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A B S T R A C T   

The mechanical response of highly stretchable polyurea elastomer at various strain rates is investigated via 
experiments, theoretical analysis, and numerical modeling. Experiments encompassing quasi-static and dynamic 
(SHPB/SHTB - split Hopkinson pressure/tension bar) mechanical tests, as well as drop-weight impact tests, are 
undertaken to identify the nonlinear and rate-dependent relationship between tensile/compressive true stress 
and deformation of the polyurea studied. Subsequently, a compressible visco-hyperelastic constitutive model for 
the material is established based on the summation of Cauchy stress components. The proposed model yields 
good agreement with experimental data, as well as a better description of the tensile response at stretch rates of 
103 s− 1 than other models (e.g., the YSL2000 model (Yang et al., 2000) and the SYLL2004 model (Shim et al., 
2004)). The model is implemented in the commercial finite element code Abaqus/Explicit via a user-defined 
material (VUMAT) subroutine. Homogenous deformation modes of polyurea, i.e., uniaxial compression and 
tension, are accurately captured, and non-uniform deformation of polyurea, corresponding to impact by a 
hemispherically-tipped drop weight, which induces both compression and tension, is also well described. Finally, 
it is demonstrated that the proposed model is able to characterize the dynamic response of other polyureas re-
ported in literature. The present study is helpful for the design and development of blast and impact-resistant 
polyurea protective coatings.   

1. Introduction 

To mitigate blast and ballistic impact damage and improve the sur-
vivability of engineering structures, application of a polyurea coating to a 
wide range of substrates (e.g., metal, composite, concrete, masonry, etc.) 
has been increasingly adopted [1–6]. For instance, following the September 
11 2001, attacks, the U.S. Air Force began spraying polyurea coatings on 
building walls to help maintain structural integrity during blast loading [7]. 
Such elastomeric coating can also decelerate explosion-generated frag-
ments, thus protecting occupants within buildings. Polyurea elastomer is an 
environmentally-friendly copolymer, formed by condensation 

polymerization of difunctional isocyanates (OCN-R-NCO) and difunctional 
amines (H2N-R’-NH2) precursors [8]. Fig. 1 shows a simplified single-chain 
molecular structure of polyurea, consisting of hard and soft domains [9], 
with interaction between adjacent molecular chains achieved via hydrogen 
bonds. The high water/corrosion/abrasion resistance and other favorable 
attributes of polyurea endow it with excellent stability in complex oper-
ating environments [10]. 

Based on the spray-cast fabrication technique, polyurea can be 
applied easily and rapidly. Maximizing its protective effects has become 
a topic of intense interest. Numerous experimental studies have exam-
ined the influence of several key factors, such as coating thickness, 
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coating location, and interfacial strength, in enhancing the blast/bal-
listic resistance of polyurea-coated structures; these have provided in-
sights into underlying physical mechanisms [11–16]. However, 
conclusions drawn from experiments may be specific to particular sub-
strate materials and loading modes adopted in individual studies. Blast 
and high-velocity ballistic tests are generally expensive and complex; 
hence, they can be supplemented and complemented by computational 
simulation to achieve efficient engineering designs involving polyurea 
coatings. To this end, establishment of simple yet effective constitutive 
models to characterize the mechanical behavior of polyurea, especially 
at high strain rates, is particularly useful. 

In terms of earlier efforts, some theoretical models have been 
developed for the response of polyurea under blast and impact loading 
[17–24]. A rudimentary approach is to neglect rate sensitivity and as-
sume that the mechanical behavior at a particular strain rate is suffi-
ciently representative of the entire deformation history [25–27]. For 
instance, Xue et al. [26] established a six-parameter hyperelastic model 
calibrated using the tensile response at a strain rate of 104 s− 1, and 
simulated the penetration of steel-polyurea bilayer plates impacted by 
pointed and flat strikers. Chen et al. [27] formulated a two-parameter 
hyperelastic model based on the quasi-static tensile response of poly-
urea and used it to predict the deformation of polyurea-coated steel 
plates subjected to localized blast loading. A second approach is to 
employ rate-dependent elastoplastic stress-strain relationships [28–30], 
whereby Shi and his colleagues [31,32] adopted piecewise linear plas-
ticity to calculate the blast resistance of concrete and steel plates 
incorporating a composite polyurea coating with a woven fiber mesh 
reinforcement. A third option is to modify classical hyperelastic models 
to encapsulate rate-dependence [21,33]; Raman et al. [33] and Mohotti 
et al. [21] proposed a modified hyperelastic model via a dynamic 
enhancement factor. Based on this, Mohotti et al. [34,35] simulated the 
dynamic response of polyurea-coated aluminum plates subjected to 
low/high-velocity projectile impact. A fourth perspective to incorporate 
rate sensitivity is to employ idealized hyperelastic and viscoelastic ele-
ments in parallel into a constitutive description [36]. Shim and Mohr 
[20] performed dynamic compressive tests and established a finite strain 
model encompassing two viscoelastic elements to describe polyurea, 
while Li and Lua [18] proposed a visco-hyperelastic theoretical 
description of the tensile behavior of polyurea at various strain rates. 

However, there are still certain limitations in the application of these 
four methods. The first method, which ignores rate sensitivity, is the 
simplest but unable to model dynamic deformation over a wide range of 
strain rates [26]. The second approach, which assumes that polyurea 
behaves as an elastoplastic solid, cannot capture unloading of the ma-
terial [37]. The third option essentially assumes that the true stress at an 
elevated high strain rate can be obtained by magnifying the quasi-static 
response through a fixed enhancement ratio. However, the stress 
enhancement ratio might not be constant for different stretches [21]. 
Consequently, appropriate selection of the dynamic stress enhancement 
ratio determines the prediction accuracy. The fourth approach is able to 
capture the mechanical response of polyurea at various strain rates, 
because the viscoelastic elements incorporated enable accommodation 
of the effect of strain rate history on the current stress [38,39]. Never-
theless, the degree of match with experimental results depends on the 
number of viscoelastic elements [40]. Consequently, a balance between 
the number of viscoelastic elements and preserving simplicity for the 
purpose of application, is a primary consideration. 

The preceding review of recent work on modeling polyurea has 
identified several aspects which still need to be addressed: (i) previous 
investigations have focused primarily on either the compressive or 
tensile response of polyurea at different strain rates, and constitutive 
descriptions incorporating both compression and tension appear scant; 
(ii) generally, models are usually calibrated using experimental data 
from uniaxial loading tests, and the applicability of constitutive models 
developed to describe more complex loading situations involving both 
tension and compression has yet to be conclusively substantiated; (iii) 
applicability of constitutive models developed for a single specific pol-
yurea, to describe other types of polyurea, remains to be demonstrated, 
since the properties of polyurea from different sources can vary signif-
icantly [41]. Thus, the current study employs experimental character-
ization, theoretical analysis, and numerical simulation to characterize 
the nonlinear compressive and tensile responses of polyurea elastomer 
at elevated strain rates, with particular focus on a highly stretchable 
polyurea that exhibits significant strength and ductility. The current 
model does not require the assumption of incompressibility in earlier 
idealizations [42], thus enabling the description of compressible 
visco-hyperelastic behavior, and its applicability to the polyurea stud-
ied, as well as nine other types of polyurea. 

Fig. 1. Simplified schematic illustration of molecular-level structure of polyurea elastomer [9].  
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2. Material studied and experimental procedure 

2.1. Material studied 

The material of interest is Qtech-420 polyurea elastomer, with a 
density of 950 kg m− 3, supplied by Qingdao Shamu Advanced Material 
Co., Ltd., China. Before testing, the polyurea samples produced are 
maintained at room temperature for at least two weeks, as adequate 
curing time can enhance their mechanical properties. Experiments are 
then performed on polyurea samples in their pristine state, i.e., without 
any prior mechanical loading. 

2.2. Quasi-static compression/tension tests 

Quasi-static uniaxial tension and compression tests at an engineering 
strain rate (equal to the stretch rate) of 1 × 10− 3 s− 1 are conducted using 
a universal testing machine (SHIMADZU AGS-X). Following ISO 
37:2017 (i.e., Rubber, vulcanized or thermoplastic - Determination of 
tensile stress-strain properties), dumbbell-shaped samples with a 33 mm 
gage length and 6 mm width are fabricated for tensile tests, as shown in 
Fig. 2a, with an optical extensometer employed to measure the defor-
mation within the gage length. For compression tests, as shown in 
Fig. 2b, the dimensions of the cylindrical samples are similar to those 
used in SHPB tests. To ascertain consistency, tests corresponding to each 
mode of loading are done three times, and the average of the results is 
taken as representative of the material response. Prior to rupture, the 
polyurea samples exhibit excellent stretchability, elongating up to seven 
times their initial length (Fig. 3). 

2.3. Dynamic compression/tension tests 

Split Hopkinson pressure/tension bars (SHPB/SHTB) are employed 
for uniaxial tension and compression tests at high strain rates (~103 

s− 1). The test samples are shown in Fig. 2c~d. For SHPB tests, the ASM 

Handbook [43] recommends cylindrical specimens with a small length: 
diameter ratio (0.25~0.5) to facilitate rapid transmission of stress 
through the specimen and achievement of a constant stress state. To 
minimize inertial effects and frictional constraint at the specimen-bar 
interface, the specimen diameter should also be small relative to that 
of the bar [42]. For SHTB tests, dog-bone shaped samples with a 6 mm 
gage length and 3 mm width are adopted. The length:width ratio of the 
sample is at least 2:1, to achieve a uniaxial stress state within the gage 
length. 

Fig. 4 shows the SHPB arrangement, comprising a gas chamber, 
striker, pulse shaper, input bar, output bar, damper, and data acquisition 
system. The striker, incident, and output bars are 16 mm in diameter and 
made of titanium alloy. From the work of Sarva et al. [44], a brass disk 
with a diameter of 6 mm and a thickness of 1 mm is utilized for pulse 
shaping to facilitate rapid attainment of equilibrium in specimens and 
reduce high-frequency noise in the input pulse. Based on 
well-established SHB analysis, the engineering strain rate ε̇e, engineer-
ing strain εe, and engineering stress σe in the sample are defined by [45]: 

ε̇e(t) = −
2cb

ls
εr(t) (1)  

εe(t) = −
2cb

ls

∫ t

0
εr(t)dt (2)  

σe(t) =
AbEb

As
εt(t) (3)  

where εi, εr and εt are the incident, reflected, and transmitted strains, 
respectively; ls, As are the initial length and cross-sectional area of the 
sample, and Ab, Eb are the cross-sectional area and elastic modulus of the 
input/output bars; cb is the elastic wave speed in the bar. 

Fig. 5 shows the tensile SHTB counterpart, whereby the striker is 
tubular, the striker, input bar, and output bar are made of aluminum 
alloy, and the latter two have a diameter of 12 mm. In this instance, a 

Fig. 2. Specimens for quasi-static and dynamic compression and tension tests (units: mm).  
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Fig. 3. Dumbbell-shaped sample under quasi-static uniaxial tension: (a) initial state and (b) highly stretched.  

Fig. 4. Schematic diagram of split Hopkins pressure bar (SHPB) arrangement.  
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high-speed camera is employed to obtain optical images of the specimen 
deformation. To enhance achievement of a uniform stress state, two 
consecutive pulse shapers are incorporated [46]. The specimen stress is 
also calculated using Eq. (3). Before each test, a speckle pattern is 
sprayed onto the surface of the specimen. A high-speed camera (FAST-
CAM SA1.1, Photron) and a motion analysis software (TEMA 2D, 
IMAGESYSTEMS) are used to obtain and process optical images of the 
speckle positions, from which the strain within the gage length is 
determined. Compared with calculating the strain using Eq. (2), this 
method yields more accurate values of the strain within the gage length 
[47,48]. 

Fig. 6 shows typical strain gage signals associated with the first 
loading pulse, from SHPB and SHTB tests, respectively. With the aid of 
pulse shaping, the incident wave is approximately trapezoidal instead of 
rectangular, whereby the incident pulse rises to its peak more gradually 
to enhance stress equilibrium in samples [49]. The engineering strain 
rate is not perfectly constant but fluctuates somewhat as the specimen 
deforms (Fig. 7); this has also been observed in previous studies on 
polyurea [37,44,50]. As the fluctuations are not severe, the average 
strain rate is used in constitutive modeling. The results from dynamic 
tension/compression tests are summarized in Section 3.3. 

2.4. Drop-weight impact tests 

As shown in Fig. 8, drop-weight impact tests are conducted on 

circular samples with (i) base-supported and (ii) clamped-edge bound-
ary conditions. The diameter Ds and thickness ts of the samples are given 
in Table 1. A floor-standing impact system (INSTRON CEAST 9350) 
consisting of a hemispherical impactor, piezoelectric load cell, optical 
sensor, support plate, and specimen fixture, is used. The impactor is 
made of high-strength steel, and has a diameter of 16 mm, and the 
contact force between the impactor and sample is measured by the 
piezoelectric load cell with an operating range of 0 ~ 22 kN. The optical 
sensor measures the impact velocity, and adjustment of the mass mi and 
velocity vi of the impactor enables prescription of the impact energy. 
Samples are mounted on the base plate or between the clamping fixture 
using a strong rapid-drying adhesive. Before testing, a thin layer of oil is 
applied to the impactor to reduce friction with the sample. 

3. Constitutive modeling 

3.1. Theoretical basis 

With reference to traditional continuum analysis, a generic particle 
initially at some position X in a solid is displaced to position x, resulting 
in a deformation gradient F defined by F = ∂x/∂X. The deformation can 
be expressed by the left Cauchy-Green deformation tensor B = F⋅FT or 
the right Cauchy-Green deformation tensor C = FT⋅F, and the three 
invariants of C are defined as: 

Fig. 5. Schematic diagram of split Hopkins tension bar (SHTB) arrangement.  

Fig. 6. Typical strain gage signals for the first loading pulse from (a) SHPB and (b) SHTB tests.  
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I1 = tr(C), I2 =
1
2
[
I1

2 − tr
(
C2)], I3 = det(C) (4) 

The Green-St.Venant strain tensor E is defined as: 

E =
1
2
(C − I) =

1
2
(
FT⋅F − I

)
(5) 

Consequently, the Green-St.Venant strain rate tensor is: 

Ė =
1
2

(
ḞT⋅F+F

⋅
⋅FT
)

(6) 

To capture the rate-dependent response of polyurea, a commonly- 
used approach, first proposed by Green and Tobolsky [51], is adopted, 
whereby the total Cauchy stress can be decomposed into a 
time-independent hyperelastic component and a time-dependent 
viscoelastic component. As shown schematically in Fig. 9, parallel 

arrangement of the two components leads to their addition to obtain the 
Cauchy stress: 

σvh = σhe + σve (7) 

The superscripts he, ve, and vh denote hyperelasticity, viscoelas-
ticity, and visco-hyperelasticity, respectively. 

3.1.1. Hyperelasticity 
For an isotropic, homogenous, and compressible hyperelastic solid, 

the Cauchy stress tensor σhe can be expressed as [52]: 

σhe =
1
J

F⋅T⋅FT (8)  

where J is the Jacobian of F which captures volumetric changes, and T is 
the second Piola-Kirchhoff stress tensor defined by [53]: 

T =
∂W
∂E

=
∂W
∂I1

∂I1

∂E
+

∂W
∂I2

∂I2

∂E
+

∂W
∂J

∂J
∂E

(9)  

where 

Fig. 7. Typical engineering strain rate histories from (a) SHPB and (b) SHTB tests.  

Fig. 8. Drop-weight impact tests on polyurea elastomer for (a) base-supported and (b) edge-clamped conditions.  

Table 1 
Details of drop-weight impact tests.  

No. Boundary condition Ds (mm) ts (mm) mi (kg) vi (m/s) 

1 Base-supported 24 ± 0.5 4 ± 0.2 2.277 1.74 
2 Edge-clamped 60 ± 0.5 4 ± 0.2 2.277 1.86  
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∂I1

∂E
=

∂tr(C)

∂E
=

∂(3 + 2tr(E))
∂E

= 2I

∂I2

∂E
=

1
2

∂
(
tr2(C) − tr

(
C2))

∂E
= 2(I1I − C)

∂J
∂E

=

(
1
2

∂
(
FT⋅F − I

)

∂J

)− 1

=

(
1
2

1
J

∂JFT

∂J
⋅F +

1
2

1
J
FT⋅

∂JF
∂J

)− 1

= JC− 1

(10)  

Substitution of Eqs. (9) and (10) into Eq. (8) yields: 

σhe =
2
J

(
∂W
∂I1

+ I1
∂W
∂I2

)

B −
2
J

∂W
∂I2

B2 +
∂W
∂J

I (11)  

where W is the strain energy function and I is the unit tensor. In general, 
the definition of W determines the form and appropriateness of the 
model. With reference to Boyce and Arruda [54], the strain energy 
function can be split into isochoric and volumetric contributions: 

W = Wiso + Wvol (12)  

The isochoric part Wiso can usually be viewed from two perspectives - 
statistical mechanics and continuum mechanics. Rivlin [55] developed a 
continuum mechanics-based model for Wiso in terms of functions of I1, I2 
and J, namely: 

Wiso =
∑∞

i,j=0
Aij

(
J− 2

3I1 − 3
)i(

J− 4
3I2 − 3

)j
(13)  

where Aij are undetermined coefficients. Arruda and Boyce [54] also 
commented that such a phenomenological model is equivalent to a 
microstructure-based statistical mechanics model when high-order I1 
terms are introduced. A quadratic function of J is adopted to model the 
volumetric component Wvol, as in [56]: 

Wvol = D(J − 1)2 (14)  

where D is a material constant, defined in [57]: 

D =
K
2
=

E
6(1 − 2μ) (15)  

and K is the bulk modulus, E the Young’s modulus, and μ the Poisson’s 
ratio. For a compressible hyperelastic solid, substitution of Eqs. (13) and 
(14) into Eq. (12) leads to a general expression for the strain energy 
potential: 

W =
∑∞

i,j=0
Aij

(
J− 2

3I1 − 3
)i(

J− 4
3I2 − 3

)j
+ D(J − 1)2 (16)  

With the objective of limiting the number of parameters, Shim et al. [38] 
found that a three-term form for the isochoric component Wiso is suffi-
cient to model both the tensile and compressive responses of rubber. 
Therefore, the strain energy function W of Eq. (16) can be reduced to: 

W = A1

(
J− 2

3I1 − 3
)
+ A2

(
J− 4

3I2 − 3
)
+ A3

(
J− 2

3I1 − 3
)(

J− 4
3I2 − 3

)

+ D(J − 1)2 (17)  

However, when describing large deformations, a simple form of the 
strain energy potential may lead to errors [54]. Yeoh [58,59] noted that 
introduction of higher-order I1 terms facilitates modeling of moderate to 
large deformations. The present study proposes incorporation of an 
exponential term involving I1, leading to: 

W = A1

(
J− 2

3I1 − 3
)
+ A2

(
J− 4

3I2 − 3
)
+ A3

(
J− 2

3I1 − 3
)(

J− 4
3I2 − 3

)

+
A4

A5

(
1 − e− A5

(
J−

2
3I1 − 3

))
+ D(J − 1)2 (18)  

As with other high-order I1 models (e.g., the Gent model [60]), the 
exponential term involving I1 in Eq. (18) can be expanded via a Taylor 
series to yield the following: 

A4

A5

(
1 − e− A5

(
J−

2
3I1 − 3

))
= −

A4

A5

∑∞

i=1

( − A5)
i
(

J− 2
3I1 − 3

)i

i!
(19) 

Fig. 9. Schematic illustration of the visco-hyperelastic model.  
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Finally, combination of Eqs. (11) and (18) yields the Cauchy stress 
for a compressible hyperelastic solid:  

3.1.2. Viscoelasticity 
A primary feature of a viscoelastic solid is the fading memory effect, 

which implies that the present stress depends strongly on strain/strain 
rate history [61]. Based on linear viscoelasticity [52], the Cauchy stress 
tensor σve for an isotropic, homogenous, and compressible viscoelastic 
solid can be expressed as: 

σve =

∫ t

− ∞
Ψ(t − τ) : dεve

dτ dτ (21)  

where εve is the viscoelastic Cauchy strain and Ψ is a fourth-order 
relaxation modulus tensor. As with previous analysis [17], the relaxa-
tion modulus tensor can be divided into two components – deviatoric 
and dilatational: 

Ψ(t) =
[
Γ(t)δijδpq +G(t)

(
δipδjq + δiqδjp

)]
ei ⊗ ej ⊗ ep ⊗ eq (22)  

where Γ(t) and G(t) are the Lamé parameters and δij is the Kronecker 
delta. Correspondingly, the Cauchy strain εve can be separated into the 
deviatoric strain sve and the volumetric strain εv, as: 

εve =
1
3

tr(εve)I + sve =
1
3
εvI + sve (23)  

Combining Eqs. (21) ~ (23) yields: 

σve =

∫ t

− ∞
[Γ(t − τ)ε̇vI+ 2G(t − τ)ε⋅

ve
]dτ (24)  

where ε̇v is the volumetric strain rate. From the Lamé parameters, the 
bulk modulus K(t) can be expressed as: 

K(t) = Γ(t) +
2
3

G(t) (25)  

Hence, Eq. (24) can be rewritten as: 

σve =

∫ t

− ∞
[K(t − τ)ε̇vI+ 2G(t − τ)s⋅

ve
]dτ (26)  

where s⋅
ve 

is the deviatoric Cauchy strain rate. As with the well-known 
Maxwell model [52], the bulk modulus K(t − τ) and shear modulus 
G(t − τ) can be expressed in terms of a Prony series. 

K(t − τ) = K∞ +
∑N

i=1
Kie

− t− τ
θi (27)  

G(t − τ) = G∞ +
∑N

i=1
Gie

− t− τ
θi (28)  

Substitution of Eqs. (27) and (28) into Eq. (26) yields the Cauchy stress 

for a linear viscoelastic solid: 

σve =

∫ t

− ∞

(

K∞ +
∑N

i=1
Kie

− t− τ
θi

)

ε̇vIdτ +
∫ t

− ∞
2

(

G∞ +
∑N

i=1
Gie

− t− τ
θi

)

ṡvedτ

=

(

K∞εv +
∑N

i=1
Ki

∫ t

− ∞
e−

t− τ
θi ε̇vdτ

)

I + 2

(

G∞sve +
∑N

i=1
Gi

∫ t

− ∞
e−

t− τ
θi ṡvedτ

)

(29)  

where θi are the relaxation time constants and N is the number of con-
stants. Note that the bulk modulus parameters K∞ and Ki can be calcu-
lated using the shear modulus parameters (G∞ and Gi) and the Poisson’s 
ratio (μ): 

K∞ =
2(1 + μ)

3(1 − 2μ)G∞ (30)  

Ki =
2(1 + μ)
3(1 − 2μ)Gi (31)  

Therefore, for linear viscoelasticity, the number of independent model 
parameters in Eq. (29) is 3× N. Selection of the number of relaxation 
time constants N affects the results predicted by the model, and should 
be carefully considered [38]. Generally, the values and number of 
relaxation times θi are associated with many factors [62], such as load 
magnitude, loading speed, temperature, friction, wear, aging, etc. To 
consider the influence of such factors, Pouriayevali et al. [39] and 
Khajehsaeid et al. [63] expressed the relaxation time as 
strain-dependent and strain-rate-dependent functions, respectively. 
Yang et al. [40] suggested that the mechanical response of a polymeric 
solid over a range of strain rates (up to 103 s− 1) measured using 
SHPB/SHTB devices can be described by a single relaxation time. In this 
work, the strain rate range of concern is 103 ~ 104 s− 1, which is usually 
experienced by polyurea elastomer during explosive and high-velocity 
impact loading [1,38,47,48]. To minimize the model parameters, only 
one relaxation time (N = 1) is adopted in Eq. (29). (With regard to the 
influence of increasing the number of relaxation time constants in the 
model on its predictions, a second Prony-series term was incorporated, 
resulting in two additional constants. The results showed a negligible 
improvement in the goodness-of-fit value (R2) between the experimental 
and predicted results by only 0.002%, indicating that the model with 
one Prony-series term is adequate in describing the dynamic response of 
the polyurea elastomers examined.) If the model is required to predict 
accurately the mechanical response over a larger strain rate range, 
increasing the number of relaxation times N would facilitate this. 
Assuming that the effect of loading history ( − ∞ < τ < 0) on the Cauchy 
stress is neglected, the final expression for the viscoelastic stress is: 

σve =
2(1 + μ)
3(1 − 2μ)

(

G∞εv +G1

∫ t

0
e−

t− τ
θ1 ε̇vdτ

)

I + 2
(

G∞sve +G1

∫ t

0
e−

t− τ
θ1 ṡvedτ

)

(32) 

σhe = − 2
((

A2 + A3

(
J− 2

3I1 − 3
))

J− 7
3

)
B2

+2
((

A1 + A4e− A5

(
J−

2
3I1 − 3

))
J− 5

3 +
(

A2 + A3

(
J− 2

3I1 − 3
))

J− 7
3I1 + A3

(
J− 4

3I2 − 3
)

J− 5
3

)
B

+

(

2D(J − 1) −
2
3

(
A1 + A4e− A5

(
J−

2
3I1 − 3

))
J− 5

3I1 −
4
3

(
A2 + A3

(
J− 2

3I1 − 3
))

J− 7
3I2 −

2
3
A3

(
J− 4

3I2 − 3
)

J− 5
3

)

I

(20)   
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3.1.3. Visco-hyperelasticity 
As shown in Fig. 9, the total Cauchy stress for a visco-hyperelastic 

solid can be decomposed into a time-independent hyperelastic compo-
nent and a time-dependent viscoelastic component. Therefore, substi-
tution of Eqs. (20) and (32) into Eq. (7) results in a general expression for 
the three-dimensional visco-hyperelastic constitutive model:   

where A1, A2, A3, A4, A5, G∞, G1 and θ1 are constants to be determined. 

3.2. Parameter evaluation 

In this work, polyurea elastomer is modeled as a nearly incom-
pressible solid with a Poisson’s ratio of 0.485, similar to that in a pre-
vious effort [17], as a small degree of compressibility is required for 
finite element (FE) implementation – e.g., via the user-defined material 
subroutine in Hohenberger et al. [57]. The one-dimensional parameter 

calibration process adopted comprises two steps: (i) the hyperelastic 
model parameters A1 ∼ A5 are identified through fitting quasi-static test 
data to Eq. (36); (ii) the viscoelastic model parameters G1, G∞ and θ1 are 
obtained through fitting high-rate test data to Eq. (40). Data fitting is 
effected using the commercial software Wolfman Mathematica v12.0, 
with optimal model parameters obtained using the built-in Lev-
enberg-Marquardt algorithm. A one-dimensional version of the theo-
retical basis for the model is now briefly introduced. 

Consider quasi-static uniaxial loading of an isotropic compressible 
sample; the stretch in the loading direction is denoted by λ, and thus the 
three principal stretches are λ1 = λ and λ2 = λ3 = λ− μ. The resulting 
deformation gradient F and the left/right Cauchy-Green deformation 
tensor B, C are: 

F=

⎡

⎢
⎢
⎣

λ 0 0

0 λ− μ 0

0 0 λ− μ

⎤

⎥
⎥
⎦,B=F⋅FT =

⎡

⎢
⎢
⎣

λ2 0 0

0 λ− 2μ 0

0 0 λ− 2μ

⎤

⎥
⎥
⎦,C=FT⋅F=

⎡

⎢
⎢
⎣

λ2 0 0

0 λ− 2μ 0

0 0 λ− 2μ

⎤

⎥
⎥
⎦

(34)  

The three invariants of C are: 

I1= tr(C)=2λ− 2μ+λ2,I2=
1
2
[
I1

2 − tr
(
C2)]=λ− 4μ+2λ2− 2μ,I3=det(C)=λ2− 4μ

(35)  

Substitution of Eqs. (34) and (35) into Eq. (20), together with the uni-
axial loading condition (σ22 = σ33 = 0) and the assumption of 
compressibility (μ = 0.485), results in a true stress-stretch relationship 
in the loading direction:  

Consider next, uniaxial loading at a high strain rate. The stretch in the 
loading direction is also denoted by λ; thereby, the three principal 
stretches are again λ1 = λ and λ2 = λ3 = λ− μ, and the Cauchy strain 
tensor εve can thence be defined as [53]: 

εve =

⎡

⎢
⎢
⎣

λ − 1 0 0

0 λ− μ − 1 0

0 0 λ− μ − 1

⎤

⎥
⎥
⎦ (37) 

Based on strain decomposition according to Eq. (23), the deviatoric 
Cauchy strain tensor sve is: 

σvh = σhe + σve

= − 2
((

A2 + A3

(
J− 2

3I1 − 3
))

J− 7
3

)
B2

+2
((

A1 + A4e− A5

(
J−

2
3I1 − 3

))
J− 5

3 +
(

A2 + A3

(
J− 2

3I1 − 3
))

J− 7
3I1 + A3

(
J− 4

3I2 − 3
)

J− 5
3

)
B

+

(

2D(J − 1) −
2
3

(
A1 + A4e− A5

(
J−

2
3I1 − 3

))
J− 5

3I1 −
4
3

(
A2 + A3

(
J− 2

3I1 − 3
))

J− 7
3I2 −

2
3
A3

(
J− 4

3I2 − 3
)

J− 5
3

)

I

+
2(1 + μ)
3(1 − 2μ)

(

G∞εv + G1

∫ t

0
e−

t− τ
θ1 ε̇vdτ

)

I + 2
(

G∞sve + G1

∫ t

0
e−

t− τ
θ1 ṡvedτ

)

(33)   

σ11 = σhe
11 − σhe

22

= 2

⎛

⎜
⎜
⎝

A2

λ2.01 +
A1 + A4e

− A5

(
− 3+ 2

λ0.99+λ1.98

)

λ1.02

⎞

⎟
⎟
⎠

(
− 1 + λ2.97)+

6A3
(
− λ3.03 + λ4.02 + λ5.01 − λ6.99 − λ7.98 + λ8.97)

λ6.03

(36)   
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Fig. 10. Comparison between experimental and theoretical results for polyurea elastomer under quasi-static loading (0.001 s− 1): (a) compression and (b) tension.  

Fig. 11. Response of polyurea elastomer under high-rate loading based on three visco-hyperelastic models: (a) linear viscoelastic model proposed in the present 
study, (b) YSL2000 model, and (c) SYLL2004 model. 
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sve =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
3
(λ − λ− μ) 0 0

0
1
3
(λ− μ − λ) 0

0 0
1
3
(λ− μ − λ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(38)  

Correspondingly, the strain rate tensor s⋅
ve 

can be expressed as: 

s⋅
ve
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
3
(
1 + μλ− μ− 1)λ̇ 0 0

0 −
1
3
(
1 + μλ− μ− 1)λ̇ 0

0 0 −
1
3
(
1 + μλ− μ− 1)λ̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(39) 

A combination of Eqs. (33), (36), and (39), together with the uniaxial 
loading condition (σ22 = σ33 = 0) and assumption of compressibility (μ 
= 0.485), yields the Cauchy stress in the loading direction as:  

where λ(τ) = λ̇τ+ 1. Note that the model parameters A1 ∼ A5 obtained 
from step (i) can be directly used in step (ii). 

3.3. Model prediction 

Following the two-step fitting process, the compressive and tensile 
responses of polyurea at different strain rates, as described by the model, 
are plotted in Figs. 10, 11, and the best-fit parameters are listed in 
Table 2. As shown in Fig. 10a, the quasi-static compressive response is 
highly nonlinear, exhibiting a sigmoidal profile. As with earlier obser-
vations [44], the material exhibits a decreasing rate of hardening (0.7 <
λ < 1), followed by an increasing rate (0.4 < λ < 0.7). It is noted that the 
hyperelastic model incorporating an exponential function of I1 provides 
a better description of the entire compressive deformation history, 
especially the sigmoidal profile; in contrast, the model without the 
exponential term underestimates the true stress at small compressive 
deformations. In terms of the quasi-static tensile response shown in 
Fig. 10b, polyurea exhibits high stretchability, with a rupture stretch of 
~7, corresponding to an ultimate strength of 150 MPa; this indicates 
significant potential for blast and impact mitigation applications 
[64–66]. An effective impact-mitigating elastomeric coating should 
have both a high strength and ductility [66], because an elastomeric 
coating with high strength but low ductility will fracture at small strains 
and spall off, curtailing its contribution to protection [64]. As shown in 

Fig. 10b, the proposed model, with or without the exponential term, can 
describe the concave profile of the experimental response all the way to 
rupture. 

The uniaxial compressive and tensile responses of polyurea at high 
strain rates are plotted in Fig. 11a. (Note that the positive and negative 
values of the true stress and stretch rate correspond to tensile and 
compressive stress states, respectively.) The true stress-stretch response 
of polyurea is observed to be strongly nonlinear and rate-sensitive. For 
instance, with an increase in compressive strain rate from 0.001 s− 1 to 
5640 s− 1, the compressive stress at λ = 0.6 increases by five times, from 
6 MPa to 30 MPa. There is a similar elevation in the magnitude of tensile 
stress at a stretch of λ = 1.6, with an increase in tensile strain rate from 
0.001 s− 1 to 2810 s− 1. This rate-dependent response has been attributed 
to the interaction and readjustment of entangled molecular chains [67]. 
Fig. 11a shows that the linear viscoelastic model captures both the 
compressive and tensile stress-stretch responses at high strain rates with 
acceptable correlation. However, at large compressive deformations (e. 
g., λ = 0.6), there is some discrepancy, but this decreases with strain 
rate. 

The linear viscoelastic model proposed is relatively simpler than 
nonlinear viscoelastic models [40,38,18,39,42,63]. To ascertain the 
difference caused by employing linear and nonlinear viscoelastic ele-
ments, each is adopted in the visco-hyperelastic model illustrated 
schematically in Fig. 9. Two nonlinear viscoelastic models are consid-
ered, and denoted as the YSL2000 model [40] and the SYLL2004 model 
[38], and the results they yield are shown in Fig. 11b, c (details of these 
models are presented in the Appendix). It is noted that the model 

incorporating a nonlinear viscoelastic element is also able to yield a 
reasonable description of the dynamic compressive and tensile defor-
mation of polyurea. However, there is an obvious discrepancy with the 
experimental results for tensile deformation at a stretch rate of λ̇ =

1130s− 1. This may be because the nonlinear models incorporate two 
terms (C and İ2), which are more rate-sensitive to compression than 
tension [38]. The goodness-of-fit values (R2) between experimental data 
and the current model, the YSL2000 model, and the SYLL2004 model, all 
have the same value of 0.98, indicating negligible difference; i.e., the 
proposed model is as good as the other two for characterizing the 
high-rate response of polyurea elastomer. The proposed model is able to 
describe full recovery of deformation after unloading, but it is noted that 
accurate and complete capture of viscous dissipation remains to be a 
challenge, owing to limitations in experimental techniques in eliciting 
data on the deformation recovery process after high-rate loading. 

4. Finite element simulation 

The proposed visco-hyperelastic constitutive relationship corre-
sponding to Eq. (33) is implemented in the commercial finite element 
software Abaqus/Explicit via a user-defined material subroutine 
(VUMAT); details on how this can be done are described in the “Abaqus 
User Subroutines Reference Guide v.6.14”. A recursive scheme, first 
proposed by Taylor et al. [68], is employed for calculating the Cauchy 

Table 2 
Visco-hyperelastic model parameters.  

A1 

(MPa) 
A2 

(MPa) 
A3 

(MPa) 
A4 

(MPa) 
A5 G∞ 

(MPa) 
G1 

(MPa) 
θ1 

(μs) 

1.107 0.231 0.0344 3.772 3.221 8.308 446.388 1.658  

σ11 = σvh
11 − σvh

22 =
(
σhe

11 − σhe
22

)
+
(
σve

11 − σve
22

)

= 2

⎛

⎜
⎜
⎝

A2

λ2.01 +
A1 + A4e

− A5

(
− 3+ 2

λ0.99+λ1.98

)

λ1.02

⎞

⎟
⎟
⎠

(
− 1 + λ2.97)+

6A3
(
− λ3.03 + λ4.02 + λ5.01 − λ6.99 − λ7.98 + λ8.97)

λ6.03

+2G∞
(
λ − λ− 0.485)+ 2G1

∫ t

0

(
1 + 0.485λ− 1.485)λ̇e−

t− τ
θ1 dτ

(40)   
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Fig. 12. Comparison between theory and simulation based on eight-element polyurea elastomer block under (a) high-rate compression and (b) high-rate tension.  

Fig. 13. Simulation of polyurea layer on a rigid base, subjected to drop-weight impact: (a) FE model, (b) variation of contact force with indentation depth, (c) 
variation of impactor velocity with time, and (d) minimum principal strain contours at maximum indentation. 
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Fig. 14. Simulation of edge-clamped polyurea sheet subjected to drop-weight impact: (a) FE model, (b) variation of contact force with displacement, (c) variation of 
impactor velocity with time, and (d) maximum principal strain contours corresponding to maximum indentation. 

Table 3 
Summary of model parameters for other types of polyurea elastomer, for use with proposed constitutive model.  

Test* Parameters for use with proposed model Refs. Year 

A1(MPa) A2(MPa) A3(MPa) A4(MPa) A5(-) G∞(MPa) G1(MPa) θ1(μs) 

T&C 1.126 0.906 − 0.0401 5.185 1.659 7.125 206.885 1.609 Yi et al. [37] 
Sarva et al. [44] 

Roland et al. [50] 

2006 
2007 
2007 

T&C 2.565 1.465 − 0.5707 13.392 16.436 6.003 6685.03 0.142 Leblanc et al. [6] 2015 
T&C 2.096 4.121 0.00085 16.493 7.410 14.452 563.535 2.042 Wang et al. [22] 2019 

T − 0.036 3.950 0.063 4.371 5.169 4.333 77.182 84.567 Raman et al. [33] 2013 
T 12.430 − 3.533 − 2.294 15.174 5.086 2.628 27.763 552.4 Mohotti et al. [21] 2014 
T − 4.684 9.735 0.823 3.444 23.820 17.464 232.029 12.017 Miao et al. [23] 2019 
C 8.762 − 3.632 0.309 10.009 14.745 4.713 168.279 6.504 Shim and Mohr [72] 2009 
C 5.144 − 1.158 0.086 4.855 8.227 8.968 657.493 1.822 Liu et al. [73] 2021 
C 12.193 − 6.396 0.836 2.688 18.987 9.525 74.85 3.173 Gong et al. [71] 2021 

*T: tension; C: compression. 
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stress tensor. As previously mentioned, a small degree of compressibility 
has been introduced into the present model to facilitate numerical 
computation [69]. With μ = 0.485 selected for the Poisson’s ratio, the 
compressibility parameter D is given by [57]: 

D =
E

6(1 − 2μ) =
450MPa

6(1 − 2 × 0.485)
= 2.5GPa (41)  

where the modulus E = 450MPa is an average value determined from 
the dynamic compressive and tensile curves shown in Fig. 11. 

4.1. Results of implementation of constitutive model into FEM simulation 

Simulation of two homogenous deformation modes, i.e., uniaxial 
compression and uniaxial tension, is undertaken to validate appropriate 
implementation of the constitutive model. A cube with a grid size of 0.5 
mm is meshed using eight-node reduced integration (C3D8R) hexahe-
dral elements. A displacement constraint along the loading direction is 
applied to one side of an eight-element block, and a load is then imposed 
on the opposite side, resulting in six different constant stretch rates. 
Conservation of total energy for each simulation is checked. The 

material parameters in the numerical simulations are those listed in 
Table 2. As shown in Fig. 12, for both compressive and tensile defor-
mation at high strain rates, the FE simulation results exhibit good 
agreement with theoretical predictions. 

4.2. Simulation of impact on polyurea layer 

To further validate the proposed visco-hyperelastic model, simula-
tion of non-uniform deformation of polyurea subjected to impact by a 
gravity-driven hemispherically-tipped impactor is carried out. The FE 
models of the actual tests and the corresponding simulation results are 
depicted in Figs. 13 and 14. The hemispherical impactor and base sup-
port are modeled as rigid bodies and meshed using shell elements, while 
the polyurea layer is meshed using hexahedral elements. Frictionless 
surface-surface contact between the impactor and sample is assumed. In 
accordance with the drop-weight tests described in Section 2.5, two 
different boundary conditions are imposed on the polyurea, i.e., rigid 
base-supported (Fig. 13a) and edge-clamped conditions (Fig. 14a). The 
base-supported layer is fully tied to the rigid support, while all degrees 
of freedom are constrained at the periphery of the edge-clamped sample 
(geometric details are presented in Table 1). (Conservation of total 

Fig. 15. Comparison of simulation of quasi-static and dynamic compressive and tensile response of polyurea based on proposed model, with published experimental 
data: (a) Yi et al. [37,44,50], (b) Leblanc and Shukla [6], (c) Wang et al. [22], (d) Raman et al. [33], (e) Mohotti et al. [21], (f) Miao et al. [23], (g) Shim and Mohr 
[72], (h) Liu et al. [73], and (i) Gong et al. [71]. 
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energy in simulations is also checked.) 
Figs. 13b and 14b compare experimental observations and numerical 

simulations in terms of the variation of contact force with impactor 
displacement. Close agreement is observed for most of the loading his-
tory, except for the peak force. The FE simulation captures the maximum 
indentation but overestimates the peak force. This discrepancy could be 
attributed to the fact that the sample experiences a wide range of strain 
rates during loading, and this is difficult to capture completely with a 
single relaxation time constant in the constitutive model, evaluated 
solely from experimental data corresponding to high strain rates (~103 

s− 1). Omission of the potential effect of adiabatic heating in the current 
model is also a possible source of discrepancy. Figs. 13c and 14c depict 
the variation of impactor velocity with time for loading with two 
different boundary conditions. Evolution of the impactor velocity before 
the impactor starts to rebound is accurately predicted. Minimum/ 
maximum strain contours for the cross-section of the samples are shown 
in Figs. 13d and 14d. Localized deformation within the vicinity of con-
tact with the impactor for the base-supported case is compression- 
dominated, while that for the edge-clamped configuration is tension- 
dominated. Essentially, this validation of the model with experiments 
demonstrates that calibration of the model parameters based on uniaxial 
data provides an adequate description of the dynamic response of pol-
yurea under non-uniform loading conditions. 

5. Application of constitutive model 

Numerous theoretical, experimental, and numerical efforts devoted 
to appropriate use of polyurea coating to resist blast and impact have 
been reviewed [70]. Use of appropriate material models and computa-
tional simulation facilitate cost-efficient convergence towards optimal 
designs. Applicability of the proposed visco-hyperelastic model devel-
oped for Qtech-420 polyurea to describe nine other types of polyurea 
studied [6,21–23,33,37,44,50,71–73] is examined. Their mechanical 
properties can vary, depending on the fabrication process adopted by 
suppliers, according to Cui et al. [41]. The polyurea selected are divided 
into three groups according to the mode of loading, i.e., tension (T), 
compression (C), and combined tension and compression (T&C). Based 
on the calibration method described in Section 3.2, the model parame-
ters obtained are listed in Table 3, and a Poisson’s ratio of 0.485 is 
assumed. It may appear unusual that some of the parameters in Table 3 
are negative, but this does not violate any fundamental or physical im-
plications [59]. Fig. 15 compares experimental measurements and 
simulation results based on the proposed model for the nine polyurea 
materials, and shows that the present model provides reasonable de-
scriptions of the nonlinear variation of true stress with stretch for 
different strain rates. It is acknowledged that closer correlation may be 
possible by adopting more complex constitutive models, but a balance 
between sufficient accuracy and simplicity is the objective. 

6. Concluding remarks 

This effort focuses on characterizing the dynamic compressive and 

tensile properties of a highly stretchable polyurea elastomer (Qtech- 
420) via a combined experimental, theoretical and numerical approach. 
Various experiments, which include quasi-static tension/compression 
tests, SHPB/SHTB dynamic tests, and drop-weight impact tests, are 
performed. The polyurea material studied is able to elongate by about 
700%, and possesses a quasi-static tensile ultimate strength of 150 MPa. 
Under quasi-static compression, the tangent modulus initially decreases 
(0.7 < λ < 1) then increases (0.4 < λ < 0.7). The compressive and ten-
sile stress-deformation relationships are notably rate-sensitive over the 
strain rate range from 0.001 s− 1 to 103 s− 1. Unlike earlier constitutive 
models that assume incompressibility, a compressible visco-hyperelastic 
model is developed to describe the compressive and tensile responses of 
polyurea at various strain rates. This is based on the addition of rate- 
independent and rate-dependent Cauchy stress components, involving 
a five-parameter hyperelastic component and a three-parameter linear 
viscoelastic component. Good agreement is observed between the model 
and experimental measurements. Compared with existing models (e.g., 
the YSL2000 model [40] and the SYLL2004 model [38]), the proposed 
model yields a closer description of tensile deformation for polyurea at a 
stretch rate of 103 s− 1. The model is implemented into a commercial 
software (Abaqus) via a user-defined material subroutine. Simulations of 
the impact response of a polyurea sheet by a hemispherically-tipped 
impactor, which generates non-uniform loading, demonstrate close 
correlation with experiments. The proposed model is also able to 
describe the mechanical response of nine other types of polyurea 
deformed at different strain rates. It is envisaged that the present study 
will contribute to efficient design and development of blast and 
impact-resistant polyurea coatings. 
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Appendix. Brief description of YSL2000 model and SYLL2004 model 

The Cauchy stress tensor σve for an isotropic, homogenous, and compressible viscoelastic solid can be expressed by: 

σve =
1
J

F⋅Ω⋅FT (A.1)  

where F is the deformation gradient tensor, J is the Jacobian determinant of F quantifying volumetric change, and Ω the second Piola-Kirchhoff stress 
tensor. The form of Ω governs the stress-deformation relationship and how closely it matches the response of a material. 

In the YSL2000 model [40], the second Piola-Kirchhoff stress tensor Ω is assumed to have the following form: 
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Ω =

∫ t

0
[A1 +A2(I2(τ) − 3)]E

⋅
(τ)e

(

− t− τ
A3

)

dτ (A.2) 

where A1, A2 and A3 are the model parameters to be determined, I2 is the second invariant of the right Cauchy-Green deformation tensor C, and Ė is the 
Green-St.Venant strain rate tensor. 

In the SYLL2004 model [38], the second Piola-Kirchhoff stress tensor Ω assumes a different form: 

Ω = (1+A1 İ2(τ))
∫ t

0

[

A2
İ1(τ)
I1(τ)

C(τ)+ 2A3Ė(τ)
]

e

(

− t− τ
A4

)

dτ (A.3)  

where A1, A2, A3 and A4 are model parameters to be determined, I1 is the first invariant of the right Cauchy-Green deformation tensor C, and İ1, İ2 are 
the rates of the first two invariants of C. The two terms C and İ2 in the SYLL2004 model result in a higher rate-sensitivity to compressive deformation, 
to account for a difference in rate-dependence. 

Substitution of Eq. (A.2) or (A.3) into Eq. (A.1) yields a three-dimensional frame-independent finite strain viscoelastic model for compressible 
materials. The model parameters can be determined through a one-dimensional experimental test, as described in Section 3.2. It is noted that only one 
relaxation time is incorporated into the nonlinear viscoelastic components of the two models. 
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