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A B S T R A C T   

Blockage of ureter caused by kidney stone, accompanied by severe pain/infections, is a high incidence urinary 
tract disease that has received extensive attention. Currently, in clinics, a kidney stone with diameter less than 
~5 mm is considered capable of passing through ureter. However, this critical size (~5 mm) is empirically based, 
lacking quantitative analysis. In this study, we proposed a stone-ureter interaction model to quantificationally 
estimate the critical size of kidney stone passing through ureter. We revealed that the critical size of kidney stone 
is related to ureter size, about 11%–22% larger than the inner diameter of ureter. Further, based upon the 
Winkler elastic foundation beam model, we developed a simplified stone-ureter interaction model to evaluate 
how this critical size is dependent upon the stiffness of ureter and the surface roughness of kidney stone. The 
proposed model may help urologists improve the accuracy of personalized diagnosis and treatment.   

1. Introduction 

As a highly prevalent urological disorder (Alelign and Petros, 2018), 
kidney stones have long plagued humans with 12% incidence rate 
(López and Hoppe, 2010; Chauhan et al., 2009). Most kidney stones in 
human body can migrate to ureter along with urine. When a relatively 
large stone is passing through the ureter, the interaction between ure
teral wall and stone usually triggers pain. More severely, a sufficiently 
large stone can block the pathway of urinary flow, causing backflow of 
urine (Najafi et al., 2016) and consequent complications such as urinary 
tract infections (Arant, 1991). Existing therapies for stone removing 
with regard to different situations mainly include: expulsive medical 
therapy (EMT) to facilitate stone passage, analgesics with extracorporeal 
shock wave lithotripsy, ureteroscopic lithotripsy, and laparoscopic 
ureterolithotomy (Song et al., 2010; Preminger et al., 2007). Typically, 
urologists choose a specific therapy according to the location, size, and 
shape of kidney stones (Song et al., 2010). 

Based upon clinical statistical methodology, current guidelines of 
therapies empirically recommend that smaller stones with diameter less 
than ~5 mm can pass through ureter, while larger stones may need 
certain clinical therapies (Preminger et al., 2007; Segura et al., 1997; 

Mokhless et al., 2012; Jendeberg et al., 2017). Such guidelines, however, 
lack substantial physics principles, and may expose the patients to po
tential risks (Jendeberg et al., 2017). Specifically, there is no quantita
tive criterion to judge under what conditions a kidney stone can pass 
through ureter, and how geometrical and material parameters of stone 
and ureter affect the passage of stone. Therefore, to improve therapy 
accuracy and reduce potential risks, performing mechanical analysis is 
indispensable to determine the size range of kidney stones that can pass 
through ureter. 

Given that ureter is the primary channel for transporting kidney 
stones to the outside of human body, the mechanical properties of ureter 
play a key role in determining the critical size of stone passing through 
it. By investigating ureter segments of mammals (e.g., rabbit, dog, pig, 
and human foetus), it was found that ureter is typically a thick-walled 
tubular structure, exhibiting nonlinear, anisotropic, and pseudo-elastic 
response over finite strain (Yin and Fung, 1971). The ureter of rabbit 
displays nonlinear anisotropic mechanical response during in vitro 
inflation/extension testing, which can be well characterized using the 
four-parameter Fung-type strain energy function (Sokolis, 2011, 2014), 
called herein as the Fung-type model. Focusing upon human ureter 
under biaxial tension, Rassoli et al. (2014) characterized the mechanical 
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behavior of ureter using the Fung-type model, and concluded that ureter 
tissues exhibit anisotropy between longitudinal direction and circum
ferential direction. In the present study, the Fung-type model is also 
employed to characterize the deformation of human ureter caused by 
kidney stone. 

This study aims to establish a mechanical model to calculate the 
critical size of kidney stone passing through ureter. Both theoretical 
analysis and numerical simulations with the finite element method 
(FEM) are employed to establish the mechanical model. To validate the 
proposed model, in vitro experiments are carried out. Critical urine 
pressure impelling a kidney stone to move within ureter is obtained for 
selected sizes of stone and ureter, from which the critical size of stone 
passing through ureter is determined based on human bearable 
maximum urine pressure. 

2. Material and methods 

2.1. Mechanical model of stone-ureter interaction 

Adult human ureter is a highly flexible lumen (Woodburne and 
Lapides, 1972; Hanna et al., 1976), with a diameter ranging 4–6 mm and 
a length ranging 25–30 cm (Sokolis et al., 2017) (Fig. 1a). In accordance 
with previous studies (Vahidi et al., 2011; Vahidi and Fatouraee, 2012; 
Takaddus et al., 2018; Takaddus and Chandy, 2018), we simplify human 
ureter as a uniform axisymmetric tube such that a mechanical model can 
be established (Fig. 1b). When kidney stones migrate from kidney to 
ureter, small stones can pass through ureter along with urine (Chrispell 
and Fauci, 2011), while larger ones with size exceeding the inner 
diameter of ureter would be stuck in it (Fig. 1a). In our model, a suffi
ciently large kidney stone is considered as a rigid sphere to analyze the 
force state of the stone stuck in ureter. On the one hand, the resistance 
force (Fre) existing between the stone and ureter would hinder the stone 
from moving. On the other hand, the urine pressure (Pu) acting on the 
stone, which generates the driving force (Fdr) on the stone, would impel 
the stone to move in the blocked ureter. According to Newton’s second 
law, the critical condition for kidney stone moving in ureter can be 
obtained as: 

Fre = Fdr (1)  

with the effective area that urine pressure acts on the stone denoted as 
Aeff , the driving force can be expressed as Fdr = Pu⋅Aeff , yielding: 

Fre = Pu⋅Aeff (2) 

The critical urine pressure (Pucr) impelling a kidney stone to move, 
which we aim at, can be obtained by solving Eq. (2). 

To solve Eq. (2), we introduce an intermediate variable, as follows. 
Firstly, for clarity, we define two states of ureter as shown in Fig. 1b: (1) 
initial state: a stone stuck in ureter without pressure Pu (i.e., Pu = 0, 
dashed-line); (2) current state: a stone stuck in ureter with Pu (i.e., 
Pu > 0, solid-line). To conveniently express the deformation and stress 
state in ureter wall, the polar coordinates (r, θ) are set up as shown in 
Fig. 1b. In initial state, there exists a non-contacting arc between ureter 
and stone with a separation angle θ = α (Fig. 1b). Then, with the in
crease of Pu (i.e., in current state), α would also increase due to expan
sion of ureter caused by Pu. Meanwhile, the effective area Aeff on the 
spherical stone (radius Rs) can be determined as Aeff = π(Rssinα)2. On 
the other aspect, when the stone tends to move, the compression stress 
acting on stone-ureter interface, i.e., σr(r=Rs) , yields a friction force f 
generated on the interface according to Coulomb’s law of friction 
(Popov, 2017); Fig. 1d. With the increase of α, both the compression 
stress σr(r=Rs) and the friction force f would hinder stone movement (see 
Fig. S1). Summation of σr(r=Rs) and f on the stone then yields the resis
tance force Fre. Therefore, Pu, Aeff and Fre are all dependent upon the 
intermediate variable α, as: 
⎧
⎨

⎩

P u = Pu(α)
Aeff = π(Rssinα)2

Fre = Fre(α)
(3) 

A critical separation angle αcr can thence be determined, as: 

Fre(αcr) = Pu(αcr)⋅π(Rssinαcr)
2 (4) 

Finally, the critical urine pressure Pucr for a kidney stone to move in 
blocked ureter could be determined as Pucr = Pu(αcr). 

2.1.1. Relation between resistance force and separation angle 
To determine the relation between resistance force Fre and separation 

angle α, the stone is taken as fixed when urine pressure Pu gradually 
increases from initial state of Pu = 0. In initial state, the ultimate 
separation angle could be determined as αu = π − α0 (Fig. 1b), α0 being 
the initial separation angle. Supposing the separation angle reaches a 
certain value of α ∈ [α0, π − α0], we denote the compression stress 

Fig. 1. Schematic of kidney stone-blocked ureter in human body and the mechanical modeling for stone-blocked ureter. (a) Kidney stone-blocked ureter: urine flow 
is cut off by kidney stone, leading to urine accumulation and increasing urine pressure (Pu). (b) Stone-ureter interaction model before (initial state marked with 
dashed line) and after deformation (current state marked with solid line) with urine pressure Pu. In initial state, ureter has inner radius Ra and outer radius Rb. Half 
central angle of non-contact arc between ureter and stone (defined as separation angle) in initial state is α0. After deformation, the separation angle becomes α, and 
the effective area of Pu applied on stone is Aeff. The ultimate separation angle is π-α0. (c) Deformation of ureter segment faraway from stone, with inner and outer 
radius after deformation (in current state) ra and rb. (d) Force state of stone caused by ureter. The stone is subjected to radial compression stress σr(r = Rs) and friction 
force f caused by σr(r = Rs). Vertical force components of σr(r = Rs) and f on stone are Fσ and Ff. 
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within the unseparated region in initial state as σ0
r(r=Rs)

(θ), with 
θ ∈ [α, π − α0]. In current state, with an identical separation angle α ∈

[α0, π − α0] under Pu > 0, the compression stress within the unseparated 
region can be proved as σr(r=Rs)(θ) ≈ σ0

r(r=Rs)
(θ) in contact region 

θ ∈ [α, π − α0]; Supporting Information (SI) Section 2. This conclusion 
enables simplifying the calculation of Fre, with arbitrary separation 
angle α ∈ [α0, π − α0], compression stress σr(r=Rs)(θ) in current state can 
be directly replaced by σ0

r(r=Rs)
(θ) in initial state, with θ ∈ [α, π − α0]. 

Therefore, the force component Fσ of σr(r=Rs) on stone along the length 
direction of ureter (Fig. 1d) can be obtained as (SI Section 1): 

Fσ(α) = πR2
s

∫π− α0

α

σ0
r(r=Rs)

(θ)sin2θdθ, α ∈ [α0, π − α0] (5) 

Similarly, the force component Ff of f on stone along the length di
rection of ureter (Fig. 1d) can be expressed as (SI Section 1): 

Ff (α) = 2πμf R
2
s

∫π− α0

α

σ0
r(r=Rs)

(θ)sin2θdθ, α ∈ [α0, π − α0] (6)  

where μf is the coefficient of static friction between ureter and stone. 
Finally, the relation between resistance force Fre on stone and separation 
angle α is given by: 

Fre(α)=Fσ(α) + Ff (α) (7) 

In the present study, to determine the specific value of Fre(α), the 
unknown quantities α0 and σ0

r(r=Rs)
(θ) in Eqs. (5) and (6) are obtained 

using numerical methods. 
Although σ0

r(r=Rs)
cannot be obtained analytically, we note that 

σ0
r(r=Rs)

is actually determined by the mechanical properties of ureter 
(denoted here as Cm), the size of ureter (inner radius Ra and outer radius 
Rb), and the radius of stone (Rs). Therefore, based on dimensional 

analysis, σ0
r(r=Rs)

(θ) can be expressed as σ0
r(r=Rs)

(θ) = f1
(

Cm,
Rb
Ra
, Rs

Ra
, θ
)

. 

Substituting σ0
r(r=Rs)

(θ) into Eqs. (5) and (6) yields: 

Fre(α) = πR2
s ⋅f2

(

Cm, μf ,
Rb

Ra
,
Rs

Ra
, α

)

, α ∈ [α0, π − α0] (8)  

2.1.2. Relation between urine pressure and separation angle 
According to the Saint Venant principle (Timoshenko and Goodier, 

1970), the deformation of a ureter segment faraway from a kidney stone 
is not affected by the stone but caused only by urine pressure Pu. As a 
result, the axisymmetric plane strain model holds for this faraway ureter 
segment (Fig. 1c). In cylindrical coordinates (r, θ) in cross section of 
ureter as shown in Fig. 1c, the mechanical equilibrium for the faraway 
ureter then requires: 

dσr

dr
+

1
r
(σr − σθ) = 0 (9)  

where σr and σθ are the Cauchy stresses along radial and circumferential 
directions in ureter wall. The urine pressure Pu can be obtained by 
integrating Eq. (9) from inner radius ra to outer radius rb of ureter in 
current state (Ma et al., 2018). 

Generally speaking, in initial state, a pressure Pout exists on the 
outside of ureter due to the confining effects on ureter caused by sur
rounding tissues. Therefore, in current state, the pressure pout outside the 
ureter could be calculated as (Chandrasekharaiah and Debnath, 1994): 

pout =
Rb

rb
⋅Pout (10)  

where Rb is the outer radius of ureter in initial state. Combined with pout , 
the urine pressure Pu is calculated as: 

Pu − pout =

∫− pout

− Pu

dσr =

∫rb

ra

1
r
(σθ − σr)dr (11) 

Substituting Eq. (10) into Eq. (11) yields: 

Pu =

∫rb

ra

1
r
(σθ − σr)dr +

Rb

rb
⋅Pout (12) 

This equation, together with the constitutive model of ureter, pro
vides the relation between Pu and inner radius ra for faraway ureter, i.e., 
Pu(ra). 

To determine Pu(α), the relation between ra and separation angle α, i. 
e., ra(α), should be also given. According to algebraic geometry (Fig. 1d), 
a relation between ra and α could be established as: 

ra = Rs⋅sinα − Δd (13)  

where Δd is mathematically expressed as a series based on sin α, as: 

Δd =
∑∞

i=0
ai(sin α)i (14)  

with sin α ≤ 1 insured, the series is convergent, with the coefficients ai 
determined by the geometrical parameters and constitutive model of 
ureter via data fitting. Substituting Eq. (14) into Eq. (13) yields ra(α). 

Particularly, the profile connecting the faraway ureter and stone 
should be tangent to the two junctions, A and N2 in Fig. 1d. Conse
quently, based on the condition of junction A (ra = Ra, α = α0) in 
initial state and junction N2 (ra = Rs, α = π

2) in current state with α =
π
2, a simple linear relation between ra and sin α in Eqs. (13) and (14) 

could be obtained, as: 

ra = Rs⋅sin α + (sin α − 1)⋅
Ra − Rs⋅sin α0

sin α0 − 1
(15) 

Equation (15), together with Eq. (12), gives the relation Pu(α). 
Upon combining Eqs. (4), (7), (12) and (15), the critical urine pres

sure Pucr impelling a stuck kidney stone to move in ureter could be ob
tained. In this study, Pucr is separately determined with the Neo-Hookean 
model (Eq. (19)), which is validated by performing in vitro experiments, 
and with the Fung-type model (Eq. (21)). 

Actually, based on dimensional analysis, Pu is dependent upon the 
mechanical properties of ureter (Cm), the size of ureter, the deformation 

of ureter wall, and Pout . That is, Pu can be expressed as Pu = f3
(

Cm,
Rb
Ra
,

ra
Ra
, rb

Rb
, Pout

)
. Ra and Rb are the inner radius and outer radius of ureter in 

initial state, while ra and rb are the inner radius and outer radius of 
ureter after deformation. According to Eq. (15), ra

Ra 
is dependent upon Rs

Ra 

and α. With the incompressibility of ureter (Eq. (S9)) accounted for, it 
can be deduced that rb

Rb 
is dependent upon Rs

Ra 
and Rb

Ra
. Therefore, Pu(α) can 

be expressed as: 

Pu(α) = f4

(

Cm,
Rb

Ra
,

Rs

Ra
, Pout, α

)

, α ∈ [α0, π − α0] (16)  

which, together with Eqs. (4) and (8), yields: 

Pucr = f5

(

Cm, μf ,
Rb

Ra
,

Rs

Ra
, Pout

)

(17) 

Thus, Pucr is mainly determined by Cm, μf ,
Rb
Ra
, Rs

Ra
, and Pout . In order 

to measure Pucr , we define η =
Rb
Ra 

and ξ = Rs
Ra 

so that different combi
nations of η and ξ can be selected to conduct in vitro experiments, as 
detailed below. 
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2.2. In vitro experiments 

An in vitro experimental system is developed to verify the critical 
pressure Pucr predicted by the proposed stone-ureter interaction model; 
Fig. 2. Latex tubes (Fig. S3a) are used to simulate ureter while tungsten 
steel spheres (Fig. S3b) are employed to simulate kidney stones, for the 
hardness of kidney stone is much higher than that of ureter (Vahidi et al., 
2011; Zhong et al., 1993). With the inner radius of latex tube purposely 
selected to be smaller than that of tungsten steel sphere, the sphere is 
pressed into the tube to simulate stone-blocked ureter. To simulate the 
confining pressure of ureter in human body, the blocked latex tube is 
immersed in a water reservoir. To simulate urine, water is filled in the 
blocked latex tube. Water pressure in the tube is controlled to stimulate 
urine pressure via a syringe and measured via a pressure gauge, the 
latter connected to the tube with a T-branch pipe. As the syringe is 
slowly pushed (10 mm/min), the sphere would move from rest only if 
the pressure in the tube reaches a critical value Pucr. A digital video 
camera (FDR-AX45, Sony, Japan) is employed to record the process, so 
that Pucr can be captured (SI Section 3.2). 

Experiments are carried out under two different conditions: (1) the 
tube is exposed to air, and (2) the tube is immerged in water with a fixed 
hydrostatic pressure of Pout = 5.4 kPa (i.e., the tube is located 540 mm 
below the water surface in reservoir, as shown in Fig. 2). The tube sizes 
are chosen as η = 1.5, 1.57, 2 (Fig. S3a). Spheres with sizes varying as 
ξ = 1–1.5 (Fig. S3b) are tested for each tube, so that different values of 
critical pressure Pucr can be obtained. 

2.3. Estimation of static friction coefficient between ureter and kidney 
stone 

When the stone-ureter interaction model is applied to calculate the 
critical size of kidney stone through human ureter, the static friction 
coefficient μf between ureter and kidney stone needs to be known ac
cording to Eq. (17). Therefore, a sample of uric acid stone taken from 
human body (Fig. 3a and b, provided by Tianjin University of Tradi
tional Chinese Medicine) is collected herein as a representative to esti
mate μf , although there are several types of kidney stones (Cruz-May 
et al., 2021). Because human ureter is a kind of elastomer compared 
with kidney stone, μf is mainly determined by the roughness of kidney 
stone surface (Popov, 2017). Hence, the surface topography of the uric 
acid stone is obtained (Fig. 3c) by scanning electron microscope (SEM) 
(MAIA3, Tescan, Czech Republic). It is found that the uric acid stone 

sample comprises of cubic crystals (Fig. 3a and c), and the average edge 
length of the cubic can be measured as ~ 20 μm. 

To estimate μf , the SEM image of the kidney stone needs to be con
verted to surface profile. For brief herein, we choose six paths marked on 
the SEM image (Fig. 3c) to obtain surface profile. Since the crystal shape 
in SEM image is nearly cubic, the approximate maximum height of the 
surface profile is close to body diagonal of cubic crystal as 

̅̅̅
3

√
×

20 μm ≈ 35 μm. Then, the surface profiles along the six paths can be 
obtained by linearly converting the gray value of SEM image to actual 
contour value of the kidney stone surface (Fig. 3d). Further, the average 
of the profiles is obtained as the black line shown in Fig. 3d. 

Then, based on the average profile, the baseline of which is obtained 
based on the least square method as the red line shown in Fig. 3e, and 
the maximum tangent slope of the baseline is tan|θ0max| = |k0max| =

0.38. Besides, the deviation with respect to the baseline of the average 
profile is accordingly obtained as the black line shown in Fig. 3f, and the 
baseline of the deviation is obtained as the red line. Similarly, the 
maximum tangent slope of the baseline of the deviation is tan|θ1max| =

|k1max| = 0.12. According to the friction theory (Popov, 2017), the static 
friction coefficient therefore can be estimated as: 

μf = tan(|θ0max| + |θ1max|) =
|k0max| + |k1max|

1 − |k0max|⋅|k1max|
≈ 0.5 (18)  

2.4. FE analysis 

2.4.1. FE modelling for in vitro experiments 
As mentioned in Section 2.1.1, the initial separation angle α0 and 

radial stress distribution σ0
r(r=Rs)

(θ) between the sphere and tube wall are 
difficult to obtain analytically. Therefore, a FE (finite element) model is 
developed in Abaqus (Version 2019; Dassault Systèmes simulia Corp., 
RI, USA) to calculate both α0 and σ0

r(r=Rs)
(θ). The results enable deter

mining the Pucr theoretically based on the mechanical model of stone- 
ureter interaction, which is then compared with in vitro experimental 
measurement. 

Since the geometrical characteristics of the sphere and tube are 
axisymmetric with regard to the center line of the tube, axisymmetric FE 
models are developed (Fig. 4a). Geometrical dimensions of the FE 
models are coincident with those of test samples used in vitro experi
ments, with η = Rb

Ra
= 1.5, 1.57, 2 for the tubes (with inner radius Ra 

and outer radius Rb) and with ξ = Rs
Ra

= 1–1.5 for the spheres (with 
radius Rs). The rectangular part represents the longitudinal section of 
the latex tube wall, the length of which is more than twice of the 
diameter of rigid sphere, so as to ensure that the upper and lower 
boundary constraints have no impacts on stress distribution in the latex 
tube caused by the sphere. The arc curve represents the boundary of the 
sphere. 

For material properties, the Neo-Hookean hyperelastic model (Eq. 
(19)) with C10 = 0.1465 MPa (SI Section 3.1.3) is assigned to the latex 
tube, and the section property of analytical rigid body is assigned to the 
sphere for tungsten steel sphere is much stiffer than latex tube. 

The 4-node bilinear axisymmetric quadrilateral, hybrid elements 
(CAX4RH) are employed to partition the latex tube, with a minimum 
element size of 1/1000 tube length to guarantee the convergence of FE 
results. Mesh partition, however, is not necessary for the sphere since it 
is assigned with the property of analytical rigid body. 

The tube and sphere are assembled side by side with the edge of the 
sphere being tangent to the inner surface of tube wall. A contact prop
erty with the friction coefficient μf = 0.475 (SI Section 3.1.4) is 
assigned to the surface pair of sphere and inner surface of tube along the 
tangent direction. 

A displacement load ux = Rs − Ra along the x-axis applied on the 
sphere yields that the center of sphere would be finally coaxial with the 
center line of tube (Fig. 4b). The y-axisymmetric displacement con
straints of uy = ωx = ωz = 0 are applied on the upper and lower 

Fig. 2. Experimental setup of in vitro simulator for kidney stone passing 
through ureter. A tungsten steel sphere (red arrow) was put in a latex tube to 
simulate stone-blocked ureter, and the syringe was controlled by an electric 
screw rod connected to PC to manipulate inner pressure Pu in the blocked latex 
tube. A pressure gauge was used to measure the critical pressure Pucr impelling 
the sphere to move in the tube. A digital video camera was employed to record 
the movement of sphere from rest and the change of pressure shown on pres
sure gauge. 
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boundaries of the tube to ensure that its deformation is y-axisymmetric. 
Further, for the tube immersed 540 mm underwater, not only the 
displacement loads but also the pressure (Pout = 5.4 ​ kPa) on the outer 
surface of the tube are applied to the FE model. 

Finally, the initial separation angle α0 and the compression stress 
σ0

r(r=Rs)
can be determined from the FE results, as illustrated in Fig. 4b; 

correspondingly, the critical pressure Pucr can be obtained theoretically 
based on the stone-ureter interaction model. The whole process is 
summarized as the flowchart of Fig. 4c. 

2.4.2. FE modelling for human ureters 
The wall thickness and inner radius of human ureter are not uniform 

Fig. 3. Estimation of friction coefficient between 
kidney stone and ureter. (a) Image of kidney stone 
sample and elemental composition analysis for the 
stone sample. (b) Energy spectrum diagram of the 
stone sample, which shows that there are three main 
chemical elements of carbon, nitrogen, and oxygen, 
indicating that the sample is uric acid stone. (c) SEM 
image of the surface of the uric acid stone sample and 
the paths selected for obtaining the surface profile of 
the stone. (d) the surface profiles corresponding to 
the six paths. (e) the average of the surface profiles 
corresponding to the six paths. (f) the deviation with 
respect to the baseline of the average profile.   

Fig. 4. FE (finite element) simulation for obtaining the stress distribution and deformation in latex tube caused by tungsten steel sphere. (a) FE model of tungsten 
steel sphere and latex tube; (b) compression stress distribution σ0

r(r=Rs)
and deformation of latex tube based on FE simulation; and (c) flowchart for calculating the 

critical pressure Pucr needed to move the sphere in tube. 
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lengthwise (Hanna et al., 1976), varying with different individuals 
(Sokolis et al., 2017), and hence the ratio of ureter outer radius Rb to 
inner radius Ra (i.e., η = Rb

Ra
) is a variable. For illustration, we consider 

the upper limit ηmax and the lower limit ηmin for human ureter to 
calculate the critical size of kidney stone passing through it. Human 
ureter wall thickness was found to exhibit a negative linear relation with 
ureter inner radius (Sokolis et al., 2017). Consequently, the upper limit 
ηmax may be determined by maximum wall thickness (~1.13 mm) and 
minimum inner radius (~0.47 mm), as ηmax = 3.40. The lower limit 
ηmin may be determined by minimum wall thickness (~0.52 mm) and 
maximum inner radius (~1.75 mm), as ηmin = 1.30. 

For the two limit conditions (i.e., ηmin = 1.30 and ηmax = 3.40), FE 
models are separately developed (Fig. 5a and b). The kidney stone is 
modeled as a rigid sphere with radius varying as Rs = Ra–1.3Ra (i.e., 
ξ = 1–1.3). The static friction coefficient μf = 0.5 obtained based on 
SEM images of uric acid stone (Section 2.3) is adopted, as the average 
friction coefficient between kidney stone and ureter. The Fung-type 
constitutive model (Eq. (21)) is assigned to the ureter, with relevant 
material constants selected as C = 0.4056 MPa, a1111 = 0.7091, a2222 =

0.1856 and a1122 = 0.8892 (Rassoli et al., 2014). The 4-node bilinear 
axisymmetric quadrilateral, hybrid elements (CAX4RH) are employed to 
partition the ureter wall, with a minimum element size of 1/2000 ureter 
length to guarantee the convergence of FE results. Displacement and 
load conditions are applied on each FE model in a way similar to the FE 
models of latex tube and tungsten steel sphere (Section 2.4.1). Nu
merical results obtained from the FE models are subsequently used to 
determine the initial separation angle α0 and compression stress σ0

r(r=Rs)

in Eqs. (5), (6) and (15). Finally, these results are used to theoretically 
calculate the critical pressure Pucr (Fig. 4c). 

3. Results 

3.1. Verification of stone-ureter interaction model 

To characterize the mechanical behavior of latex tubes used in the 
present mechanical tests (SI Section 3.1), the Neo-Hookean model is 
employed, given by: 

U = C10(I1 − 3) (19)  

where U is the strain energy function, C10 is a material constant, I1 =

λ2
1 + λ2

2 + λ2
3 is the first strain invariant, and (λ1, λ2, λ3) are the three 

principal stretch ratios. To simplify the calculation, the material of latex 
tubes is assumed incompressible, i.e., λ1λ2λ3 = 1. Combining Eqs. (12) 
and (19) leads to the relation between the pressure in latex tube Pu and 
the tube inner radius ra in the current state, as (SI Section 4): 

Pu = C10

(
R2

b

r2
a + R2

b − R2
a
−

R2
a

r2
a
+ ln

r2
a

R2
a
− ln

r2
a + R2

b − R2
a

R2
b

)

+ Pout
Rb

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
a + R2

b − R2
a

√ (20)  

where Ra and Rb are the inner radius and outer radius of latex tube in 
initial state, and Pout is the external pressure of latex tube. With Eq. (20) 
and the initial separation angle α0 and compression stress σ0

r(r=Rs)
ob

tained from FE simulation (Fig. 4b), critical pressure Pucr can be theo
retically determined as shown in flowchart Fig. 4c. 

Fig. 6a and b displays both the theoretical and in vitro experimental 
results of Pucr for different combinations of tube size (i.e., η = 1.5, 1.57 
and 2) and sphere size (i.e., ξ = 1–1.5). The theoretically calculated 
critical pressure Pucr of latex tube, either exposed to air or immersed 
under water, is seen to agree well with experimental data, thus vali
dating the proposed stone-ureter interaction model. 

3.2. Critical size of kidney stone passing through ureter 

It has been demonstrated that the constitutive model of human 
ureter is given by the well-known four parameters Fung-type model, as: 

U =
C
2
(
eQ − 1

)
, Q = a1111E2

θθ + a2222E2
zz + 2a1122EθθEzz (21)  

where U is the strain energy function; C, a1111, a2222 and a1122 are ma
terial constants; Eθθ = 1

2 (λ
2
θ − 1) and Ezz =

1
2 (λ

2
z − 1) are the Lagrange 

strains, with principal stretch ratios defined along circumferential and 
longitudinal directions. To simplify the calculation, the incompressi
bility of ureter (Sokolis, 2011) is hypothesized with λrλθλz = 1. 
Combining Eqs. (12) and (21) leads to the following relation between Pu 
and inner radius ra of ureter in current state (SI Section 5): 

Pu =
1
4

C
̅̅̅̅̅̅̅̅̅̅̅̅
πa1111

√
{

erfi
[ ̅̅̅̅̅̅̅̅̅a1111
√

2

(
r2

a

R2
a
− 1

)]

− erfi
[ ̅̅̅̅̅̅̅̅̅a1111
√

2

(
r2

a

R2
a
− 1

)
R2

a

R2
b

]}

+ Pout
Rb

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
a + R2

b − R2
a

√

(22)  

where erfi is the imaginary error function (Morris and Leach, 2015), and 
Ra and Rb are the inner radius and outer radius of ureter in initial state. 
Similarly, with Eq. (22) and the initial separation angle α0 and 
compression stress σ0

r(r=Rs)
obtained from FE simulation (Fig. 7), critical 

pressure Pucr can be theoretically determined as shown in flowchart 

Fig. 5. FE simulation for stress distribution and deformation in ureter caused by a kidney stone: (a) FE model of kidney stone and ureter with η = 1.3, and (b) FE 
model of kidney stone and ureter with η = 3.4. 

Y. Liu et al.                                                                                                                                                                                                                                      



Journal of the Mechanical Behavior of Biomedical Materials 135 (2022) 105432

7

Fig. 6. (a) Critical pressures obtained based on FEM and experiment with the latex tube exposed to air, and (b) critical pressures obtained based on FEM and 
experiment with the latex tube immersed under water. 

Fig. 7. (a) Compression stress distribution σ0
r(r=Rs)

and deformation in ureter caused by kidney stone with η = 1.3. (b) Compression stress distribution σ0
r(r=Rs)

and 
deformation of ureter caused by kidney stone with η = 3.4. 

Fig. 8. (a) Pucr versus ξ for ηmax = 3.4 and ηmin = 1.3; (b) Pucr versus ξ and η, and comparison between clinical data and theoretical results for dimensionless critical 
size of kidney stone passing through ureter; (c) Pucr versus ξ with different Pout (0 kPa, 4 kPa, 8 kPa) outside ureter for ηmax = 3.4 and ηmin = 1.3; (d) dimensionless 
critical size of stone (ξcr) versus Pout, with Pucr = 12 kPa. 

Y. Liu et al.                                                                                                                                                                                                                                      



Journal of the Mechanical Behavior of Biomedical Materials 135 (2022) 105432

8

Fig. 4c. 
Fig. 8a presents the critical pressure Pucr for ξ = 1–1.3 (with ηmin =

1.30 and ηmax = 3.40). It is seen that Pucr positively correlated with η 
and ξ, i.e., thicker ureter wall and bigger kidney stone lead to larger Pucr. 
Given that the physiological maximum urine pressure in human ureter is 
~12 kPa (Schwalb et al., 1993), the range of maximum dimensionless 
size of kidney stone passing through ureter is determined as ξmin

crmax =

1.11 to ξmax
crmax = 1.22 (Fig. 8a). Therefore, the maximum critical diameter 

of kidney stone passing through ureter is calculated to be 11%–22% 
larger than the inner diameter of ureter. As a result, for human ureter 
with inner diameter varying from 0.94 mm to 3.5 mm (Sokolis et al., 
2017), the maximum diameter of kidney stone varies from 1.04 mm to 
4.27 mm. This reveals that the critical stone size (i.e., the critical size of 
stone passing through ureter, same as below) is significantly influenced 
by ureter size. 

Further, a three-dimensional graph of critical pressure Pucr (ξ, η) is 
obtained by linear interpolation with regard to η. Also, based on the 
maximum urine pressure of Pucr = 12 kPa, how the maximum dimen
sionless critical stone size ξcrmax varies with η, i.e., the ξcrmax− η relation, 
is determined (black solid line in ξ − η plane of Fig. 8b). To validate the 
stone-ureter interaction model, the values of η for upper and lower 
ureter (SI Section 6), together with stone sizes based on clinical statistics 
(SI Section 6) for upper and lower ureter (Jendeberg et al., 2017), are 
compared with the theoretical ξcrmax − η relation in Fig. 8b. The pre
dicted ξcrmax − η relation agrees well with clinical statistic data. 

Next, how the confining pressure Pout affects the critical stone size is 
investigated. For simplicity, the confining pressure is ideally deemed as 
hydrostatic pressure. Upon taking Pout sequentially as 0 kPa, 4 kPa and 8 
kPa, it is found that compared with the state of Pout = 0kPa, the pre
dicted Pucr increases evenly with increment nearly equal to Pout (Fig. 8c). 
For illustration, based on Pucr = 12 kPa, the dimensionless critical stone 
size ξcr (between η = 1.30 and η = 3.40) versus Pout relation, i.e., the 
ξcr − Pout relation, is determined (Fig. 8d). The upper boundary (with 
η = 1.30) and lower boundary (with η = 3.40) reveal that ξcr exhibits 
a negative linear relation with Pout , and the upper boundary has a slope 
larger than that of the lower boundary. That is, the smaller the ureter 

size ratio (η), the more obvious the effects of confining pressure on 
critical stone size. 

3.3. Effects of ureter stiffness and surface roughness of stone on critical 
stone size 

3.3.1. The stone-ureter interaction model based on elastic foundation beam 
model 

As mentioned above, for human ureter, the value of η ranges from 1.3 
to 3.4. When the ureter is thin-walled (e.g., η = 1.30) and ξ is close to 
one, an analytical solution of Pucr can be obtained by simplifying the 
stone-ureter interaction model as an elastic foundation beam model 
(EFBM). 

When a thin-walled tube (i.e., wall thickness h ≪Ra) deforms with 
the radial displacement of tube wall satisfying Δr ≪Ra (Fig. 9a), small 
deformation hypothesis can be adopted to calculate the deformation. 
Since the tube wall thickness is small relative to tube radius, the tube is 
taken as composed of longitudinal ‘fibers’ and circumferential ‘fibers’. 
The longitudinal ‘fibers’ play a role like beams mainly undertaking 
bending load, while the circumferential ones act as strings mainly un
dertaking stretching load. The latter equivalently prevents the former 
from deforming along the radial direction. Particularly, if the tube is 
made of a linear elastic material, the confining effect of circumferential 
‘fibers’ on longitudinal ‘fibers’ can be regarded as elastic springs. The 
tube wall can thence be taken as equivalent to the superposition of 
longitudinal beam and springs (Fig. 9b), leading to the elastic founda
tion beam model (EFBM) or the Winkler elastic foundation model 
(Yankelevsky and Eisenberger, 1986). The equivalent stiffness coeffi
cient of the springs (i.e., foundation) is obtained as (SI Section 7): 

k =
hE1

R2
a

(23)  

where E1 is the Young’s modulus of circumferential ‘fibers’. Due to axial 
symmetry of the model, a longitudinal section of the tube with unit 
thickness is taken as EFBM to analyze the whole tube (Fig. 9b). With the 
deflection of tube wall caused by the size difference of tube and sphere 

Fig. 9. Elastic foundation beam model is used to analyze thin-walled ureter: (a) deformation behavior of thin-walled tube, (b) equivalence of sphere-tube model to 
elastic foundation beam model, (c) comparison of critical pressures (Pucr) calculated with FEM and elastic foundation beam model (EFBM) for η = 1.3, and (d) 
variation of dimensionless critical stone size (ξcr) for η = 1.3. 
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denoted by δ = Rs − Ra, an equivalent concentrated load Fn applied on 
the longitudinal beam can be determined as (SI Section 7): 

Fn =
2kδ
β

(24)  

where β =
̅̅̅̅̅̅̅
3k

E2h3
4
√

and E2 is the Young’s modulus of longitudinal ‘fibers’. 

Contact effect between the circular disk and beam (Fig. 9b) is 
considered in accordance with the classical Hertzian contact theory 
(Timoshenko and Goodier, 1970). The length of the half contact region 
caused by the equivalent concentrated load Fn between the disk and 
beam could be determined as: 

a =

̅̅̅̅̅̅̅̅̅̅̅̅
4RsFn

πE2

√

(25) 

Because the contact region is relatively small, the component of 
σr(r=Rs) along the x-axis could be neglected. The resistance force Fre be
tween the tube and sphere is thence calculated as (SI Section 7): 

Fre(x) = Ff (x) = 4Fnμf Rs

[
a − x

2a

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(a − x

a

)2
√

+
1
2

arcsin
(a − x

a

)
+

π
4

]

(26)  

where x is the abscissa of the separation region, and μf is the static 
friction coefficient between the sphere and tube. 

Based on the EFBM, the inner pressure Pu correlated to current inner 
radius ra of the tube can be determined as: 

Pu = kΔr = k(ra − Ra) (27) 

Also, the relation between ra and x is obtained based on Eq. (15), as: 

ra =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
s − (a − x)2

√

+

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
a − x

Rs

)2
√

− 1

⎤

⎦⋅
Ra −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
s − a2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(

a
Rs

)2
√

− 1
(28) 

Upon substituting Eq. (28) into Eq. (27), Pu(x) can be determined. 
Finally, Pucr is obtained by substituting the root of equation Pu(x)⋅ 
π[R2

s − (a − x)2
] = Fre(x) into Pu(x). 

Based on the EFBM and the Fung-type constitutive model, for the 
case of η = 1.30 and μf = 0.5, Pucr is calculated by taking the secant 
moduli along the circumferential and longitudinal directions of ureter as 
E1 and E2 (SI Section 8). Then, comparing the calculated Pucr based on 
the EFBM and that calculated by the FEM indicates that the two results 
agree well within the interval of ξ = 1–1.3 (Fig. 9c). Thus, the EFBM is 
valid to analyze the ureter with η = 1.30. Correspondingly, the critical 
dimensionless stone size under Pucr = 12 kPa is obtained based the EFBM 
as ξcr = 1.24, which is very close to that (ξcr = 1.22) calculated with 
the FEM. 

3.3.2. Relation of critical stone size versus ureter stiffness and stone surface 
roughness 

In clinic practice, the mechanical property of ureter such as ureter 
stiffness is often altered, e.g., by medical expulsive therapy (MET), to 
facilitate the passage of kidney stone (Tzortzis et al., 2009). However, 
how the stiffness variation of ureter affects stone passage remains 
elusive. Further, there exist several different types of kidney stone 
(Cruz-May et al., 2021), which exhibit different surface roughness and 
hence would have different impacts on stone passage. These impacts are 
not easy to evaluate in clinic practice. Therefore, based on the EFBM, the 
effects of ureter stiffness (i.e., elastic modulus) and kidney stone surface 
roughness (i.e., friction coefficient) on critical stone size (i.e., ξcr) are 
quantified, as illustrated below. 

For Pucr = 12 kPa and η = 1.30, Fig. 9d displays the predicted 
variation trend of ξcr with increasing elastic modulus Eu of ureter (E1 =

0.465 MPa and E2 = 0.02 MPa) or friction coefficient (μf = 0.5). It can 

be seen that increasing either Eu or μf causes ξcr to decrease, finally 
reaching a constant. Softening the ureter would thus facilitate stone 
passage, and a smoother stone would pass through ureter more easily. 
Also, Eu has a more noticeable effect on ξcr compared with μf , indicating 
that the critical stone size is more sensitive to ureter stiffness than stone 
surface roughness. 

4. Discussion 

In clinical practice, numerous factors affect the passage of kidney 
stone. For instance, a strong correlation exists between the size/location 
of stone and the likelihood of stone passage (Ueno et al., 1977; Zhang 
and Steinberg, 2019). Other predictive factors, e.g., C-reactive protein 
(CRP), hydronephrosis (Özcan et al., 2015; Ahmed et al., 2015; Alda
qadossi, 2013; Park et al., 2013; Goertz and Lotterman, 2010) and the 
sides of ureter the stone generated (Sfoungaristos et al., 2012), are also 
related to stone passage. These factors, however, are at present scattered 
and lack systematic investigations. From the view of mechanics, key 
factors affecting stone passage can be summarized based on our 
stone-ureter interaction model. The critical urine pressure Pucr impelling 
a kidney stone to move can be deduced as Eq. (17). The stone could 
move through ureter only if the urine pressure Pu exceeds its critical 
value Pucr. Therefore, it can be concluded that the mechanical factors 
affecting stone passage are the ones dictating Pucr, including stone size 
(Rs), ureter size (Rb

Ra
), stone surface roughness (μf ), ureter stiffness (Eu), 

confining pressure (Pout), and urine pressure Pu. These factors would 
help urologists judging the possible aspects that could facilitate stone 
passage. 

In addition, a variety of approaches have been developed to surgi
cally manage kidney stones, including conservative approaches like 
medical expulsive therapy (MET), and invasive approaches such as 
shockwave lithotripsy (SWL), ureteroscopy (URS), and percutaneous 
nephrolithotomy (PCNL) (Zhang and Steinberg, 2019). For relatively 
small stones, the first approach is watchful waiting, with or without the 
accompanying MET (Preminger et al., 2007). However, the conservative 
approaches may make the patient endure symptoms to no benefit such 
as pain (Jendeberg et al., 2017; Miller and Kane, 1999), and may be 
associated with potential risks to renal function (Miller and Kane, 1999). 
In contrast, larger stones stuck in ureter are generally treated using 
invasive approaches. The major risk of invasive approaches is exposing 
the patient to potential complications such as anaesthesia, upper urinary 
tract infections, etc. (Jendeberg et al., 2017). The current therapy 
guidelines recommend MET for kidney stones with a diameter of 5–10 
mm, and surgical removal for those larger than 10 mm (Preminger et al., 
2007). Nevertheless, such guidelines may not be effective for all patient 
groups due to individual differences, causing potential risks for the pa
tients. Therefore, it is necessary to establish a new criterion judging 
under what conditions a stone can pass through ureter for different in
dividuals, so that appropriate treatment strategy would be selected to 
reduce the potential risks. 

In clinics, the size and shape of kidney stone and the morphology of 
ureter can be determined using noninvasive imaging technologies, e.g., 
abdominal ultrasonography, magnetic resonance urography (MRU) and 
computed tomography (CT) urography (Zhu et al., 2020; Mohammadi
nejad et al., 2021; Hosseini et al., 2018; Yoshida et al., 2017). Accord
ingly, the size ratio η of the normal ureter (without stone obstruction) 
and dimensionless size ξ of stone can also be determined by such 
noninvasive imaging technologies. Meanwhile, the inner radius (ra) and 
outer radius (rb) of stone-obstructed ureter can be determined analo
gously. Then, based on Eq. (22), the urine pressure Pu caused by stone 
can be calculated. Besides, based on Fig. 8b, the critical pressure Pucr 
with regard to ξ and η can be determined. Given that the human bearable 
maximum urine pressure is about 12 kPa, when urine pressure Pu in 
human body satisfies Pucr < Pu < 12 kPa, a kidney stone is expected to 
pass through ureter. Otherwise, when Pucr exceeds 12 kPa, the stone 
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cannot pass through ureter, thus suggesting surgical intervention. In 
clinical practice, this proposal would potentially become a new criterion 
to judge stone passage through ureter for different individuals, and 
prospectively ensure that patients receive evidence-based treatment. 

It should be noted that our study only focuses on the ideal spherical 
stone, while the shapes of kidney stone in reality are complex, which can 
be categorized as either even or uneven (e.g., jagged) (Cloutier et al., 
2015). Most of the even stones are approximately ellipsoid-like (Reimer 
et al., 2020). Compared with ellipsoid-like stones, the adoption of 
spherical stone in this study would yield conservative conclusions for 
predicting the passage of even stone in ureter. For uneven stones, 
however, the sharp points on the jagged surface may easily cause high 
stress concentrations in ureter wall, making the ureter injured, which is 
different from our concern that the ureter should not be damaged during 
stone passage. Nonetheless, relative to even stones, the uneven stones 
raise a new and more complicated mechanical problem, which will be 
investigated in a future study, both experimentally and numerically. 

In summary, our study provides a theoretical method to help urol
ogists better understand how the passage of kidney stone through ureter 
is affected by relevant factors mentioned above, and potentially throw 
light on a new criterion to judge stone passage through ureter for 
different individuals. 

5. Conclusions 

A stone-ureter interaction model has been proposed to quantitatively 
estimate the critical size of kidney stones passing through ureter. It is 
demonstrated that the critical diameter of kidney stones is 11%–22% 
larger than the inner diameter of ureter, but negatively correlated to the 
confining pressure outside the ureter. For thin-walled ureter, an elastic 
foundation beam model (EFBM) has been developed to analyze how the 
elastic modulus of ureter and the friction coefficient between ureter and 
kidney stone influence the critical stone size. The proposed model may 
help urologists improve the accuracy of personalized diagnosis and 
treatment. 
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