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A B S T R A C T   

Liquid-filled microchannels are common in biological tissues, such as blood capillaries and 
neuronal axons, which may often be regarded as cylindrical compressible liquid inclusions 
embedded in an infinite elastic matrix. How surface effects influence the elastic field and effective 
mechanical properties of such liquid inclusions remain elusive, especially when the inclusion size 
is at micro level wherein surface tension plays a significant role. We present first a theoretical 
model to analyze the elastic field of a cylindrical compressible liquid inclusion, with surface ef-
fects duly accounted for. We then use the solutions of our model, together with the Eshelby 
approach, to estimate the effective mechanical properties of a composite containing sparsely 
distributed cylindrical liquid inclusions. Different from previous studies, our model accounts for 
the nonlinear dependence of the normal vector and curvature of a liquid-solid surface upon 
surface deformation, achieved by expressing both as first order functions of surface displacement. 
We then linearize the deformation-induced surface curvature to simplify the problem and get the 
solution using linearized curvature. Predictions of our model demonstrate that surface effects 
prevent deformation of the liquid inclusion and increase stress concentration around the inclu-
sion. Further, as the surface energy is increased, the effective Young’s modulus of the two-phase 
composite first increases and then decreases, and the transition point is related to the bulk 
modulus of liquid; when the surface energy becomes sufficiently large, the effective Poisson ratio 
becomes negative. These results are useful for understanding and exploring the mechanical be-
haviors of a wide range of liquid-filled porous biological materials which contain distributed 
cylindrical pores, e.g., blood vessels, neuronal axons, dentinal tubules and hydrogel pores .   

1. Introduction 

Materials with cylindrical inclusions exist widely in engineering and nature, such as fiber-reinforced composites (Mishnaevsky Jr 
and Brøndsted, 2009) and muscle tissues (Armstrong and Phelps, 1984). On the one hand, as these materials are usually used to bear 
loads or transfer forces in practical applications, their effective mechanical properties have long become the research focus. On the 
other hand, the elastic fields around the inclusion(s) are also important and have been extensively exploited. For example, neuronal 
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axons in brain may be regarded as cylindrical inclusions, such that the elastic fields around neuronal axons can significantly affect their 
biological functions (Mutalik and Ghose, 2020). 

In continuum mechanics, theoretical studies of the inclusion problem dated back to Goodier (1933) and Love (1944), followed by 
Eshelby (1957) who derived the elastic fields of an ellipsoidal inclusion. Subsequently, Hasegawa et al. (1992) proved that the problem 
of a cylindrical inclusion is a limiting case of the ellipsoidal inclusion, i.e., when its major axis tends to infinity. Besides, the elastic 
fields of a cylindrical inclusion are extended to study stress concentration (Hwu and Ting, 1989), effective mechanical properties 
(Christensen and Lo, 1979) and dynamic problems (Cheng and Batra, 1999). In the last two decades, materials embedded with nearly 
round cross-sectional ducts (i.e., cylindrical liquid inclusions) (Bejan, 1999, 2000), have attracted much attention: for typical instance, 
microvascular bundles in the stems of plants (Min et al., 2015), dentin tubules in teeth (Lin et al., 2011; Zandim et al., 2004), Haver’s 
tubules in bone (Frame et al., 2018), blood capillaries (Harrison et al., 2002), microchannels in hydrogels (Huang et al., 2011), and 
flexible electronics devices (Frutiger et al., 2015). Materials having cylindrical liquid inclusions exhibit multifunctional attributes, 
such as mechanical support, mass transfer and heat transfer. In fact, in both nature and engineering, many materials require multi-
functional properties, with the mechanical behavior of the material often playing a vital role. Therefore, it is necessary to not only 
investigate how the materials with liquid inclusions perform mechanically when external loads are applied, but also explore the 
underlying mechanisms. 

It is important to clarify the properties of the liquid before considering the mechanical behaviors of liquid inclusions. As stated by 
Rice (Britannica, 1993), "A material is called solid rather than fluid if it can also support a substantial shearing force over the time scale 
of some natural process or technological application of interest." Built upon the equivalent method (Eshelby, 1957), Chen et al. (2018) 
demonstrated that a liquid inclusion can be regarded as a special solid inclusion without shear modulus under quasi-static conditions 
without surface effects. Thus, in the absence of surface effects, the elastic fields of a cylindrical liquid inclusion can be degenerated 
from that of the solid inclusion. 

For a microscale liquid inclusion embedded in an elastic matrix, although the liquid can still be regarded as a special solid, the 
liquid-solid interface is intrinsically different from the interface between different solids. Gurtin and Murdoch (1975) presented a 
continuum description of the interface between different materials and established a second-order tensor on the material surface 
(interface) named surface stress σs to describe the surface effects. When the surface experiences deformation, the surface stress is 
related to surface energy γ as (Nix and Gao, 1998; Sharma et al., 2003): 

σs = γI +
∂γ
∂εs

, (1)  

where the first term stems from the variation of atom number per unit area of the surface, I is the unit tensor on the surface, and the 
second term comes from surface energy variation per atom on the surface. As the second term is induced by changes in atomic spacing, 
it also represents a variation of surface energy with respect to elastic strain εs. For a solid-solid surface, the first term is about an order 
of magnitude smaller than the second one (Krichen et al., 2019), thus usually neglected (Duan et al., 2005, 2007; Ru et al., 2009). In 
sharp contrast, for a liquid-solid surface, the first term dominates the second term, so the latter is usually neglected (Style et al., 2015). 
This is because the surface energy per atom approaches a constant when the liquid-solid surface deforms, and hence the surface stress 
σs only depends on the variation of atom number on the surface, i.e., the area of the deformed surface. It follows that, for a microscale 
cylindrical liquid inclusion with surface effects (Chuanren et al., 2004; Harrison et al., 2002; Huang et al., 2012, 2011; Zandim et al., 
2004), relevant elastic fields cannot be degenerated from those of a solid inclusion. 

Force equilibrium at a liquid-solid surface can be expressed as (Gurtin and Murdoch, 1975): 

σ ⋅ n + pn = γκn, (2)  

where σ is the stress in solid matrix, n is the normal vector of the surface, p is the total liquid pressure, κ is the surface curvature, and γκ 
is the surface tension. Eq. (2) is often called the Young-Laplace equation (Style et al., 2015). Note that the force balance of Eq. (2) has 
two properties: (1) both the pressure and surface tension are along the normal direction; (2) the curvature depends on surface 
deformation. In other words, the force balance is dependent upon surface deformation. In fact, the force balance of Eq. (2) is essential 
for studying liquid-solid surfaces, as suggested by the Rayleigh-Plateau instability (i.e., a liquid inclusion becomes sausage-like) (Mora 
et al., 2010). Several studies have estimated the critical value of surface tension when the Rayleigh-Plateau instability occurs by 
analytical methods (Cheewaruangroj et al., 2019; Xuan and Biggins, 2015) and simulation methods (Henann and Bertoldi, 2014). As 
for cylindrical liquid inclusions with surface effects, there have been a few theoretical studies. However, the surface models in these 
studies (e.g., (Dai, Li and Schiavone, 2018; Wu et al., 2018 )adopted mathematical expressions for deformation-induced change in 
surface curvature that either neglected the influence of uniform/non-uniform surface displacement on surface curvature, or could not 
predict the singularity of a liquid inclusion when its surface energy is large enough. For instance, focusing upon an elliptical liquid 
inclusion embedded in an infinite elastic matrix, Wu et al., (2018) analyzed the effects of surface on stress concentration and liquid 
pressure, and then used the results to estimate the effective Young’s modulus of a composite containing cylindrical liquid inclusions. 
Nonetheless, in this study, the effects of uniform as well as non-uniform deformation on surface curvature were neglected, which may 
lead to significant prediction errors when surface effects are of concern; more details are presented in Section 3.1. In another study 
(Dai et al., 2018), explicit analytical solution was presented for a cylindrical compressible liquid inclusion in an infinite elastic matrix, 
which was then employed to quantify stress concentration around the inclusion under plane deformation based on the complete 
Gurtin–Murdoch interface model. Their solutions nonetheless do not predict any singularity induced by large surface energy. Xuan and 
Biggins (2015) demonstrated that, when surface energy is sufficiently large, the assumption of plane strain does not hold. Therefore, a 
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more accurate surface model accounting for the influence of surface deformation on curvature is needed to analyze the elastic fields 
around a cylindrical compressible liquid inclusion and estimate the effective elastic moduli of a two-phase composite containing 
distributed cylindrical compressible liquid inclusions. 

We propose an analytical model of cylindrical compressible liquid inclusion embedded in an infinite elastic matrix. With surface 
effects on liquid-solid surface duly considered, we present the governing equations and boundary conditions in Section 2. In Section 3, 
we first linearize the deformation-induced curvature of liquid-solid surface to simplify the problem and then get the solution of the 
problem using the linear curvature. The solution is compared with that of Wu et al. (Wu et al., 2018). In Section 4, we analyze the 
deformation of the inclusion as well as stress concentration around the inclusion. Effective mechanical properties of the composite with 
cylindrical liquid inclusions are given in Section 5. Finally, we give a discussion of the solution in Section 6. 

2. Problem statement 

Starting from a cylindrical compressible liquid inclusion of radius R embedded in an infinite solid matrix (Fig. 1), we focus on its in- 
plane response such that the problem can be simplified to plane strain. With the solid assumed to be isotropic linear elastic, its 
governing equations are: 

ε =
1
2
(∇u + u∇),

σ = λtr(ε) + 2Gε,

∇ ⋅ σ = 0,

(3)  

where u, ε and σ are the displacement, strain and stress in the solid matrix, respectively, and λ (N/m2) and G (N/m2) are Lame 
constants of the solid material. 

Let the liquid be linearly compressible, such that (Shafiro and Kachanov, 1997): 

Ki
ΔV
V0

= − pload, (4)  

where Ki (N/m2) is the bulk modulus of the liquid, V0 and ΔV are the initial volume and volumetric change of the liquid inclusion, and 
pload is the change of liquid pressure due to external loading. Note that the total liquid pressure p = p0 + pload, p0 being the initial liquid 
pressure. 

When a far field stress σ∞ is applied, the stress at infinity satisfies: 

σ||x|→∞ = σ∞. (5) 

With particular focus placed upon in-plane (i.e., the x-y plane) behaviors of the liquid inclusion, σ∞ is uniform along the z-axis 
direction (i.e., the axial direction of liquid inclusion). 

Force equilibrium on the liquid-solid surface is given by the Young-Laplace equation, i.e., Eq. (2) (Style et al., 2015). The first and 
second terms of the left hand side of Eq. (2) stem from the solid and liquid, respectively, while the term of the right hand side comes 
from the surface. It should be pointed out that the present analysis considers the fact that both n and κ depend on the deformation of the 
surface, which is different from previous studies (Fischer et al., 2008; Yang, 2004), as discussed later in Section 3. In fact, both n and κ 
are nonlinear functions of surface displacement (Do Carmo, 1976), thus making it difficult to solve the problem. To obtain a solution of 

Fig. 1. Schematic of a cylindrical compressible liquid inclusion embedded in an infinite matrix. The bulk modulus of the liquid inclusion is Ki, and 
the Young’s modulus and Poisson ratio of the matrix are Em and νm, respectively. Between the inclusion and the matrix is surface tension, where κ is 
the curvature of the surface and γ is the surface energy. There is a far field stress σ∞ applied at infinity of the matrix. The dashed line and the 
elliptical part represent the initial shape of the liquid inclusion and its shape under far-field stressing, respectively. 

F. Ti et al.                                                                                                                                                                                                               



Journal of the Mechanics and Physics of Solids 161 (2022) 104813

4

the problem, under the assumption of small deformation, we express both n and κ as first order functions of surface displacement. 

3. Solution of the problem 

Where ever there is a material surface, surface stress (surface tension) is present no matter whether or not a far field load σ∞is 
applied. However, although surface tension can cause a residual stress field in the absence of σ∞, here we only focus on the elastic fields 
induced by σ∞. To this end, we first derive the surface normal vector and the curvature and express them as functions of surface 
displacement, and then linearize them to simplify the equilibrium of liquid-solid surface. 

3.1. Expressions of surface normal vector and curvature 

To simply the boundary condition of Eq. (2), we need expressions of the normal vector n and curvature κ in terms of surface 
deformation. In this part, we first present geometrical analysis of the deformation of a cylinder and express n and κ as functions of 
surface displacement. Then, for simplification, we linearize these expressions under the assumption of small deformation. 

Consider a cylinder of radius R set in a (global) cylindrical polar coordinate system (Fig. 2). Its surface has an initial curvature of 1R. 
In the presence of external loading, assume the surface deforms with displacement field u = (ur,uθ,uz), which is measured in a local 
Cartesian coordinate system (Fig. 2). In the global Cartesian coordinate system, each point on the undeformed cylindrical surface can 
be expressed as x = (Rcosθ,Rsinθ, z). As the surface deforms, it moves to: 

x′

= x + u ⋅ T
= (Rcosθ + urcosθ − uθsinθ,Rsinθ + ursinθ + uθcosθ, z + uz),

(6)  

where 

T =

⎡

⎣
cosθ sinθ 0
− sinθ cosθ 0

0 0 1

⎤

⎦, (7)  

is a 3×3 matrix representing the transformation from local to global Cartesian coordinate system (Fig. 2). 
On the deformed surface of the cylinder, the tangent in the θ direction is: 

Fig. 2. Influence of surface deformation on curvature. The dashed line represents the initial shape of the cylindrical cylinder, while the solid line 
represents its shape under load. u is the displacement of the cylindrical surface, measured in a local Cartesian coordinate system. ′ is the location of 
the surface under deformation in a global Cartesian coordinate system. ∂′

∂θ and ∂′
∂z are the tangents on the deformed surface in the θ and z directions, 

respectively. n =

(

1, uθ
R − 1

R
∂ur
∂θ , 0

)

is the normal vector and κ = 1
R −

1
R2

(

ur +
∂2ur
∂θ2

)

is the curvature under plane-strain small deformation. er , eθ, ez are 

base vectors of the local Cartesian coordinate system, and ex, ey, ez are base vectors of the global Cartesian coordinate system. 
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∂x′

∂θ
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− Rsinθ − ursinθ − uθcosθ +
∂ur

∂θ
cosθ −

∂uθ

∂θ
sinθ

Rcosθ + urcosθ − uθsinθ +
∂ur

∂θ
sinθ +

∂uθ

∂θ
cosθ

∂uz

∂θ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

. (8)  

while that in the z direction is: 

∂x′

∂z
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ur

∂z
cosθ −

∂uθ

∂z
sinθ

∂ur

∂z
sinθ +

∂uθ

∂z
cosθ

1 +
∂uz

∂z

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

. (9) 

According to differential geometry of surface (Do Carmo, 1976), the normal vector n of a deformed surface can be calculated by 
taking the cross-product of surface tangent vectors, ∂x′

∂θ and ∂x′

∂z , as 

n =

∂x′

∂θ × ∂x′

∂z⃒
⃒
⃒
⃒

∂x′
∂θ × ∂x′

∂z

⃒
⃒
⃒
⃒

. (10) 

The surface curvature κ can be calculated by using the first and second fundamental forms of the surface in differential geometry 
(Do Carmo, 1976), as: 

κ =
eG − 2fF + gE

EG − F2 , (11)  

where E, F,G and e, f , g are separately the coefficients of the first and second fundamental forms: 

E =
∂x′

∂θ
⋅

∂x′

∂θ
,F =

∂x′

∂θ
⋅

∂x′

∂z
,G =

∂x′

∂z
⋅

∂x′

∂z
(12)  

e = n ⋅
∂2x′

∂θ2 , f = n ⋅
∂2x′

∂θ∂z
, g = n ⋅

∂2x′

∂2z
. (13) 

The first fundamental form is defined as 

dx′ ⋅ dx′

= Edθ2 + 2Fdθdz + Gdz2, (14)  

and the second fundamental form is defined as 

n ⋅ d2x′

= edθ2 + 2fdθdz + gdz2. (15) 

Eqs. (10) and (11) suggest that both n and κ are nonlinear functions of surface displacement u, which makes it difficult to consider 
surface effects in any theoretical analysis. To address the issue, we simplify the expressions of Eqs. (10) and (11) for the cylindrical 
problem of concern, as elucidated below. 

Firstly, the present problem is plane strain, so there exists no strain in the z direction. The in-plane displacements ur and uθ are 
uniform along the z direction, that is: 

uz = constant,
∂ur

∂z
= 0,

∂uθ

∂z
= 0.

(16) 

Secondly, because the local coordinate system is defined in the undeformed cylinder configuration, it is rotation-invariant with 
respect to θ and translation-invariant with respect to z. To calculate the normal vector and curvature, surface displacements expressed 
in local coordinates are employed. Due to the rotation-invariant and translation-invariant attributes, the results of Eqs. (10) and (11) 
for point (R,0,z), z being arbitrary, also hold for other points with nonzero θ. Alternatively, if we want to calculate the normal vector 
and curvature of a certain point, we might as well select the global coordinate system so that the coordinates of this point are (R,0,z)). 
Setting θ = 0, z = 0 and combining Eq. (16), we rewrite Eqs. (8) and (9) as: 
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∂x′

∂θ
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− uθ +
∂ur

∂θ

R + ur +
∂uθ

∂θ
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

T

and
∂x′

∂z
=

⎛

⎝
0
0
1

⎞

⎠

T

. (17) 

Taking the derivative of Eqs. (8) and (9), making use of Eq. (16), and setting θ = 0 and z = 0, we arrive at: 

∂2x′

∂θ2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− R − ur − 2
∂uθ

∂θ
+

∂2ur

∂θ2

2
∂ur

∂θ
− uθ +

∂2uθ

∂θ2

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

,
∂2x′

∂θ∂z
=

⎛

⎝
0
0
0

⎞

⎠

T

,
∂2x′

∂z2 =

⎛

⎝
0
0
0

⎞

⎠

T

. (18) 

Thirdly, we linearize the expressions of Eqs. (10) and (11) for displacement u when the surface undergoes small deformation. With 
the second or higher order of u neglected, the normal vector is simplified to: 

n =

(

1,
uθ

R
−

1
R

∂ur

∂θ
, 0
)

, (19) 

Similarly, the curvature becomes: 

κ =
1
R
−

1
R2

(

ur +
∂2ur

∂θ2

)

, (20)  

where the first term is the initial curvature and the second term is the change of curvature due to deformation. 
It follows from Eqs. (19) and (20) that, in the absence of displacement, the normal vector and curvature will be (1, 0,0) and 1R . In the 

presence of displacement, as a result of uniform deformation ur
R2 and non-uniform displacement 1

R2
∂2ur
∂θ2 , the second component of the 

normal vector is no longer null. The curvature is the reciprocal of curvature radius, which means that the displacement along the 
circumference (i.e., uθ) will not affect the curvature under small deformation. The curvature is therefore only related to the radial 
displacement ur. For the case when ur is independent of θ, the normal vector does not change, and the curvature is given by 1R −

ur
R2. In a 

previous study (Wu et al., 2018), the curvature was expressed as 1R −
1
R2

∂2ur
∂θ2 , which is oversimplified because neglecting the contribution 

of uniform deformation ur
R2 to curvature can lead to significant prediction errors. 

To validate the linear expression of surface curvature, we compare our results with the exact solution (Do Carmo, 1976) and the 
result of Wu et al. (Wu et al., 2018) for two cases, i.e., uniform surface deformation and non-uniform surface deformation. For a 
deforming plane curve α(θ) = (x(θ),y(θ)), the exact solution of its curvature for both cases is given by (Do Carmo, 1976): 

Fig. 3. Influence of surface deformation on surface curvature: comparison between predictions obtained using the present and existing theoretical 
models (Do Carmo, 1976; Wu et al., 2018). (a) Uniform deformation. The circle of initial radius R becomes a circle with radius (1+x)R as, in this 
case, only uniform deformation ur

R2 affects the surface curvature. (b) Non-uniform deformation. The circle of initial radius R becomes an ellipse with 

major axis 1.05R and minor axis R as, in this case, only non-uniform deformation 1
R2

∂2ur
∂θ2 affects the surface curvature of the minor axis of the ellipse. 
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κ =

∂x
∂θ

∂2y
∂θ2 −

∂2x
∂θ2

∂y
∂θ

[(
∂x
∂θ

)2

+

(
∂y
∂θ

)2
]3

2
. (21) 

In a previous study of cylindrical liquid inclusion (Wu et al., 2018), the surface curvature is calculated by: 

κ =
1
R
−

1
R2

∂2ur

∂θ2 , (22) 

Before deformation, let a circle of radius R represent the plane curve of concern. We compare in Fig. 3 surface curvature predictions 
obtained using the present and existing theoretical models (Do Carmo, 1976; Wu et al., 2018). For the case of uniform deformation, we 
assume the circle deforms with the following displacements: 

ur = xR,
uθ = 0, (23)  

such that, upon deformation, the circle remains a circle but exhibits an enlarged radius xR Using Eqs. (20), (21) and (22), we obtain 
surface curvatures using different calculation methods, as: 

κ1 =
1 − x

R

κ2 =
1

R(1 + x)

κ3 =
1
R

(24) 

In the following, to ensure the assumption of small deformation, the maximum value of ur
R is set as 0.05. As shown in Fig. 3(a), for a 

displacement of ur
R = 0.05, the prediction obtained using the curvature expression of Eq. (22) has an error of ~5% compared with the 

exact solution, while the present model prediction has a marginal error of ~0.3%. 
For the case of non-uniform deformation, we assume that the circle of initial radius R deforms according to: 

ur = 0.025R(1 + cos2θ),
uθ = 0.025Rsin2θ. (25) 

After deformation, the circle becomes an ellipse with a major axis 1.05R and a minor axis R. As shown in Fig. 3(b), the prediction 
obtained with Eq. (22) has a maximum error of ~5% relative to the exact solution, while the present model prediction exhibits a much 
smaller error of ~0.8%. Although the differences of different theories are not large, the theory of Wu et al. lacks the uniform effect 
induced by hydrostatic deformation (Style et al., 2015), which implies surface tension does not influence the inclusion behaviors when 
hydrostatic deformation is applied. 

It should be mentioned that the linearized normal vector and curvature of Eqs. (19) and (20) are valid for plane-strain small 
deformation, which are adopted to get the solution of the problem, as demonstrated below. 

3.2. Elastic fields 

In the absence of external loading, both the solid matrix and the liquid inclusion are in the residual stress state. Linear elasticity 
dictates that residual stresses induced by surface effects should be balanced before and after loading (Huang and Wang, 2013). 
Therefore, residual stress will not change the solution of elastic fields induced by far field load. In the present study, to simplify the 
boundary conditions, we chose a simplest stress state, i.e., residual stresses are not present in the solid matrix. In fact, previous studies 
of spherical liquid inclusions with surface effects also use the assumption that the residual stress is balanced with liquid pressure 
(Mancarella et al., 2016; Style et al., 2015). Hence, the assumption that, initially, the liquid has a residual stress of p0 =

γ
R while no 

stress is present in the solid matrix is adopted to solve the problem of Fig. 1. Accordingly, a general solution of displacement fields in 
the solid can be expressed as (Love, 1944; Timoshenko and Goodier, 1951): 

ur = B1r + B2
R2

r
+ cos(2θ)

[

2νmA1
r3

R2 − 2A2r + 4(1 − νm)A3
R2

r
+ 2A4

R4

r3

]

,

uθ = sin(2θ)
[

(− 3 + 2νm)A1
r3

R2 + 2A2r + 2(2vm − 1)A3
R2

r
+ 2A4

R4

r3

]

.

(26) 

Corresponding stress fields in the solid are 
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σrr =
Em

1 + νm

[
B1

1 − 2νm
− B2

R2

r2 − cos(2θ)
(

2A2 + 4A3
R2

r2 + 6A4
R4

r4

)]

,

σθθ =
Em

1 + νm

[
B1

1 − 2νm
+ B2

R2

r2 − cos(2θ)
(

6A1
r2

R2 − 2A2 − 6A4
R4

r4

)]

,

σrθ =
Em

1 + νm
sin(2θ)

(

− 3A1
r2

R2 + 2A2 − 2A3
R2

r2 − 6A4
R4

r4

)

,

(27)  

where Em and νm are the Young’s modulus and Poisson ratio of the solid material, respectively. 
Given that the solution obtained under uniaxial stretching can be used to derive solutions for other types of external loading, 

particular focus is placed upon this solution. The far field boundary condition (5) can thus be written as: 

σ∞ =

⎡

⎣
σ∞ 0 0
0 0 0
0 0 0

⎤

⎦. (28) 

At the liquid-solid surface, equilibrium dictates that: 

σ ⋅ n + (p0 + pload)n = κγn. (29)  

where σ and pload are the stress and pressure induced by the far field load σ∞, andκ is the curvature after deformation. It should be noted 
that the stress is a first order function of displacement, but the pressure is a nonlinear function of displacement, causing difficulties in 
obtaining an analytical solution of the problem. Therefore, for simplification, we linearize the pressure as a first order function of 
displacement, yielding: 

pload = − Ki
ΔV
V0

= − Ki

π[R + ur(r = R, θ = 0)]
[
R + ur

(
r = R, θ =

π
2

)]
− πR2

πR2

= − Ki

ur(r = R, θ = 0) + ur

(
r = R, θ =

π
2

)

R
.

(30) 

With Eqs. (19), (20) and (30), Eq. (29) becomes: 
⎡

⎢
⎢
⎢
⎣

σrr +
σrθ

R

(

uθ −
∂ur

∂θ

)

σrθ +
σθθ

R

(

uθ −
∂ur

∂θ

)

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎣

p0 + p

p0 + p
R

(

uθ −
∂ur

∂θ

)

⎤

⎥
⎦ =

γ
R

⎡

⎢
⎢
⎢
⎣

1 −
1
R

(

ur +
∂2ur

∂θ2

)

uθ −
∂ur

∂θ

⎤

⎥
⎥
⎥
⎦
. (31) 

Substituting p0 = γ
R into (31) and neglecting the second order terms under the assumption of plane-strain small deformation, we 

Fig. 4. Shape of deformed cylindrical compressible liquid inclusion under uniaxial stretching. (a) Ki/Em = 100 (displacements magnified 10×); the 
inclusion can be taken as approximately incompressible, since surface tension is small in relation to liquid compressibility. (b) Ki /Em = 0.01; the 
liquid inclusion can be taken as a cavity. Different colors represent different surface effects. νm = 0.3 and ε∞ = 0.02 are selected for the plotting. 
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arrive at: 
[

σrr
σrθ

]

+

[
p
0

]

=
γ
R

[
(κ − κ0)

0

]

. (32)  

where γ(κ − κ0) = −
γ
R

(

ur +
∂2ur
∂θ2

)

is the change in surface tension induced by far field stressing. 

From the far field boundary condition (28) and the surface boundary condition (32), it follows that: 

B1 =
1 − νm − 2ν2

m

2
σ∞

Em
,

B2 =

(1 + νm)

[
(
− 1 + νm + 2ν2

m

)
(

L
R
− 2

Ki

Em

)

− 1
]

2
[

(1 + νm)

(
L
R
− 2

Ki

Em

)

− 1
]

σ∞

Em
,

A1 = 0,

A2 = −
(1 + νm)

4
σ∞

Em
,

A3 =

(1 + νm)

[

(1 + νm)
L
R
− 1
]

2
[
(
− 5 + νm + 6ν2

m

) L
R
− 1
]

σ∞

Em
,

A4 = −

(1 + νm)

[
(
− 1 + νm + 2ν2

m

) L
R
− 1
]

4
[
(
− 5 + νm + 6ν2

m

) L
R
− 1
]

σ∞

Em
.

(33) 

where L = γ/Em is the elastocapillary length (Style et al., 2015), and L/R is a dimensionless parameter characterizing surface effects. 
When L /R → 0, surface effects can be neglected. While B1 and B2 influence radial deformation (which is related to volume change), 
A1, A2, A3 and A4 influence shear deformation (which is related to shape change). Besides, B2, A3 and A4 are related to far field load, 
liquid compressibility and surface effects, but B1 and A2 are only related to far field load. This means that surface effects affect not only 
radial deformation but also hoop deformation, while liquid compressibility only affects radial deformation. Note that B2 may be 
singular, which is actually related to the Rayleigh-Plateau instability of liquid inclusion induced by surface tension, i.e., the liquid 
inclusion becomes sausage-like (Xuan and Biggins, 2015). When B2 is nonsingular, the liquid inclusion is stable. More details of 
Rayleigh-Plateau instability will be presented in Section 4.1 regarding the results presented Fig. 4. In sharp contrast, the solutions 
reported in previous studies of cylindrical liquid inclusions (e.g., (Wu et al., 2018) do not exhibit any singularity induced by surface 
effects). For the case when ur is independent of θ, this is likely attributed to the neglection of the term ur/R2 in the expression of surface 
curvature ((Wu et al., 2018), as discussed above in Section 3.1). 

For illustration, an explicit expression for the displacement of point B (Fig. 1) is obtained as: 

ur(r =R, θ= π / 2) =

(
1 − ν2

m

)
[

1 +
(
− 7 − νm + 6ν2

m

) γ
EmR + 4(1 + νm)

Ki
Em

]

[

1 −
(
− 5 + νm + 6ν2

m

) γ
EmR

][

− 1 + (1 + νm)
γ

EmR − 2(1 + νm)
Ki
Em

]
σ∞

Em
. (34) 

The influence of liquid compressibility on this displacement is presented in Fig. A1 of the Appendix A. In the absence of surface 
effects, the present predictions agree well with existing results (Berli et al., 2006). 

4. Result and discussion 

4.1. Inclusion deformation 

To study how a cylindrical compressible liquid inclusion deforms when subjected to uniaxial stretching, the predicted variation of 
its shape with surface tension is presented in Fig. 4. For the plotting, two different liquid bulk moduli are selected, i.e., Ki /Em = 100 in 
Fig. 4(a) and Ki/Em = 0.01 in Fig. 4(b), which approach to the limiting cases of cylindrical cavity and incompressible liquid, 
respectively. To ensure the cylindrical liquid inclusion deforms in a stable manner, the value of γ/EmR is varied from 0 to 0.4. 

For both cases, i.e., Ki/Em = 100 and Ki/Em = 0.01, the results of Fig. 4 demonstrate that surface effects hinder the deformation of 
liquid inclusion. Nonetheless, as shown in Fig. 4(b), when the surface energy is sufficiently large (e.g., γ/EmR = 0.4) and the liquid bulk 
modulus is sufficiently small (e.g., Ki/Em = 0.01), the liquid inclusion exhibits an auxetic effect, namely, it expands (rather than 
contracts) in the transverse direction under uniaxial stretching. In contrast, such auxeticity vanishes when the liquid modulus is large, 
e.g., Ki/Em = 100. In fact, Eq. (34) indicates that the value of surface energy enabling a liquid inclusion to become auxetic is dependent 
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upon its bulk modulus. The larger the liquid bulk modulus, the larger the surface energy needed to make the inclusion auxetic. The 
reason for such auxeticity is that surface effects tend to minimize the surface area. For the present two-dimensional (2D) cylindrical 
inclusion, surface effects tend to minimize the boundary of its cross-section. Under uniaxial stretching, its initially circular boundary 
becomes an ellipse. To minimize the length of the elliptical boundary, the minor axis needs to be elongated such that the boundary 
tends to a circle as surface tension is increased. When the surface energy becomes sufficiently large, the minor axis exceeds the initial 
radius, thus enabling the auxetic effect to occur. Nonetheless, we should point out that such auxetic effect is yet observed in exper-
iments. For clarification, we collect herein the typical values of γ /EmR for common cases, e.g., 4 × 10− 6 for dentin tubules (Chakra-
barti and Chaudhury, 2013; Lin et al., 2011; Ziskind et al., 2011), 4 × 10− 9 for marrow cavity (Chakrabarti and Chaudhury, 2013; 
Fuchs et al., 2018; Kosmopoulos et al., 2009), 2 × 10− 2 for capillary (Frolov et al., 2019; Rosina et al., 2007; Sarin, 2010), 10− 5 for 
artery (Frolov et al., 2019; Kolkman et al., 2004; Rosina et al., 2007), 10− 3 for lymph vessel (Chakrabarti and Chaudhury, 2013; In 
et al., 2021; Olszewski and Engeset, 1980) and 2 × 10− 3 for microchannels in hydrogels (Chakrabarti and Chaudhury, 2013; Huang 
et al., 2012). Note that the values of γ /EmR are less than 0.1 for most liquid/solids systems. When the values of γ /EmR are much larger 
than 0.4, Xuan and Biggins (2015) predicted that the instability of a cylindrical cavity occurs whenγ /EmR ≥ 1/(1 + νm). And the 
opposite instability (e.g., the instability of a solid cylinder) has been observed experimentally (Mora et al., 2010). For the cases 
considered in the present study, according to the values of γ /EmR for normal liquid/solids systems, it would be unusual to observe 
auxetic effect in experiments. 

The results of Eq. (34) and Fig. 4 suggest that, under uniaxial stretching, the inclusion exhibits three deformation states: normal 
state, auxetic state and singular (unstable) state. For clarification, the different types of inclusion deformation are plotted in the 
(Ki /Em, γ /EmR) plane as a phase diagram (Fig. 5). According to the sign (positive versus negative) of the displacement at the free end of 
the inclusion (i.e., point B in Fig. 1), the boundary between the normal and auxetic states can be obtained as γ

EmR =
1+4(1+νm)Ki/Em
(1+νm)(7− 6νm)

. 
Further, according to whether the solution is singular or not, the boundary between auxetic and singular states is given by γ

EmR =
1

1+νm 
+

2 Ki
Em

. Correspondingly, the (Ki /Em, γ /EmR) plane is divided into three regimes. Within the first regime, the liquid inclusion becomes 
thinner in the free direction, i.e., ur(r= R, θ= π /2) < 0 In the second regime, the liquid inclusion becomes thicker in the free direction, 
i.e., ur(r= R, θ= π /2) > 0 In the third regime, the solution becomes singular and the inclusion is unstable. 

For a cylindrical cavity i.e., Ki /Em = 0 , the predicted boundary between auxetic and singular states is consistent with existing 
results. Using linear stability analysis, Xuan and Biggins (2015) found that, when the surface energy is increased such that γ

EmR ≥ 1
1+νm 

is 
satisfied, a cylindrical cavity embedded in an infinite solid becomes unstable. Thus, the present study suggests that γ

EmR =
1

1+νm 
+2 Ki

Em 
can 

be taken as the critical value of surface energy for the instability of a cylindrical compressible liquid inclusion. 
Finally, it should be mentioned that previous studies of cylindrical liquid inclusions (Dai et al., 2018; Wu et al., 2018) did not 

predict the instability phenomenon, for the dependence of surface curvature on surface displacement was oversimplified. 

Fig. 5. Deformation states of cylindrical compressible liquid inclusion under uniaxial stretching. The phase diagram is divided into three regimes by 
two lines, γ

EmR =
1+4(1+νm)Ki/Em
(1+νm)(7− 6νm)

and γ
EmR = 1

1+νm
+ 2 Ki

Em
, which determine inclusion auxeticity and instability, respectively. The free end of the inclusion 

shrinks in the first regime but expands in the second regime. Within the third regime, the solution becomes singular and the inclusion is unstable. A 
cylindrical cavity (i.e., Ki/Em = 0) becomes unstable when γ

EmR > 1
1+νm

, which is consistent with existing result (Xuan and Biggins, 2015). For the 
plotting, νm = 0.3 is selected. 
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4.2. Stress concentration 

Macroscopically, the strength of a two-phase composite is strongly dependent upon stress concentration induced by the inclusions 
(Hasselman and Fulrath, 2010). To analyze how liquid compressibility and surface energy affect stress concentration around a cy-
lindrical compressible liquid inclusion, we plot the maximum Mises stresses in the (σmax

Mises,Ki /Em) plane (Fig. 6). (Of course, if 
necessary, we can also plot the maximum shear stress, or other form of stress measure, to characterize stress concentration.) Here, σmax

Mises 
= σmax

Mises/σ∞
Mises, σmax

Misesis the maximum Mises stress (i.e., stress concentration), and σ∞
Misesis the Mises stress of the far field. In the limit 

when the surface effects are negligible (i.e., γ/EmR = 0), the present predictions approach the existing results (Berli et al., 2006), thus 
validating in a way of our analytical model. 

It is observed from Fig. 6 that, as the liquid compressibility is systematically varied, from very small (cavity) to very large 
(incompressible liquid), a transition point exists wherein the maximum Mises stress is minimized. In other words, there exists an 
optimal liquid compressibility minimizing stress concentration around the inclusion. As shown in Fig. 6, the transition occurs when the 
liquid bulk modulus has the same order of magnitude relative to the Young’s modulus of the solid matrix, which is commonly found in 
biological systems. To explain the transition, for the case of γ/EmR = 0.5, the distribution of the Mises stress around the inclusion is 
plotted in Fig. 6 for three different values of liquid compressibility. As the liquid compressibility is increased, the location of stress 
concentration (where the Mises stress is maximized) is shifted from the tip of inclusion in the free direction (point B in Fig. 1) to the 
load direction (point A in Fig. 1). 

The results of Fig. 6 demonstrate further that, when Ki/Em ≪ 1, surface effects have the greatest influence on stress concentration 
and the maximum Mises stress increases with increasing surface energy. On one hand, the result that surface effects increase stress 
concentration indicates that surface effects reduce the strength of a porous material with liquid inclusions. However, how surface 
effects influence the strength of liquid-filled porous materials is an inconclusive question: some experiments have found that surface 
effects increase the strength (Jindal et al., 2016; Ozcan et al., 2001; Van Mechelen, 2004), while others have demonstrated that surface 
effects decrease the strength (Oshita, 2019; Vutukuri, 1974). As a result, the influence of surface effects on material strength and stress 
concentration is a complicated and unresolved matter that merits further investigation. This is nonetheless not the subject of the 
present study. On the other hand, several theoretical studies have investigated how surface effects influence stress concentration near 
an inclusion. The findings reveal that surface effects diminish the stress concentration when a surface model in which surface tension is 
not modified by surface deformation is adopted (Sharma et al., 2003). In reality, however, surface effects depend on surface defor-
mation (Gurtin and Murdoch, 1975). Therefore, when the dependence of surface tension on surface deformation is accounted for in the 
surface model, surface effects are found to increase stress concentration near the inclusion (Dai et al., 2019; He and Li, 2006; Ou et al., 
2008; Style et al., 2015). Thus, with the influence of surface deformation on surface tension considered, our solution about stress 
concentration is consistent with existing studies (Dai et al., 2019; He and Li, 2006; Ou et al., 2008; Style et al., 2015). The actual 
explanation behind this effect is that when you stretch, the increment of surface tension is directed outward, thus increasing the stress 
concentration. When Ki/Em > 1, the stress concentration becomes independent of the surface effects. Note also that, when Ki /Em > 1, 
surface effects have little influence on the Mises stress. 

Fig. 6. Influence of liquid compressibility on stress concentration in elastic matrix under uniaxial stretching. Different lines represent different 
surface effects. With γ/EmR fixed at 0.5, panels I, II and III represent separately the distribution of normalized Mises stress σMises = σMises /σ∞

Mises near 
liquid inclusion for three different values of liquid compressibility, σ∞

Mises being the Mises stress of the far field. As liquid compressibility is increased, 
the location of the maximum Mises stress σmax

Mises (marked by a red arrow in each panel) changes from I via II to III. When surface effects become 
negligible, the present prediction coincide with existing result (Berli et al., 2006). For the plotting, νm = 0.3 is selected. 
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5. Effective mechanical properties 

In physics, the essence of surface effects is attributed to the energy stored on the surface. For example, when a two-phase composite 
material with surface effects is loaded, the surface area will change, so the energy stored on the surface will also change. The results 
presented in Fig. 4 indicate that, when the dimensionless surface energy γ/EmR is increased, surface effects on surface deformation 
become increasingly significant. It follows that, when γ/EmR is large enough, surface effects become prominent in controlling the 
mechanical behaviors of a composite containing distributed cylindrical liquid inclusions. Therefore, in the following section, using the 
Eshelby approach (Eshelby, 1956, 1957; Style et al., 2015; Yang, 2004), we calculate the effective mechanical properties (i.e., Young’s 
modulus, shear modulus and Poisson ratio) of the composite containing sparsely distributed cylindrical compressible liquid inclusions. 
First, we calculate the excess strain energy induced by a single liquid inclusion when the composite is subjected to different types of far 
field load. Then, we present explicit expressions of the effective mechanical properties and quantify how surface effects affect these 
properties. 

5.1. Strain energy 

To analyze the effective mechanical properties of the two-phase composite of concern, first we need to determine the excess energy 
W due to the presence of a single cylindrical liquid inclusion when it is subjected to different types of far field loading. At the far field, if 
the applied loads are σ∞

xx = σ∞
1 in the x-direction and σ∞

yy = σ∞
2 in the y-direction, the solution can be obtained using the liquid-solid 

surface boundary condition of Eq. (32), as illustrated in the Appendix B. Assuming that the strain energy of the effective medium is 
equal to the strain energy of the heterogeneous material Yang (2004), we obtain: 

1
2Eeff

{(
1 − ν2

eff

)[(
σ∞

1

)2
+
(
σ∞

2

)2
]
− 2νeff

(
1 + νeff

)(
σ∞

1 σ∞
2

)}

=
1

2Em

{(
1 − ν2

m

)[(
σ∞

1

)2
+
(
σ∞

2

)2
]
− 2νm(1 + νm)

(
σ∞

1 σ∞
2

)}
+ W

ϕ
πR2,

(35)  

where Eeff and νeff are the effective Young’s modulus and effective Poisson ratio of the composite, respectively, W is the excess energy 
induced by one liquid inclusion, and ϕ is the volume fraction of the liquid inclusion. With no residual stress in the solid considered, the 
excess energy W can be written using the Eshelby formula Eshelby (1956), as: 

W =
1
2

∫

S

(
σ∞

ij uj − σiju∞
j

)
dS, (36)  

where σij are the stresses of the elastic matrix or inclusion induced by the far field loads, σ∞
ij are the far field stresses, uj are the dis-

placements of the surface, and u∞
j are the far field displacements. 

In the absence of liquid inclusion, the displacement and stress fields in the matrix can be expressed as: 

u∞
r = B1r + cos(2θ)(− 2A2r),

u∞
θ = sin(2θ)(2A2r),

(37)  

σ∞
rr =

Em

1 + νm

[
B1

1 − 2νm
− cos(2θ)(2A2)

]

,

σ∞
rθ =

Em

1 + νm
sin(2θ)(2A2).

(38) 

Substitution of Eqs. (26), (27), (37) and (38) into Eq. (36) gives the excess energy W due to the presence of a single inclusion, as: 

W =
2EmπR2(1 − νm)[B1B2 − 4(1 − 2νm)A2A3]

1 − νm − 2ν2
m

. (39) 

Note that the excess energy W is expressed in a general form, suitable for the case when biaxial stretching is applied at the far field. 
Finally, upon substituting Eq. (39) into Eq. (35), the effective mechanical properties of the composite containing sparsely 

distributed cylindrical compressible liquid inclusions are obtained. 

5.2. Effective shear modulus 

When the far field load is pure shear (i.e., σ∞
1 = σ∞, σ∞

2 = − σ∞), Eq. (35) can be rewritten as: 

1
2Geff

(σ∞)
2
=

1
2Gm

(σ∞)
2
+ W1

ϕ
πR2, (40)  

where Geff is the effective shear modulus of the composite, Gm is the shear modulus of the solid matrix, and W1 is the excess energy 
under the shear load. Corresponding coefficients of the displacement fields in W1 can be obtained from the results presented in 
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Appendix B by setting σ∞
1 = σ∞, σ∞

2 = − σ∞. It follows from Eq. (40) that the normalized effective shear modulus is given by: 

Geff

Gm
=

1 −
(
− 5 + νm + 6ν2

m

) γ
EmR

1 + 4(1 − νm)ϕ + (1 + νm)[5 − 4ϕ − (6 − 4ϕ)νm]
γ

EmR
. (41) 

The predicted surface effects on effective shear modulus are presented in Fig. 7 for selected volume fractions of liquid inclusions. 
For validation, the present results are compared with the existing results (Dai et al., 2020) when surface effects are absent (γ /EmR = 0), 
with excellent agreement achieved. The effective shear modulus increases with increasing surface energy. Under far field shear 
loading, the volume of liquid inclusion remains unchanged, for the shear loading is equivalent to traction in one direction and 
compression in the other direction. Correspondingly, the cross-sectional area of the 2D liquid inclusion remains unchanged. However, 
the isoperimetric principle dictates that the perimeter of its surface must become longer after far field shear load is applied. The surface 
can store energy, thus needs to do work against surface forces when the surface area becomes larger. Therefore, increasing the surface 
energy reduces the shear strain, thus increasing the shear modulus. Further, it is observed from Fig. 7 that three lines intersect at one 
point where Geff/Gm = 1. This implies that surface tension has the same influence on the deformation of a composite containing in-
clusions within a solid matrix. On the left side of the intersection point, the volume fraction of solid matrix is dominant for the effective 
shear modulus. In contrast, on its right side, the volume fraction (i.e., cross-sectional area) of liquid inclusion plays a dominant role, 
wherein surface effects stiffen the solid containing distributed liquid inclusions. 

5.3. Effective Young’s modulus and Poisson ratio 

When the far field load is uniaxial stretching (i.e., σ∞
1 = σ∞, σ∞

2 = 0), Eq. (35) can be rewritten as: 

1
2Eeff

(
1 − ν2

eff

)
(σ∞)

2
=

1
2Em

(
1 − ν2

m

)
(σ∞)

2
+ W2

ϕ
πR2, (42)  

where W2 is the excess energy due to a single liquid inclusion under far field uniaxial stretching. Corresponding coefficients of the 
displacement field can be obtained from Eq. (33). 

Under biaxial stretching (i.e., σ∞
1 = σ∞, σ∞

2 = σ∞), Eq. (35) becomes: 

1
Eeff

(
1 − νeff − 2ν2

eff

)
(σ∞)

2
=

1
Em

(
1 − νm − 2ν2

m

)
(σ∞)

2
+ W3

ϕ
πR2, (43)  

where W3 is the excess energy due to a single liquid inclusion subjected to far field biaxial stretching. Corresponding coefficients of the 
displacement field can be obtained from the Appendix B by setting σ∞

1 = σ∞
2 = σ∞. 

Combination of (42) and (43) enables expressing explicitly the effective Young’s modulus Eeff as: 

Fig. 7. Surface effects on effective shear modulus of a composite containing sparsely distributed cylindrical compressible liquid inclusions. Different 
colors represent different volume fractions of liquid inclusions. The effective shear modulus increases with increasing surface energy. Given that the 
liquid cannot bear shear force, the composite with liquid inclusions can be considered as a porous material with cavities. When surface tension 
becomes negligibly small, the present prediction reduces to existing result (Dai et al., 2020). For the plotting, νm = 0.3. 
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Eeff

Em
=

[

− 1 +
(
− 5 + νm + 6ν2

m

) γ
EmR

]{

(1 + νm)

[

− 1 +
(
− 5 + νm + 6ν2

m

) γ
EmR

]

[

− 1 + (1 + νm)

(
γ

EmR
− 2

Ki

Em

)]

+ (− 1 + νm)ϕ

[
− 5 + (1 + νm)

2(
− 1 − 16νm + 12ν2

m

)
(

γ
EmR

)2

+2
(
− 7 − 5νm + 2ν2

m

) Ki

Em
− 2(1 + νm)(− 9 + 4νm)

γ
EmR

+2(1 + νm)
(
1 + 17νm + 4ν2

m − 12ν3
m

) γ
EmR

Ki

Em

]}

/{

(1 + νm)

[

− 1 + (1 + νm)

(
γ

EmR
− 2

Ki

Em

)]

[

1 + 4(1 − νm)ϕ + (1 + νm)(5 − 6νm) − 4
(
1 − ν2

m

)
ϕ

γ
EmR

]2}

,

(44)  

and the effective Poisson ratio veff as: 

νeff = − νm

[

− 1 +
(
− 5 + νm + 6ν2

m

) γ
EmR

][

− 1 + (1 + νm)

(
γ

EmR
− 2

Ki

Em

)]

+(1 − νm)

[

− 1 + (1 + νm)
2( 3 − 16νm + 12ν2

m

)
(

γ
EmR

)2

+2(2νm − 3)(νm + 1)
Ki

Em
+ 2(1 + νm)(5 − 4νm)

γ
EmR

− 2(1 + νm)
(
3 − 13νm − 4ν2

m + 12ν3
m

) γ
EmR

Ki

Em

]

ϕ

/{[

1 + 4(1 − νm)ϕ + (1 + νm)(5 − 6νm) − 4
(
1 − ν2

m

)
ϕ

γ
EmR

]

[

− 1 + (1 + νm)

(
γ

EmR
− 2

Ki

Em

)]}

.

(45) 

For the case of cylindrical cavities with ϕ ≪ 1, the effective Young’s modulus and Poisson ratio reduce to: 

Eeff

Em
= 1 +

(− 1 + νm)

[

3 + 8νm + 2(1 + νm)(1 − 12νm)
γ

EmR + (1 + νm)
2( 7 − 8νm + 12ν2

m

)
(

γ
EmR

)2
]

(1 + νm)

[

− 1 + (1 + νm)
γ

EmR

][

− 1 + (1 + νm)(− 5 + 6νm)
γ

EmR

] ϕ, (46)  

νeff = νm +

(− 1 + νm)

[

− 1 + 4νm + 2(1 + νm)(5 − 8νm)
γ

EmR + 3(1 + νm)
2
(1 − 2νm)

2
(

γ
EmR

)2
]

[

− 1 + (1 + νm)
γ

EmR

][

− 1 + (1 + νm)(− 5 + 6νm)
γ

EmR

] ϕ. (47) 

For the case of incompressible liquid inclusions when ϕ ≪ 1 we have: 

Eeff

Em
= 1 +

(1 − νm)

[

(1 + 10νm) − (1 + νm)
(
7 − 8νm + 12ν2

m

) γ
EmR

]

(1 + νm)

[

− 1 + (1 + νm)(− 5 + 6νm)
γ

EmR

] ϕ, (48)  

νeff = νm +

3(1 − νm)(1 − 2νm)

[

1 + (1 − 2νm)(1 + νm)
γ

EmR

]

1 + (1 + νm)(5 − 6νm)
γ

EmR
ϕ. (49) 

Figure 8(a) presents the predicted surface effects on effective Poisson ratio for selected liquid bulk moduli: the effective Poisson 
ratio decreases with increasing surface energy. When the surface energy becomes sufficiently large (the precise value depending upon 
the mechanical properties of liquid and solid) and the deforming liquid inclusion remains stable, the composite with sparsely 
distributed cylindrical liquid inclusions exhibits a negative effective Poisson ratio. The underlying physical mechanism is identical to 
that associated with the auxetic effect discussed above in Section 4.1. The influence of liquid compressibility on effective Poisson ratio 
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Fig. 8. Dependence of effective Poisson ratio on surface energy and liquid compressibility. (a) Surface effects. Different colors represent different bulk moduli of the liquid. The effective Poisson ratio 
decreases with increasing surface energy. When the surface energy is large enough (the value depends on the mechanical properties of solid matrix and liquid) but the material is still stable (i.e., γ

REm 

< 1
1+νm

+ 2 Ki
Em

), the effective Poisson ratio becomes negative. (b) Influence of liquid compressibility. Different colors represent different surface energy densities. The effective Poisson ratio increases with 
increasing bulk modulus of the liquid. In the absence of surface tension, the prediction reduces to existing result obtained using a dilute model (Dai et al., 2020). For the plotting, νm = 0.3 and ϕ = 0.3 
are selected. 
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is displayed in Fig. 8(b) for selected values of dimensionless surface energy. The effective Poisson ratio increases as the liquid bulk 
modulus is increased, for the lager the liquid bulk modulus, the harder it is for the far field load to change the liquid volume, thus 
affecting the effective Poisson ratio. Further, it is observed from Figs. 8(a, b) that the smaller the liquid bulk modulus, the easier to 
change the effective Poisson ratio from positive to negative by tailoring the surface effects. When surface tension is negligible (γ /EmR =
0), the effective Poisson ratio is consistent with the existing result (Dai et al., 2020). 

For selected liquid bulk moduli, Fig. 9(a) displays the variation trend of effective Young’s modulus with surface tension, which first 
increases and then decreases as surface energy is increased. To explain such variation trend, we note that 

Eeff = 2Geff
(
1+ νeff

)
. (50) 

The effective shear modulus for the case of low liquid compressibility (e.g.,Ki/Em = 0.01) is given by: 

Geff = G0 + kGGm
γ

EmR
+ o
(

γ
EmR

)

(51)  

where G0 is the effective shear modulus of the composite without surface effects, andkG is the slope corresponding to small dimen-
sionless surface energy, which is positive. Similarly, the effective Poisson ratio for low liquid compressibility (e.g.,Ki /Em = 0.01) can 
be written as: 

νeff = ν0 + kν
γ

EmR
+ o
(

γ
EmR

)

, (52)  

where ν0 is the effective shear modulus without surface effects, and kν is the slope corresponding to small dimensionless surface energy, 
which is negative. Then, upon using Eqs. (51) and (52), the effective Young’s modulus for low liquid compressibility can be obtained 
as: 

Eeff = 2
(

G0 + kGGm
γ

EmR
+ o
(

γ
EmR

))(

1 + ν0 + kν
γ

EmR
+ o
(

γ
EmR

))

= 2G0(1 + ν0) + 2[kGGm(1 + ν0) + kνG0]
γ

EmR
+ 2kGkνGm

(
γ

EmR

)2

+ o

((
γ

EmR

)2
)

,

(53)  

where 2G0(1+ν0) = E0 is the effective Young’s modulus without surface tension. Note that 2kGkνGm is negative (which explains why 
the effective Young’s modulus can decrease with increasing surface energy), and also that the axis of symmetry of the function −
kGGm(1+ν0)+kνG0

2kGkνGm 
is positive. Therefore, the reason why the effective Young’s modulus for the case of low liquid bulk modulus (e.g., Ki /Em 

= 0.01) exhibits a variation trend as shown in Fig. 9(a) has been explained. 
For larger liquid bulk moduli, the effective Young’s moduli exhibit a similar variation trend to that of Ki/Em = 0.01 (Fig. 9(a)): 

consistently, there exists a maximum effective Young’s modulus, which has also been observed in previous studies on auxetic materials 
embedded with ellipsoidal or elliptic inclusions (Shufrin et al., 2015; Wei and Edwards, 1999a, b). The critical value of γ /EmR that 

Fig. 9. Dependence of effective Young’s modulus on surface energy and liquid compressibility. (a) Surface effects. The effective Young’s modulus 
first increases and then decreases as surface energy is increased. Different colors represent different bulk moduli of the liquid. The red dashed line 
displays how the maximum effective Young’s modulus varies with γ/EmR for different bulk moduli of liquid. (b) Influence of liquid compressibility. 
Different colors represent different surface energy densities. The effective Young’s modulus increases with increasing bulk modulus of the liquid. In 
the absence of surface tension, the prediction reduces to existing result obtained using a dilute model (Dai et al., 2020). For the plotting, νm = 0.3 
and ϕ = 0.3 are selected. 
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maximizes the effective Young’s modulus can be obtained by solving: 

∂Eeff

∂(γ/EmR)
= 0. (54) 

The red dashed line shown in Fig. 9(a) displays how the maximum effective Young’s modulus varies with γ/EmR. To show more 
details of the curves in Fig. 9(a), we chose three regimes of the abscissa. For either Ki/Em = 0.01 or Ki/Em = 100, the value of  γ /EmR 
that maximizes the effective Young’s modulus falls within the left regime. For Ki/Em = 100, the value of γ/EmR maximizing the 
effective Young’s modulus is located in the middle regime, which is about γ/EmR = 108. In the right regime, the effective Young’s 
modulus for the case of large liquid bulk moduli (i.e., Ki/Em > 100) tends to a limit. 

The presence of maximum effective Young’s modulus is helpful for constructing high-stiffness auxetic composites. In passing, we 
note that when γ/EmR is further increased beyond its critical value and becomes sufficiently large, the effective Young’s modulus drops 
below that obtained for the classical case of no surface effects (i.e., γ/EmR = 0): this phenomenon has also been captured in previous 
studies (Wei and Edwards, 1999a). 

For selected values of dimensionless surface energy (γ/EmR), the influence of liquid compressibility on effective Young’s modulus is 
depicted in Fig. 9(b). Generally speaking, the effective Young’s modulus is seen to increase with increasing liquid bulk modulus: that is, 
the larger the liquid bulk modulus, the harder the composite is to be stretched. Nonetheless, when the dimensionless surface energy 
becomes sufficiently large (e.g., γ/EmR = 0.5), the effective Young’s modulus in the regime of low liquid bulk modulus (e.g., Ki /Em =

0.01) can drop below that in the limiting case of no surface effects (i.e., γ/EmR = 0). This interesting result indicates that combining 
sufficiently low dimensionless liquid bulk modulus (Ki/Em) with sufficiently high dimensionless surface energy (γ /EmR) enables 
designing softened composite materials with liquid inclusions. Note also that, in the limiting case γ /EmR = 0 the present prediction 
coincides with that previously reported (Dai et al., 2020). 

6. Discussion 

Auxetic materials (i.e., materials with negative Poisson ratio) exhibit unique properties relative to conventional materials, such as 
larger shear modulus, enhanced indentation resistance, enlarged energy absorbance, higher fracture toughness, and enhanced crack 
growth resistance (Assidi and Ganghoffer, 2012; Wang et al., 2016). Representative auxetic materials in nature include silicon dioxide 
(SiO2) in the α-cristobalite structure (Yeganeh-Haeri et al., 1992), skin tissue (Lees et al., 1991) and pyrolytic graphite (Novak et al., 
2016). Representative man-made auxetic materials include two-dimensional honeycombs (Evans et al., 1991; Qin and Qin, 2020), 
three-dimensional cellular foams (Lakes, 1987; Zhang and Xiong, 2018) and microporous polymers (Caddock and Evans, 1989; Evans 
and Caddock, 1989). According to the results presented in Sections 4.1 and 5.2.2, we can construct novel composites with negative 
Poisson ratios by tailoring the dimensionless surface energy γ/EmR. Further, we can tailor γ/EmR to maximize the effective Young’s 
modulus of the composite. Still further, according to the results of Section 4.2, we can tailor the dimensionless liquid compressibility Ki 
/Em to minimize stress concentration around a liquid inclusion for enhanced composite strength. In a word, the present results provide 
useful guidelines for designing novel composite materials with unique attributes. 

Cylindrical liquid inclusions are commonly found in biological tissues, such as dentin tubules, blood capillaries, and neuronal 
axons. For tissues with blood capillaries, the liquid phase is the blood and the solid matrix is the extracellular matrix (ECM), which 
provide structural and biochemical support to cells. The mechanics of ECM significantly influences cell behaviors and tissue de-
velopments (Peyton et al., 2007; Zheng et al., 2019), and hence characterizing its mechanical properties is critically important. 
Typically, the effective mechanical properties of tissue can be measured using a variety of experimental methods. Then, using the 
theoretical model developed in the current study, we can determine the mechanical properties of the ECM and investigate how they 
affect cell behaviors. Besides, the proposed model enables quantifying the influence of elastic fields in ECM on cell. 

According to existing study (Chen et al., 2021), a solid matrix containing spherical liquid inclusions can be considered as a special 
kind of porous medium. Therefore, a solid matrix containing cylindrical liquid inclusions can also be considered as a special porous 
medium, which is transverse isotropic. Typically, for transversely isotropic porous media, eight poromechanical parameters are 
involved in constitutive modeling. In the current study, we have determined the effective mechanical properties of a composite with 
cylindrical liquid inclusions, which can be taken as its in-plane poromechanical coefficients. The out-of-plane poromechanical co-
efficients of the transversely isotropic composite will be presented in our follow-up studies. 

7. Conclusion 

A theoretical model has been developed to analyze the elastic field of a cylindrical compressible liquid inclusion and estimate the 
effective mechanical properties of a composite containing sparsely distributed cylindrical liquid inclusions, with surface effects duly 
accounted for. Different from previous studies, the linear dependence of the normal vector and curvature of liquid-solid surface upon 
deformation is considered in our model. Main results obtained are summarized below. 

(1) Upon deformation, the cylindrical compressible liquid inclusion exhibits three distinct states: normal state, auxetic state and 
unstable (singular) state. Interplay between the liquid bulk modulus and surface energy dictates the boundary between the normal and 
auxetic states as well as the boundary between the auxetic and singular states. 

(2) Previous studies of the cylindrical liquid inclusion did not predict its instability when the surface energy becomes sufficiently 
large, for the dependence of surface curvature on deformation was oversimplified in these studies. 
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(3) Stress concentration around the cylindrical liquid inclusion is minimized when the liquid bulk modulus has the same order of 
magnitude relative to the Young’s modulus of the solid matrix, which is commonly found in biological systems. 

(4) When surface energy is sufficiently large, the composite containing cylindrical liquid inclusions becomes auxetic, exhibiting 
negative effective Poisson ratio. 

(5) The effective Young’s modulus of the composite first increases and then decreases with increasing surface energy, and the 
transition point of the maximum effective Young’s modulus is dependent upon the liquid bulk modulus. 

The model given in the present study demonstrates significant surface effects on the elastic fields of cylindrical compressible liquid 
inclusion and provides useful guidelines for designing high-strength auxetic composite materials. 
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Appendix A. Effect of liquid compressibility on displacement under uniaxial stretch 

When subjected to far field uniaxial stretching in the x-direction, the displacement of point B (Fig. 1) decreases with increasing 
liquid bulk modulus for a given surface energy. Alternatively, with the liquid bulk modulus fixed, the displacement of point B increases 
with increasing surface energy, because surface tension tends to minimize surface area. Therefore, for the present 2D cylindrical liquid 
inclusions (more details presented in Section 4.1), the surface of the inclusion tends to a circle. In the limiting condition when surface 
tension vanishes (i.e., γ/EmR → 0), the present predictions coincide with existing solutions (red circles in Fig. A1) (Berli et al., 2006). 

Fig. A1. Effect of liquid compressibility on displacement of point B (Fig. 1) under far field uniaxial stretch. Different colors represent different levels 
of surface energy. Red circles are existing results without surface tension (Berli et al., 2006). νm = 0.3 is selected for the plotting. 

F. Ti et al.                                                                                                                                                                                                               



Journal of the Mechanics and Physics of Solids 161 (2022) 104813

19

Appendix B. The solution for biaxial stretch 

When subjected to far field biaxial stretching (i.e., σ∞
xx = σ∞

1 ,σ∞
yy = σ∞

2 ), the coefficients of the elastic fields are: 

B1 =
1 − νm − 2ν2

m

2
σ∞

1 + σ∞
2

Em
,

B2 =

(1 + νm)

[
(
− 1 + νm + 2ν2

m

)
(

L
R
− 2

Ki

Em

)

− 1
]

2
[
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(
L
R
− 2
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Em

)

− 1
]
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2

Em
,

A1 = 0,

A2 = −
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4
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Em
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