process of capillary rising. In addition, a 
larger ε means a smaller local radius and hence a larger cap-
illary force and higher steady height. In contrast, the results 
presented in Table 4 suggest that, when α is relatively large 
(e.g., ≥ 0.5), the steady height decreases with increasing ε 
and/or β. In other words, the static flow resistance is enlarged 
when the undulation becomes denser and/or the amplitude of 
undulation is increased. Moreover, when the opening angle is 
increased, the local radius is enlarged and hence the capillary 
force drops, resulting in a lower steady height.

The results of Table 4 also show that the discrepancy 
between theoretical and numerical steady heights decreases 
with increasing β. A larger β means a larger local radius 

Fig. 5   Comparison of capillary 
rises obtained by numerical 
simulations, the LW model, and 
Eq. (11) in a smooth tube with 
radius: a 500 μm and b 250 μm. 
The static contact angle is 
assumed to be 67.5°

Table 2   Physical properties of commonly used liquids at room tem-
perature (298.15 K)

ρ (kg·m−3) η (mPa·s) γ (mN·m−1)

Water 1000 0.1 72
Lubricant oil 885 130 25.6
Castor oil 957 750 ± 0.05 33.8
Decane 729 0.888 23.8
Toluene 865 0.5503 28.7
Diethyl ether 722 0.267 18.0
Dioxane 1033 1.18 32.5
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and hence smaller length-to-diameter ratio, which causes 
a smaller pressure drop across the tube (Han and Charles 
1971). Accordingly, the discrepancy between theory and 
simulation is reduced. In contrast, the discrepancy decreases 

with increasing ε and α. Therefore, how to make the dis-
crepancy disappear becomes a complex issue, as discussed 
previously by Ramakrishnan et al. (2019) for smooth tubes. 
For simplicity, in the current study, we only discuss how key 

Table 3   Values of 
dimensionless numbers Ω and 
Bo for commonly used liquids 
(G = 10 g). Here θ is the static 
contact angle

θ (°) Ω Bo

50 μm 500 μm 5 mm 50 μm 500 μm 5 mm

Water 0 55.41 0.18 0.0006 0.003 0.34 34.03
67.5 34.28 0.11 0.0003 0.003 0.34 34.03

Lubricant oil 0 5159.43 16.32 0.052 0.009 0.85 84.69
60 3648.27 11.64 0.036 0.009 0.85 84.69

Castor oil 0 30,416 96.18 0.302 0.007 0.69 69.37
60 21,507 68.01 0.221 0.007 0.69 69.37

Decane 0 45.45 0.14 0.0005 0.008 0.75 75.04
60 32.14 0.10 0.0003 0.008 0.75 75.04

Toluene 0 23.93 0.08 0.0002 0.007 0.74 73.84
60 16.92 0.05 0.0002 0.007 0.74 73.84

Diethyl ether 0 12.06 0.04 0.0001 0.01 0.98 98.27
60 8.53 0.03 0.00009 0.01 0.98 98.27

Dioxane 0 41.84 0.13 0.0004 0.008 0.78 77.87
60 29.59 0.09 0.0003 0.008 0.78 77.87

Table 4   Comparison between 
theoretical and numerical 
results of dimensionless steady 
height for different geometric 
parameters of undulated conical 
tube (G = 10 g). Equation (15), 
Num, and Gap represent the 
present theoretical results 
obtained by Eq. (15), numerical 
simulations, and the discrepancy 
between them, respectively. 
Here, Gap = (Eq. (15)—Num) / 
Eq. (15) × 100

α = 0.1

β = 0.01 β = 0.025 β = 0.05

ε Equation (15) Num Gap(%) Th Num Gap(%) Equation (15) Num Gap(%)

0 0.9453 0.8828 6.61 0.8621 0.8192 4.98 0.7222 0.6950 3.77
0.01 0.9537 0.8904 6.64 0.8698 0.8264 4.99 0.7286 0.7024 3.60
0.025 0.9666 0.9004 6.85 0.8815 0.8382 4.92 0.7383 0.7100 3.87
0.05 0.9890 0.9231 6.66 0.9018 0.8575 4.92 0.7551 0.7285 3.52
0.075 1.0125 0.9467 6.50 0.9230 0.8790 4.78 0.7727 0.7479 3.21
0.1 1.0371 0.9704 6.43 0.9453 0.9005 4.74 0.7911 0.7661 3.16

α = 0.5
β = 0.01 β = 0.025 β = 0.05

ε Equation (15) Num Gap(%) Equation (15) Num Gap(%) Equation (15) Num Gap(%)

0.01 0.9321 0.8736 6.27 0.8490 0.8150 4.01 0.7099 0.6942 2.21
0.025 0.9124 0.8660 5.09 0.8294 0.8079 2.59 0.6919 0.6906 0.19
0.05 0.8795 0.8527 3.05 0.7975 0.7973 0.03 0.6631 0.6897 -4.01
0.075 0.8471 0.8412 0.70 0.7666 0.7868 -2.63 0.6359 0.6767 -6.41
0.1 0.8156 0.8299 -1.75 0.7370 0.7782 -5.59 0.6103 0.6693 -9.67

α = 1
β = 0.01 β = 0.025 β = 0.05

ε Equation (15) Num Gap(%) Equation (15) Num Gap(%) Equation (15) Num Gap(%)
0.01 0.9081 0.8560 5.73 0.8191 0.7963 2.79 0.6749 0.6757 -0.12
0.025 0.8413 0.8196 2.58 0.7473 0.7628 -4.49 0.6042 0.6466 -7.02
0.05 0.7121 0.7597 -6.68 0.6251 0.7077 -13.2 0.5003 0.6067 -21.26
0.075 0.5930 0.7028 -18.5 0.5524 0.6554 -18.7 0.4204 0.5559 -32.24
0.1 0.5011 0.6511 -29.9 0.4446 0.6087 -36.9 0.3607 0.5176 -43.50
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morphological parameters such as ε, α, and β influence the 
discrepancy between theoretical and numerical results, and 
do not try to make it vanish.

2.	 Inertial effect on dynamic capillary rise

How inertial force affects dynamic capillary rise in an 
undulated conical tube is analyzed next. As the present 

theoretical model is valid for small values of ε (≤ 0.1), α 
(≤ 1), and β (≤ 0.05), the rising curve is calculated by apply-
ing Eq. (15). For a vertical undulated conical tube, Fig. 6 plots 
the dimensionless rising height h* as a function of dimen-
sionless time t* for selected geometric parameters (β = 0.02, 
ε = 0.02, α = 0.1 and 0.5) and selected values of dimensionless 
(inertial) parameter Ω (= 0.1, 0.5, 1, 10, 100). For relatively 
small Ω (e.g., < 2), the capillary height first increases, then 
starts to oscillate, and finally tends to its steady height, but 
taking a relatively long time to achieve it. In other words, a 
small Ω indicates a large inertial force, thus causing initial 
oscillation in capillary rise. With liquid type, temperature, 
and gravity environment all fixed, a larger mean radius R0 
implies a smaller Ω and, conversely, a smaller R0 means a 
larger Ω. Consequently, oscillating capillary rise occurs in an 
undulated conical tube of large mean radius, but disappears 
if its mean radius becomes sufficiently small. In addition, the 
steady height of capillary rise in a conical smooth tube with 
positive β is always smaller than that (predicted by the LW 
model) in a circular smooth tube, because the radius of the 
former gradually expands, leading to a smaller capillary force.

3.	 Effect of enlarged morphological parameters

Although the effect of hypergravity on capillary rising 
and steady height have hitherto been theoretically predicted 
for relatively small values of ε, α, and β, how the predic-
tions are affected when the values of these parameters are 
increased remains elusive. Therefore, it is necessary to 
increase the values of ε, α, and β beyond the ranges con-
sidered by the present theoretical model (e.g., ε ~ 0.3 and 
α ~ 10), and then perform direct numerical simulations. 
Table 5 presents the numerically calculated steady height 

Fig. 6   Dynamic rising in a vertical undulated conical tube for 
selected values of opening angle β, amplitude ε, and wave number 
α under different inertial cases. The case of Ω = 0.1 and α = 0.5 is 
shown over a longer period of time to highlight the steady state

Table 5   Numerical simulation 
results of dimensionless steady 
capillary height for large 
geometrical parameters of 
undulated conical tube

α = 0.1 α = 0.5 α = 1

ε β = 0.01 β = 0.025 β = 0.05 β = 0.01 β = 0.025 β = 0.05 β = 0.01 β = 0.025 β = 0.05

0.15 1.0132 0.9384 0.8315 0.8043 0.7579 0.6802 0.5646 0.5281 0.4818
0.2 1.0696 0.9882 0.8744 0.7928 0.7453 0.6694 0.4976 0.4703 0.4327
0.25 1.1317 1.0419 0.9182 0.7688 0.7243 0.6605 0.4448 0.4216 0.3867
0.3 1.1967 1.0972 0.9662 0.7548 0.7123 0.6471 0.4031 0.3845 0.3533

α = 5 α = 8 α = 10

ε β = 0.01 β = 0.025 β = 0.05 β = 0.01 β = 0.025 β = 0.05 β = 0.01 β = 0.025 β = 0.05

0.01 0.8719 0.7881 0.7124 0.8531 0.7688 0.6851 0.8251 0.7394 0.6460
0.025 0.9102 0.8161 0.7322 0.8991 0.7977 0.7109 0.8366 0.7701 0.6678
0.05 0.9608 0.9138 0.8378 0.9301 0.8673 0.8093 0.9068 0.8181 0.7468
0.1 1.0029 0.9226 0.8557 0.9559 0.9039 0.8210 0.9306 0.8875 0.7639
0.15 1.0039 0.9681 0.9079 0.9702 0.9292 0.8747 0.9546 0.9141 0.8299
0.2 1.0158 0.9935 0.9351 0.9769 0.9359 0.9011 0.9662 0.9179 0.8806
0.25 1.0328 1.0132 0.9773 0.9955 0.9606 0.9321 0.9859 0.9483 0.9095
0.3 1.0406 1.0232 0.9942 1.0262 1.0045 0.9526 1.0020 0.9820 0.9364
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of water in a vertically placed undulated conical tube, under 
hypergravity (G = 10 g). When α = 0.1 (small wave number 
of undulation), the steady height is seen to increase with 
increasing ε, but decrease by increasing both ε and α when 
0.5 ≤ α < 1. When α > 5 (large wave number of undulation), 
the steady height increases with increasing ε, but decreases 
as both α and β are increased. In other words, when the 
undulation has a relatively small wave number (e.g., α < 1), 
the theoretically predicted variation trend of steady height 
with ε, α, and β can be expanded from small values to large 
values. However, when the wave number α becomes suf-
ficiently large, the trend is significantly altered. The larger 
the wave number, the denser the undulation, so that more 
local radii R0 + �h − e are smaller than R0 + �h , leading to 
a larger capillary force. Also note that, when α is enlarged, 
the static flow resistance is enhanced. All in all, the variation 
trend of steady height at large α is more complicated than 
that predicted by the theoretical model.

As expected, the steady height in a conical tube is larger 
than that in a circular tube when the diameter of the former 
is gradually reduced, i.e., β is negative (Table 6). Moreo-
ver, the steady height increases as the absolute value of 
β is increased, because the capillary force increases with 
decreasing local radius, so that the fluid can rise higher 
to balance the gravity. Note also that, the influence law of 
undulation amplitude ε and wave number α on steady height 
obtained previously for the case of positive β remains valid 
when β becomes negative (i.e., negative opening angle; 
Fig. 3b).

4.	 Capillary rising for selected liquids

Built upon theoretical modeling of hypergravity effect on 
dynamic capillary rise in conical tubes with idealized undu-
lation morphologies, the ultimate goal of the current study 

is to provide worthwhile theoretical guidance for practical 
applications. Figure 7 presents therefore the theoretically 
predicted capillary rising heights for several commonly used 
liquids, including water, decane, toluene, diethyl ether, diox-
ane, lubricant oil, and Castor oil, with the hypergravity fixed 
at G = 10 g. To ensure the validity of the model predictions, 
only vertical conical tubes with small values of ε (≤ 0.1), 
α (≤ 1), and β (≤ 0.05) are considered for the plotting. It 
is seen from Fig. 7 that different liquids exhibit not only 
significantly different steady heights, but also take differ-
ent time periods to achieve steady state. These results are 

Table 6   Theoretically predicted 
steady heights for negative 
opening angle β at small ε and α 
(G = 10 g)

α = 0.1 α = 0.25 α = 0.5

ε β = -0.01 β = -0.025 β = -0.05 β = -0.01 β = -0.025 β = -0.05 β = -0.01 β = -0.025 β = -0.05

0.01 1.0633 1.1425 1.265 1.0575 1.1367 1.2594 1.0414 1.1211 1.2457
0.025 1.0778 1.1581 1.2819 1.063 1.1431 1.2677 1.0224 1.1035 1.2323
0.05 1.1029 1.185 1.311 1.0723 1.1541 1.2817 0.9899 1.0726 1.2073
0.075 1.1291 1.2132 1.3415 1.0818 1.1653 1.2961 0.9568 1.0402 1.1793
0.1 1.1566 1.2427 1.3732 1.0915 1.1767 1.3109 0.9236 1.0069 1.1487

α = 0.75 α = 1

ε β = -0.01 β = -0.025 β = -0.05 β = -0.01 β = -0.025 β = -0.05

0.01 1.2457 1.1098 1.2397 1.0277 1.2554 1.1163
0.025 1.2323 1.0715 1.2139 0.976 1.2563 1.0822
0.05 1.2073 0.9974 1.1571 0.8509 1.2452 0.9805
0.075 1.1793 0.9147 1.0819 0.7062 1.1537 0.8181
0.1 1.1487 0.8316 0.9928 0.588 0.8889 0.6682

Fig. 7   Dynamic capillary rise in vertical undulated conical tube for 
several commonly used liquids (G = 10 g)
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expected to be of practical significance for hypergravity-
sensitive applications in a wide range of fields, especially 
aeronautical engineering and space exploitation.

For an inclined conical tube, as shown in Fig. 8, the 
steady capillary height always exceeds that in a vertical 
tube having identical geometric parameters. Similar con-
clusion was reached in our previous study (Lei et al. 2021) 
on dynamic capillary rise in an undulated circular tube, with 
hypergravity effect neglected.

Finally, although the results of undulated conical tubes 
presented hitherto are obtained for the selected hypergrav-
ity case of G = 10 g, it has been established that the influ-
ence law can be conveniently extended to cover other gravity 
conditions, with lower (larger gravity) or higher (smaller 
gravity) steady height obtained for undulated conical tubes 
having identical geometric parameters. For brevity, these 
results are not shown here.

Concluding Remarks

Blood vessels of human brain and leaf veins of plants are 
typically represented by undulated conical tubes. Under 
hypergravity, a theoretical model of dynamic capillary flow 
in inclined conical tubes having idealized undulated inner 
walls has been established, with inertial, viscous and gravi-
tational forces duly account for. A dimensionless number 
combining the three forces is introduced to measure the 

influence of inertial force. The validity of model predictions 
is checked against results obtained by performing direct 
numerical simulations, with good agreement achieved. The 
validated model is then employed to quantify the effects of 
several key morphological parameters on dynamic capillary 
rise, including cone opening angle (positive or negative) 
and amplitude and wave number of wall undulations, when 
these parameters take relatively small values. To cover larger 
values of morphological parameters not considered by the 
theoretical model and account for both entry and exit losses, 
additional numerical simulations are carried out. Also, in 
the presence of hypergravity effect, to promote fundamental 
understanding of plants nutrient uptake in hypergravity and 
blood flow in human brain, capillary rising heights of several 
commonly used liquids are calculated using the proposed 
theoretical model.

Like most relevant studies, the present study adopts a 
fundamental assumption: the capillary tube is straight and 
has rigid walls. In reality, human blood vessels are not only 
wavy (cf. Figure 1) but also soft such that, when capillary 
flow of blood is initiated, the capillary force may deform 
the blood vessel which in turn, affects the capillary flow. In 
other words, blood transport in human capillaries is critically 
dependent upon fluid–structure interaction. This issue will 
be addressed in a future study.
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