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A B S T R A C T   

With advantages in stiffness, strength, and energy absorption, hierarchical origami-corrugation meta-sandwich 
(HOCM) structures are envisioned as a novel ultralight multifunctional sandwich construction for various 
practical applications. Firstly, the macro-equivalent compressive modulus is analytically derived using a two- 
level homogenization approach. The HOCM samples manufactured by selective laser melting are then tested 
under quasi-static out-of-plane compressive loading. A representative volume element model is proposed for 
finite element simulations to explore further the compressive performance, with good agreement achieved be-
tween measurements and simulations. Influences of critical geometric parameters on compressive properties, 
including initial failure modes, specific peak strength (SPS) and specific energy absorption (SEA), are numeri-
cally analyzed. Subsequently, the surrogate model based on a fully connected neural network algorithm is 
selected as the machine learning strategy to approximate the SPS and SEA, with cross-validation conducted to 
verify its accuracy. Finally, a multi-objective optimization method incorporating the surrogate model and the 
non-dominated sorting genetic algorithm II is implemented to carry out optimal design for HOCM structures 
possessing simultaneous superior SPS, SEA with assured stiffness. Such a data-driven optimization procedure 
based on the machine learning method exhibits high accuracy for strongly nonlinear problems, especially for SEA 
in current work, leading to highly efficient optimization.   

1. Introduction 

An excellent lesson learned from nature is that evolving cellular 
structures could become highly mechanically efficient at ultralight-
weight, such as honeycomb-like structures (e.g., wood and cork [1]) and 
foam-like structures (e.g., plant parenchyma [2] and trabecular bone 
[3]). For example, the hornbill beak can be described as a sandwich- 
structured composite with a lightweight cellular core, which possesses 
a high stiffness-to-weight ratio and good shock resistance [4]. Inspired 
by these natural structures, diverse cellular mechanical metamaterials 
were proposed and investigated in recent years, which define their 
mechanical performance by geometry rather than composition [5,6]. 
Typically, rationally designed artificial mechanical metamaterials 
enable mechanical properties inaccessible with ordinary materials, such 
as twists under axial loading [7], negative Poisson ratio [8], hyper-
elasticity [9], superior in-plane deformations [10,11], and so forth. 

Among the mechanical metamaterials, the origami structures attracted 
increasing attention [12]. Compared to traditional cellular structures 
such as corrugations and honeycombs, origami structures exhibit the 
combined property of improved structural stability and fluid-through 
feature [13]. Nevertheless, their energy absorption capacity is a bit 
weaker than that of honeycombs due to fewer plastic hinges formed 
under out-of-plane compression [13], thus requiring further 
improvement. 

Due to composition-independence, a rational geometric design is 
essential for mechanical metamaterials. Hierarchy design has become 
popular for designing artificial structures with superior mechanical 
properties, such as polymers [14], composites [15–17], and meta-sand-
wich cores [18,19]. In particular, for meta-sandwich cores, the concept 
of hierarchical corrugated structure was proposed [18]; the resulting 
hierarchical corrugated core made from structural alloy possessed 
significantly higher collapse strengths compared to its equivalent mass 
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first-order counterpart. Further, both the in-plane quasi-static and dy-
namic crushing properties of a second-order hierarchical honeycomb 
metamaterial were studied [20], with its cell walls replaced by corru-
gation sandwich panels. Under quasi-static crushing, hierarchical hon-
eycombs provided significant improvement in the collapse stress over 
first-order honeycombs; however, as the crushing velocity was gradu-
ally increased, the improvement decreased [20]. Besides, hierarchically 
architected lattice metamaterials with octahedron-of-octahedra and 
octet-of-octahedra topologies were manufactured from Ti-6Al-4V alloy 
sheets using a “snap-fit” assembly technique combined with vacuum 
brazing [21]. Compared to existing cellular materials, the lattice meta-
materials exhibited quite competitive mechanical properties in 
compressive modulus and strength. Despite numerous efforts devoted to 
this exuberant field, ultralightweight mechanical metamaterials with 
combined high strength and superior energy absorption remain poorly 
reported. To address this deficiency, we recently proposed a novel ul-
tralightweight hierarchical origami-corrugation meta-sandwich 
(HOCM) structure with superior out-of-plane compressive mechanical 
properties, including strength and energy absorption [22]. The HOCM 
structures fabricated using the technique of selective laser melting 
(SLM) were evaluated with quasi-static out-of-plane compressive tests. 
The results confirmed that both the compressive strength and energy 
absorption were improved significantly. Physical mechanisms underly-
ing such superior mechanical response were also explored and the ef-
fects of parent material make discussed. Nonetheless, these remarkable 
results were attained without systematic geometry parametric analysis. 
In total, there are 9 independent geometric parameters in a HOCM 
structure and how these parameters affect its mechanical properties 
remains elusive. Therefore, exploring the critical influence of geometric 
parameters and then establishing an efficient optimization strategy is of 
great significance for in-depth understanding and promotion of the 
proposed HOCM structures. 

For a complex structure like the HOCM, the relationship between its 
mechanical performance and geometric parameters is often too non- 
smooth and nonlinear to derive either analytical or empirical solutions 
[23], thus limiting significantly its optimal design for specific practical 
applications. Recently, surrogate modeling based on machine learning 
(ML) has drawn great attention, especially for those struggling in solving 
complicated engineering problems with traditional methods, due mainly 
to its promising substitute for analytical and empirical solutions. For 
instance, based on ML models such as regression trees and neural net-
works (NNs), a new class of solutions was proposed for fracture me-
chanics problems [24]. It was found that while both models could 
provide accurate results for specific problems, the NN-based solutions 
outperform regression-tree-based solutions in terms of simplicity. Based 
on a neural network algorithm depending on plastic strain, strain rate, 
and temperature, a modified Johnson-Cook plasticity model was pro-
posed to capture the plastic and fracture behaviors of dual-phase steels 
[25]. The work demonstrated that, with machine learning, a hardening 
law can be identified using a hybrid experimental–numerical analysis, 
without adding any model bias before calibration. A machine learning 
based model was then proposed to describe the temperature and strain 
rate dependent response of polypropylene, and its capability to effi-
ciently predict experimentally observed stress–strain response was 
demonstrated [26]. Therefore, the method of machine learning has great 
potential for surrogate modeling to approximate and predict complex 
and/or nonlinear problems. 

Moreover, incorporating surrogate modeling with optimization al-
gorithms has promoted the optimization efficiency of multi-objective 
engineering design [27], for it could reduce the computational effort 
for simulation as well as avoid the difficulty of expressing highly 
nonlinear relations by exact equations [28]. The multi-objective opti-
mization is of great potential and efficiency in energy absorption [28] or 
multi-functional application scenarios [29–31] and thus is widely 
employed in these fields. Recently, several studies about tubing energy 
absorption have been conducted based on multi-objective optimization 

for peak forces and energy absorption, which greatly reduced design 
time for energy absorption devices [32–36]. A multi-objective optimi-
zation was also employed to perform blast-resistant design of sandwich 
structures based on the Kriging surrogate modeling: the optimal design 
from the Pareto front was found to be quite efficient in lightweight and 
blast resistance [37]. Three types of optimal design for metallic corru-
gated sandwich panels with polyurea-metal laminate face sheets were 
subsequently compared to seek the trade-off design of stiffness and vi-
bration damping [38]. Many other fields have also been performed with 
the multi-objective optimization, for example, diffuse field sound 
transmission loss on the lightweight shell composite sandwich structures 
[39], plane sound wave transmission loss on the lightweight laminated 
composite cylindrical shell [40], and so on. 

In the present study, inspired by the aforementioned knowledge 
gaps, the out-of-plane compressive performances of novel HOCM 
structures proposed recently by us are systematically investigated 
theoretically, experimentally, and numerically. Firstly, an analytical 
model to predict the equivalent elastic constants of the meta-mechanical 
structure is established. Secondly, out-of-plane compression experi-
ments are carried out with SLM printed HOCM samples. Thirdly, a 
representative volume element (RVE) model of finite element (FE) 
simulations is proposed to explore further the compressive performance 
and the underlying physical mechanisms. Subsequently, built upon the 
fully connected neural network algorithm, a machine-learning-based 
surrogate model is developed to approximate the specific peak 
strength (SPS) and specific energy absorption (SEA) of HOCM structures. 
Finally, upon incorporation with the surrogate model, the non- 
dominated sorting genetic algorithm II is selected to carry out multi- 
objective optimization for simultaneous superior SPS, SEA with 
assured stiffness. 

2. Analytical model of elastic constants 

2.1. Geometry of HOCM structure 

The proposed HOCM structure is inspired by the Miura-Ori structure. 
As illustrated in Fig. 1, the unit cell of HOCM consists of four inclined 
parallelogram corrugated sandwich plates. Let a and b represent the 
length of two edges of an inclined corrugated sandwich plate, c the 
length of the edge of corrugation platform, α′ the angle between the 
inclination edge and horizontal line of parallelogram plates, β the 
folding angle, and φ the acute angle of parallelogram plates. The 
parametersα′ , β and φ are related by: 

cosφ = cosα′ ⋅cosβ, (1)  

sin2φ = sin2α′

+ cos2α′ ⋅sin2β. (2) 

To reveal the geometric information of internal corrugations, a cross- 
section is set in the HOCM structure as shown in Fig. 1, with the inner 
geometrical morphology of corrugations enlarged with corresponding 
parameters marked on it. The inner corrugations are characterized by 
the inclination angle γ, strut (corrugations web) thicknesst1, strut 
lengthl1, and half wavelength s. The overall parameters of the HOCM 
structure are related to the corrugation parameters by: 

tanα′

= tanα⋅sinβ, (3)  

w = c⋅sinβ =
2(l1⋅sinγ + 2t + t1)

sinα , (4)  

l = b⋅sinφ, (5)  

where α and l are the inclination angle and the height of parallelogram 
plates, respectively, and w is the width of corrugation platform in the 
cross-section. 

Based on parameter relationships described above, the HOCM 

Z. Yue et al.                                                                                                                                                                                                                                      



Composite Structures 303 (2023) 116334

3

structure is determined by 9 independent parameters, namely, a, l, t, l1, 
t1, s, α, β and γ, and its relative density ρ can be expressed as: 

ρ =
2
{

2lt + lt1

[
s

s+(cosγ− 1)l1

]
+

2(l1⋅sinγ+2t+t1)t
sinα

}

l[a⋅sinα⋅sinβ⋅cosβ + 2l⋅sinα⋅cosα + 2(l1⋅sinγ + 2t + t1) ]
. (6)  

2.2. Analytical model 

In this section, a theoretical model to predict the equivalent elastic 
constants of HOCMs is established. It is of great significance to reveal the 
elastic behavior of HOCMs. In the later section, the analytical model is 
validated by the FE simulations. In addition, for the multi-objective 
optimal design, the compressive stiffness of HOCMs is set as the crit-
ical constraint, to guarantee the deformation resistibility at linear elastic 
stage of optimal results. 

2.2.1. Simplifications and assumptions 
To simplify the derivation process, several basic assumptions are 

made: 
(1) The whole HOCM structure is perfect in geometry (i.e., without 

any internal defects) and made of the same isotropic parent material. 
(2) The structure can be homogenized within its representative 

volume unit and hence can be taken as a fictive homogeneous bulk 
material. 

(3) The corrugated sandwich plates forming the parallelogram facet 
are taken as equivalent orthotropic plates, and only in-plane stresses in 
these plates are considered when analyzing the compressive behavior of 
the HOCM structure. 

(4) Elastic compression under small deformation is analyzed based 
on the assumption of linear elasticity. 

Given the hierarchical feature of the HOCM structure, a two-level 
homogenization approach is developed, i.e., the first-level homogeni-
zation for corrugated sandwich plates, and the second-level homogeni-
zation for the Miura-Ori foldcore consisting of inclined parallelogram 
facets. 

With reference to Fig. 2a, the unit cell of a HOCM structure is placed 
in the global coordinate system O-xyz. Meanwhile, the Cartesian coor-
dinate system O-η′ ξ

′

θ
′ is set based on the inclined parallelogram facet, 

with the base vectors defined as ei′ (i = 1, 2, 3), whose inverse basis 

vectors are ei
′

(i = 1, 2, 3). 
Due to structural symmetry of two adjacent parallelogram facets, 

only one inclined parallelogram made of corrugated sandwich plate 
needs to be analyzed. Fig. 2b presents the in-plane stresses and me-
chanical model for such an inclined parallelogram facet. The coordinate 
system ηOξ is set along the parallelogram edges, whose base vectors are 
gi (i = 1, 2), with the inverse vectors defined as gi (i = 1, 2). 

2.2.2. Stiffness model of corrugated sandwich plate 
First-level homogenization for corrugated sandwich plate: Each corru-

gated sandwich plate is constituted of two face sheets and a corrugated 
core. For the corrugated core, the stiffness in longitudinal and transverse 
directions are not the same: as shown in Fig. 2, the longitudinal direction 
is the direction of corrugated channels alongOη′ , while the transverse 
direction is the periodic direction of corrugations alongOξ

′ . Therefore, 
the corrugated core can be treated as an equivalent orthotropic plate, 

Fig. 1. Schematic of hierarchical origami-corrugation meta-sandwich (HOCM) structure.  

Fig. 2. Mechanical model of HOCM structure: (a) coordinate systems and (b) in-plane stresses and mechanical model of inclined parallelogram facet.  
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such that its stress versus strain relationship can be written as: 
⎧
⎨

⎩

σ1′ 1′

σ2′ 2′

σ1′ 2′

⎫
⎬

⎭
eop

=

⎡

⎣
A1′ 1′ 1′ 1′ A1′ 1′ 2′ 2′ 0
A2′ 2′ 1′ 1′ A2′ 2′ 2′ 2′ 0

0 0 A1′ 2′ 1′ 2′

⎤

⎦

eop

⎧
⎨

⎩

ε1′ 1′

ε2′ 2′

ε1′ 2′

⎫
⎬

⎭
eop

, (7)  

where A1′ 1′ 2′ 2′

is equal toA2′ 2′ 1′ 1′

, and the subscript “eop” represents the 
equivalent orthotropic plate. 

Based on the principle of energy equivalence, the extensional rigidity 
of a trapezoidal corrugated core had been derived, as [41,42]: 

A1′ 1′ 1′ 1′ = E
s

s + l1(cosγ − 1)
, (8)  

A2′ 2′ 2′ 2′ =
Et2

1[s + l1(cosγ − 1) ]
(3s − 2l1)l2

1sin2γ
, (9)  

A1′ 1′ 2′ 2′ = A2′ 2′ 1′ 1′ = νA2′ 2′ 2′ 2′ , (10)  

A1′ 2′ 1′ 2′ =
E[s + l1(cosγ − 1) ]

2s(1 + ν) , (11)  

where E and ν are Young’s modulus and Poisson ratio of the parent 
material made into the corrugated core. 

As for the two face sheets of the corrugated sandwich plate, the stress 
versus strain relationship can be written as: 

⎧
⎨

⎩

σ1′ 1′

σ2′ 2′

σ1′ 2′

⎫
⎬

⎭
fs

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E
1 − ν2

νE
1− ν2 0

νE
1 − ν2

E
1− ν2 0

0 0 E
2(1+ν)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

fs

⎧
⎨

⎩

ε1′ 1′

ε2′ 2′

ε1′ 2′

⎫
⎬

⎭
fs

, (12) 

where the subscript “fs” represents the face sheets. 
Based on the well-established mechanics of composite materials, the 

extensional rigidity of a laminate can be derived by linear superposition. 
Therefore, with the corrugated sandwich plate taken as a three-layer 
laminate, its in-plane stress versus strain relationship can be derived as: 
⎧
⎨

⎩

σ1′ 1′

σ2′ 2′

σ1′ 2′

⎫
⎬

⎭
=

⎡

⎣
B1′ 1′ 1′ 1′ B1′ 1′ 2′ 2′ 0
B2′ 2′ 1′ 1′ B2′ 2′ 2′ 2′ 0

0 0 B1′ 2′ 1′ 2′

⎤

⎦

⎧
⎨

⎩

ε1′ 1′

ε2′ 2′

ε1′ 2′

⎫
⎬

⎭
, (13) 

or, expressed in tensor form, as: 

σi
′

j
′

= Bi
′

j
′

k
′

l
′

εk′ l′ , (14) 

here, Bi
′

j
′

k
′

l
′

is the extensional rigidity of the corrugated sandwich 
plate, given by: 

B1′ 1′ 1′ 1′ =
2tE + (1 − ν2)t1A1′ 1′ 1′ 1′

(2t + t1)(1 − ν2)
, (15)  

B2′ 2′ 2′ 2′ =
2tE + (1 − ν2)t1A2′ 2′ 2′ 2′

(2t + t1)(1 − ν2)
, (16)  

B1′ 1′ 2′ 2′ = B2′ 2′ 1′ 1′ =
2tνE + (1 − ν2)t1νA2′ 2′ 2′ 2′

(2t + t1)(1 − ν2)
, (17)  

B1′ 2′ 1′ 2′ =
tE + (1 + ν)t1A1′ 2′ 1′ 2′

(2t + t1)(1 + ν) . (18)  

2.2.3. Equivalent elasticity coefficients 
Second-level homogenization for inclined parallelogram facet in Miura- 

Ori foldcore: Fig. 2b displays the directions of the rectangular coordi-
nate system η′Oξ

′ and the inclined coordinate systemηOξ, together with 
their base and inverse base vectors. The base and inverse base vectors of 

the rectangular coordinate system are gi andgi, while those for the in-
clined coordinate system are ei′ and ei′ respectively. Note that, via a rigid 

body rotation, gi and gi can be made to coincide with ei′ andei′ . Namely, 
they can be related by the orthogonal tensor, as: 

ei′ = βj
i′

gj (19)  

gk = βk
l′ e

l
′

(20) 

where i, j, k, l = 1, 2. 
The rules of coordinate transformation dictate that the stresses and 

strains in the rectangular coordinate system η′Oξ
′ and the inclined co-

ordinate system ηOξ are related by: 

σij = βi
i′ β

j
j′

σi
′

j
′

, (21)  

εk′ l′ = βk
k′ β

l
l′ εkl, (22)  

where σij and εkl are the stress and strain in the inclined coordinate 

systemηOξ, while σi
′

j
′

and εk′ l′ are the stress and strain in the rectan-
gular coordinate system η′Oξ

′ . 
For the corrugated sandwich plate, the stress versus strain relation-

ship in the inclined coordinate system ηOξ can be written as: 
⎧
⎨

⎩

σ11

σ22

σ12

⎫
⎬

⎭
=

⎡

⎣
B1111 B1122 0
B2211 B2222 0

0 0 B1212

⎤

⎦

⎧
⎨

⎩

ε11
ε22
ε12

⎫
⎬

⎭
, (23) 

or. 

σij = Bijklεkl. (24) 

Substituting Eqs. (21) and (22) into Eq. (24) leads to the stress versus 
strain relationship expressed in the inclined coordinate systemηOξ, as: 

σij = βi
i′ β

j
j′

Bi
′

j
′

k
′

l
′

βk
k′ β

l
l′ εkl. (25) 

Comparing Eq. (24) and Eq. (25) yields: 

Bijkl = βi
i′ β

j
j′

Bi
′

j
′

k
′

l
′

βk
k′ β

l
l′ , (26) 

or, in matrix form: 

[B] = [T][B′

][Q] (27) 

where. 

[T] =

⎡

⎢
⎢
⎣

β1
1′ β

1
1′ β1

2′ β
1
2′ β1

1′ β
1
2′

β2
1′ β

2
1′ β2

2′ β
2
2′ β2

1′ β
2
2′

β1
1′ β

2
1′ β1

2′ β
2
2′ β1

1′ β
2
2′

⎤

⎥
⎥
⎦ =

⎡

⎣
1 cot2φ − cotφ
0 csc2φ 0
0 − cotφ⋅cscφ cscφ

⎤

⎦, (28)  

[Q] =

⎡

⎢
⎢
⎣

β1
1′ β

1
1′ β2

1′ β
2
1′ β1

1′ β
2
1′

β1
2′ β

1
2′ β2

2′ β
2
2′ β1

2′ β
2
2′

β1
1′ β

1
2′ β2

1′ β
2
2′ β1

1′ β
2
2′

⎤

⎥
⎥
⎦ =

⎡

⎣
1 0 0

cot2φ csc2φ − cotφ⋅cscφ
− cotφ 0 cscφ

⎤

⎦. (29) 

Substitution of Eqs. (28) and (29) into Eq. (27) results in: 

B2222 = B2
′
2
′
2
′
2
′

csc4φ. (30)  

2.2.4. Compressive modulus 
According to the rules of coordinate transformation, the strains in the 

global coordinate system O-xyz are related to those in the inclined co-
ordinate systemηOξ: 

εmn = βm∗
m βn∗

n εm∗n∗, (31)  

where m, n = 1, 2, 3, andm ∗ , n ∗ = x, y, z. 
When the HOCM structure is subjected to out-of-plane compression 
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along the z-axis direction (the displacement components:U = V =

0,W ∕= 0; U, along the x-axis direction, V, along the y-axis direction, and 
W, along the z-axis direction), the equivalent strains could be written by: 
⎧
⎨

⎩

εzz =
W
h

εzx = εzy = 0
. (32) 

Therefore, according to the stress versus strain relationship estab-
lished above, the corresponding equivalent stresses are: 
{

σzz = Ezzzzεzz
σzx = σzy = 0 . (33) 

Within the equivalent volume of the unit cell, the average stresses on 
a cross-section (x = const,y = const, z = const) areσzx, σzy andσzz. The 
potential strain energy can be calculated by: 

Π =
1
2

∫∫∫

V
σεdV =

1
2

∫∫∫

Ve

σm∗n∗εm∗n∗dV, (34)  

where Ve is the equivalent volume of the unit cell (i.e., the volume of 
circumscribed cuboid of the HOCMs’ unit cell), given by: 

Ve = 2ab⋅sinα′ ⋅sinβ(a⋅cosβ + 2b⋅cosα′

+ c) (35) 

Substituting Eqs. (33) and (35) into Eq. (34) leads to: 

Π = ab⋅sinα′ ⋅sinβ(a⋅cosβ + 2b⋅cosα′

+ c)Ezzzzε2
zz. (36) 

Based on Eq. (31), the in-plane strains of the parallelogram wall 
shown in Fig. 2b can be derived as: 
{

ε22 = sin2α′ ⋅εzz
ε11 = ε12 = ε21 = 0

. (37) 

Assume that the parallelogram wall is in-plane stress state, and only 
in-plane stresses and small elastic deformation are considered. The 
strain energy Π′ within the parallelogram wall in the inclined coordinate 
system ηOξ can be written as: 

Π′

=
1
2

∫∫∫

V
σεdV =

1
2

∫∫∫

V
σmnεmndV, (38)  

where V is the volume of the parallelogram wall, given by: 

V = 2ab(2t + t1)sinφ. (39) 

Substitution of Eqs. (24), (37) and (39) into Eq. (38) yields: 

Π′

=
1
2

ab(2t + t1)sinφ⋅sin2α′ ⋅B2222ε2
zz. (40) 

Based on the principle of work equivalence for the walls of the unit 
cell, one has: 

Π = 4Π′

. (41) 

Finally, upon substituting Eqs. (30), (36) and (40) into Eq. (41), the 
equivalent compressive modulus of a HOCM structure under quasi-static 
compression along the z-axis direction (Fig. 2) is derived, as: 

Ezzzz =
2(2t + t1)sin3α′ ⋅csc3φ⋅B2′ 2′ 2′ 2′

sinβ⋅(acosβ + 2bcosα′
+ c)

. (42)  

3. Experiments 

3.1. Materials and fabrication methodology 

In contrast to steel and aluminum alloys, the Inconel alloy IN718 
possesses higher specific strength and service temperature, thus great 
potential for applications in extreme environments [43]. The IN718 
material is selected as the parent material for all HOCM test samples 
fabricated in the present study. 

Additive manufacturing (AM) of metallic materials provides attrac-
tive benefits to the fabrication of complex geometry structures [44]. To 
guarantee the manufacturing quality, the HOCM samples are fabricated 
using the selective laser melting (SLM) AM technique. 

Table 1 lists the geometric dimensions of as-fabricated HOCM test 
samples. Three different wall thickness values are selected to investigate 
the effect of relative density, and each sample contains two unit cells. 
The IN718 metallic powders used for SLM are in good spheroidization, 
with particle sizes varying between 5 μm and 50 μm. Chemical 
composition of the powders is listed in Table 2. As for the technical 
parameters of SLM, the skin layer is printed with a laser power of 75 W 
and a scanning speed of 800 mm/s while the inner region is printed with 
a laser power of 305 W and a scanning speed of 960 mm/s, such that the 
fabricated samples can be easily removed from the workbench. 

Fig. 3 presents photographs of the three test samples detailed in 
Table 1. The quality of sample fabrication is evaluated with scanning 
electron microscopy (SEM, SU3500, Hitachi, Japan). Fig. 3b displays the 
SEM image of the outside surface region marked in Fig. 3a by white 
dashed line A. The outside surface of the sample is seen to be relatively 
flat with no presence of holes, thus indicating good manufacturing 
quality. For the observation of the inner region, the sample is cut along 
the white dashed line B shown in Fig. 3a via wire-cut electro-discharge 
machining (EDM) then the inner face is magnified through SEM, as 
shown in Fig. 3c. The interior of the sample is relatively dense, with only 
a small amount of un-melted metal powders (marked by black dashed 
line) observed. In all, the test samples fabricated via SLM exhibit only a 
few minor defects. 

To characterize the mechanical properties of the parent material 
(IN718), room temperature uniaxial quasi-static tensile tests are con-
ducted on an MTS machine (MTS-858 Mini bionix, MTS Corporation, 
USA), with a nominal strain rate of 1 × 10-3 s− 1. Dog-bone samples are 
designed and manufactured using the SLM technique, with identical 
printing parameters as those adopted for HOCM samples. Force and 
displacement profiles are generated by the testing machine and recorded 
by an extensometer simultaneously. A total of six nominally identical 
samples are tested, and the resulting average true stress versus true 
strain curve is shown in Fig. 4. Generally speaking, the IN718 manu-
factured by SLM exhibits a typical elastic-linearly hardening behavior, 
with density ρ = 8240 kg/m3, Young’s modulus E = 144.51 GPa, and 
0.2% offset yield strengthσ0.2 = 815.16 MPa. 

3.2. Experimental measurements 

Quasi-static out-of-plane compressive responses of the HOCM sam-
ples are measured with a hydraulic testing machine (MTS). Fig. 5 dis-
plays the experimental set-up, which is consisted of upper and lower 
platens, a floodlight, and a digital video. While the lower platen is fixed, 
the upper platen is set to apply a compressive load along the 3-direction 
(i.e., out-of-plane direction) by moving down with a fixed nominal strain 
rate of 5.96 × 10-4 s− 1. With the floodlight adopted to improve ambient 
brightness, a digital video is set at the side of each test sample along the 
1-direction (Fig. 5) to record its deformation details. The force and 
displacement profiles are generated by the testing machine 
synchronously. 

3.3. Experimental results 

Quasi-static out-of-plane compressive responses of the tested HOCM 
samples are presented in Fig. 6. The nominal strain is calculated as the 
ratio of displacement and sample height, while the nominal stress as the 
ratio of compressive loading force and sample cross-sectional area in 
accordance with the ASTM STP C365. As shown in Fig. 6a, sample T1 
exhibits an initial linear compressive response till a peak strength is 
reached, followed by a sudden and dramatic drop before reaching a 
long-term stress plateau with slight fluctuations till densification. 

To investigate the effect of relative density, samples T2 and T3 are 
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measured, with the relative density gradually increased (relative to T1) 
by changing the wall thickness, as detailed in Table 1. As shown in 
Fig. 6b and c, two experiments (EXP1 and EXP2) are conducted with 
each type of sample: excellent match is achieved between EXP1 and 

Table 1 
Geometric parameters of HOCM samples fabricated by SLM and tested in the current study.  

Sample No. a 
(mm) 

l 
(mm) 

l1 

(mm) 
t 
(mm) 

t1 

(mm) 
s 
(mm) 

α β γ ρ 

T1 20  27.24 6  0.60  0.60 6 67.79◦ 45◦ 60◦ 0.124 
T2 20  27.24 6  0.74  0.74 6 67.79◦ 45◦ 60◦ 0.152 
T3 20  27.24 6  0.95  0.95 6 67.79◦ 45◦ 60◦ 0.194  

Table 2 
Chemical composition of IN718 powders for SLM fabrication (unit: wt.%).  

IN718 Ni Cr Nb Mo Ti Al C Si & Mn & Cu Fe 

50 ~ 55 17 ~ 21 4.75 ~ 5.5 2.8 ~ 3.3 0.65 ~ 1.15 0.2 ~ 0.8 ≤0.08 ≤0.35 Bal.  

Fig. 3. HOCM test samples fabricated via SLM: (a) photographs of three samples listed in Table 1, (b) SEM image of outside surface A marked in (a), and (c) SEM 
image of inner surface cut by electric spark wire B marked in (a). 

Fig. 4. Measured tensile true stress versus true strain curve of IN718 fabricated 
via SLM. 

Fig. 5. Schematic of hierarchical origami sandwich specimen under quasi-static 
out-of-plane compression. 
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EXP2, indicating excellent consistency in manufacturing quality. 
Compared with the compressive curve of T1, the downtrend after the 
peak strength is softened for both T2 and T3. For T2, the downtrend of 
the curve is softened slightly, whereas for T3 it is almost impossible to 
distinguish the drop segment of the curve from the platform segment. In 
addition, as wall thickness (relative density) is increased, fluctuations in 
the platform segment become less significant. 

Table 3 summarizes the measured values of peak strength and energy 
absorption (defined as the area of nominal strain versus stress curve 
from strain 0 to 0.5) for samples T1, T2 and T3. Both the peak strength 
and energy absorption increase with increasing relative density. Further, 
the results of Tables 1 and 3 reveal a nonlinear increase: in contrast to 
T1, the relative density of T2 is increased by 22.58% while its peak 
strength and energy absorption are increased by 28.67% and 35.13%, 
respectively; however, compared with T2, the relative density of T3 is 
increased by 27.63% while its peak strength and energy absorption are 
increased by 49.32% and 62.66%, respectively. 

Fig. 7 displays the deformation configurations of sample T1 atεn =

0.65; similar deformation patterns are found in T2 and T3 and hence not 
shown here for brevity. Pile-up wrinkling layer by layer can be observed, 
which is induced mainly by the introduction of corrugations. Some inner 
corrugations produce local buckling as well, which accumulates with the 
wrinkling of outer panels. Further, there exists an overall buckling 
deformation mode, annotated by red dotted line in Fig. 7. Only a few 
cracks can be found on the folds, which benefit from the decent ductility 
of IN718. 

4. Numerical simulation 

4.1. Finite element model 

Finite element (FE) simulations of HOCM structures under quasi- 
static out-of-plane compression are carried out with the commercially 
available ABAQUS v6.16/Explicit. The geometric parameters are iden-

Fig. 6. Out-of-plane compressive strain versus stress curves of HOCM samples obtained from both experiments and simulations: (a) T1, (b) T2 and (c) T3.  

Table 3 
Compressive peak strength and energy absorption of HOCM samples: comparison between experimental measurements and simulation results.  

Sample No. Peak strength (MPa) Energy absorption (MJ/m3) 

EXP FEM Errors 
(%) 

EXP FEM Errors 
(%) 

Full 3D model RVE model Full 3D model RVE model 

T1 41.68 43.49 43.39 4.10 15.40 15.15 15.86 2.99 
T2 53.63 – 60.81 13.39 20.81 – 21.96 5.53 
T3 80.08 – 90.44 12.94 33.85 – 37.22 9.96 

Note: energy absorption is defined as the area of crushing nominal strain versus stress curve from strain 0 to 0.5; EXP and FEM refer to experimentally measured and 
numerically calculated results; for samples T2 and T3, the value of EXP is the average of two experiments; the errors are calculated from the experimental mea-
surements and the RVE model simulated results. 
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tical to those of experimentally tested samples, with small geometric 
imperfections induced during fabrication ignored. Two rigid plates are 
used to model the upper and lower platens. Due to symmetry in both 
sample geometry and loading condition, only a quarter of each sample 
(half of a unit cell) with symmetric boundaries is considered in the 
simulations as shown in Fig. 8 (defined as the representative volume 
element, RVE). As a reference, full three-dimensional (3D) models with 
the same dimensions as tested samples are also considered. Four-node 
shell elements (S4R) with five integration points through the thickness 
are used to model the HOCM structure, while the loading platens are 
meshed with four-node rigid elements (R3D4). Upon performing a mesh 
sensitivity study for balanced numerical accuracy and computational 
cost (results not shown here for brevity), the average mesh size for both 
the HOCM structure and rigid platens is selected asl1/8. 

General contact is employed for all the models, with a fixed Coulomb 
friction coefficient of 0.3. Based on the tie constraint algorithm, in-
terfaces between the corrugations and the original Miura-Ori facets are 
bonded ideally. With the bottom rigid plate fixed, axial displacement 
loading is applied on the top rigid plate at a sufficiently slow speed to 
mimic quasi-static compression. 

Based on the tensile test illustrated in Fig. 4, the parent material 
(IN718) is modeled as an isotropic elastic–plastic solid governed by the 

von Mises J2 flow theory, without material damage considered. The 
elastic behavior is modeled using the parameters summarized in Fig. 4, 
while the plastic behavior is simulated by inputting the measured true 
strain versus stress data. 

4.2. Validation 

The compressive responses of samples T1 ~ T3 are calculated 
numerically and compared with those experimentally measured in 
Fig. 6, with good agreement achieved. Note that the numerical results 
calculated based on both the full 3D model (Fig. 8a) and RVE model 
(Fig. 8b) are presented in Fig. 6a. The compressive strain versus stress 
curves of both models are almost the same, except for a slight difference 
in the stress plateau region. Since it is difficult to accurately measure the 
compressive modulus in experiments, the numerically calculated 
compressive modulus for each sample is compared with that predicted 
by the analytical model developed in Section 2.2. As shown in Table 4, 
the errors between analytical predictions and FE simulations are quite 
small (all less than 7%), thus validating the effectiveness of the proposed 
analytical model. Moreover, the peak compressive stress and energy 
absorption from experiments and simulations are summarized in 
Table 3. For samples T2 and T3, the experimental results are the average 
values of two separate measurements. It is shown that the errors be-
tween experimental and numerical results are all below 14%. Specif-
ically, these slight differences are mainly attributed to the following 
reasons: (1) the platens are modeled as rigid plates, without regard to 
the flexibility of platens and contact stiffness of the testing machine; (2) 
the ideally regular geometry of samples is modeled ignoring the defects 
induced during the fabrication; (3) the inevitable randomness of contact 
regions in the compressive process may cause the slight mismatch of the 
fluctuations in the plateau region of the stress–strain curves; (4) the 
reasonable simplification of the RVE model using symmetric boundaries 
might differ slightly from the real experiments. Overall, the present RVE 

Fig. 7. Deformation configurations of sample T1: comparison between exper-
iment and simulations. 

Fig. 8. Schematic of FE model for numerical simulations: (a) full three-dimensional (3D) model and (b) representative volume element (RVE) model; SB: symmetric 
boundary, FB: fixed boundary. 

Table 4 
Equivalent compressive moduli of HOCM samples: comparison between 
analytical model predictions and FE simulation results.  

Sample No. Equivalent compressive modulus (GPa) Error (%) 

Ana. FEM (RVE model) 

T1 6.64 6.40 3.61 
T2 8.04 7.59 5.60 
T3 10.06 9.42 6.36 

Note: Ana. and FEM refer to analytical predictions and FE calculations, 
respectively. 
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model can mimic the compressive performance of a HOCM structure 
quite well. 

5. Parametric study 

Thus far, the equivalent compressive modulus of the proposed 
HOCM structure has been analytically derived while its compressive 
response has been measured as a function of relative density, with 
promising potential for applications requiring simultaneous load- 
bearing and energy absorption at ultralightweight. Meanwhile, the 
nonlinear effects of relative density have been observed through ex-
periments. Further, the FE-based RVE numerical models were used to 
simulate the compressive responses, with reasonable agreement ach-
ieved among FE simulation results, analytical predictions and experi-
mental measurements. In this section, the validated FE method is 
employed to quantify the effects of two non-dimensional parameters, i. 
e., the slenderness ratio p1 (=l/l1) and wall thickness ratio p2 (=t/t1), 
and two angle parameters, i.e., the folding angles α and β. To expand the 
discussion range of relevant parameters, geometrical parameters of the 
HOCM structure were reselected. Dimensions of the initial structure 
were listed in Table 5, and the parametric influence is numerically dis-
cussed based upon equal mass. 

5.1. Initial failure modes 

For parametric study, different initial failure modes are shown 
schematically in Fig. 9, with corresponding results presented in Table 6. 
It can be seen that the failure area is distributed along the diagonal of 
inclined parallelogram facet, which is attributed to the folding of the 1- 
direction. When a HOCM structure is subjected to quasi-static out-of- 
plane compression, the four inclined parallelogram facets tend to 
expand outward. However, the tendency is constrained by the folding 
line, contributing to a mixed compression-shear force on the inclined 
parallelogram facet. Therefore, failure along the diagonal of the facet 
occurs. Meanwhile, multiple failure modes are produced owing to the 
hierarchy of structure. 

Failure mode A (FA): wrinkling. Under compressive loading, the face 
sheets can fail via short-wavelength elastic buckling (wrinkling), if the 
supporting span of inner corrugations for the face sheets is long or the 
face sheets are thin. 

Failure mode B (FB): Plastic yielding (face sheets). When the sup-
porting span of inner corrugations for face sheets and the face sheet 
thickness are moderate, the face sheets may fail due to plastic yielding. 

Failure mode C (FC): Buckling (face sheets). When the slenderness 
ratio p1 is large, meaning tall and slender corrugation plates, Euler 
buckling may occur in the structure. 

Failure mode D (FD): Shear buckling. Shear buckling may occur 
when the face sheets are thin and the supporting force of corrugations is 
insufficient. 

Failure mode E (FE): Euler buckling (corrugated core). This initial 
failure mode occurs when the corrugations are weak, e.g., the wall 
thickness ratio p2 is large. 

5.2. Effects of slenderness and wall thickness ratios 

Firstly, the influence of slenderness ratio p1 on peak strength and 
energy absorption is quantified. The numerically predicted peak 
strength σp and specific peak strength (SPS) σp/ρσ0.2 as functions ofp1, 
with other parameters fixed at a = 100 mm, l = 76 mm, t = t1 = 0.8 mm, 

s = 1.25l1, α =60◦, β =45◦, and γ =60◦, are plotted in Fig. 10a. Corre-
sponding FE simulation results for energy absorption Ev and specific 
energy absorption (SEA) Ev/0.5ρσ0.2 are presented in Fig. 10b. 

The results of Fig. 10 suggest that both the peak stress and energy 
absorption first increase and then decrease with increasingp1, and a 
similar variation trend holds for the SPS and SEA. In addition, both the 
peak strength and energy absorption (as well as the SPS and SEA) are 
maximized whenp1 = 18.5. This indicates that to achieve enhanced SPS 
and SEA, the number of corrugations in inclined parallelogram corru-
gation sandwich plates is preferred to be approximately 12 in this 
parametric study. For a deeper understanding of the results, the 
numerically predicted initial failure modes of the samples listed in 
Table 6 are illustrated in Fig. 10 as well. Three initial failure modes 
emerge as p1 is increased. Specifically, a transition from FB to FC occurs 
where the peak strength and energy absorption decrease. Such transition 
may decrease the participation of internal corrugations during the 
deformation process and reduce the number of plastic hinges, since the 
FC mode introduces an overall buckling of HOCMs’ parallelogram plates 
and leads to less deformation of corrugations. 

Secondly, Fig. 11a plotted the numerically predicted σp and SPS as 
functions of wall thickness ratiop2, withp1 fixed at 9.5, a = 100 mm, l =
76 mm, s = 1.25l1, α =60◦, β =45◦, and γ =60◦. Both the σp and SPS 
increase with increasingp2, but the increasing trend slows rapidly after 
p2 exceeds 1. Corresponding plots of Ev and SEA are displayed in 
Fig. 11b. Both increase first and then basically remain unchanged as p2 is 
increased, and the turning point occurs at p2 = 1. In all, the overly weak 
face sheets of inclined parallelogram corrugation sandwich plates are 
not conducive to the compressive performance of HOCM structures. 
Additionally, as illustrated in Fig. 11, with the variation ofp2, three 
different initial failure modes appear and, when the initial failure mode 
is changed from FA to other modes, neither the peak strength nor the 
energy absorption changes significantly. 

5.3. Effect of folding angles 

In this section, the effect of folding angles α and β on peak strength 
and energy absorption is investigated, with the remaining parameters 
constrained as p1 = 9.5, p2 = 1, with a = 100 mm, l = 76 mm, s = 1.25l1, 
t = 0.8, and γ =60◦. Fig. 12a presents the relationships betweenσp, SPS 
and α, with β fixed as45◦. Corresponding results for Ev and SEA are 
illustrated in Fig. 12b. It can be seen that both the peak strength and 
energy absorption increase with the increase of α, while the SPS and SEA 
decrease slightly after α exceeds80◦. This may be due to the fact that the 
diagonal pattern of deformation is no longer apparent due to the high 
value of angle α, hence the region of plastic deformation is reduced. 
Further, within the studied range of folding angle α, the initial failure 
mode of FA remains unchanged. 

The effect of folding angle β on σp and SPS as well as Ev and SEA is 
shown in Fig. 13a and b, respectively, with the other folding angle α 
fixed at60◦. According to Fig. 13a, the σp increases with increasing β, 
while the SPS fluctuates when β exceeds45◦. Similar variation trend is 
observed in Fig. 13b forEv, increasing as β is increased. However, the 
SEA initially increases with increasing β but decreases slightly once β 
exceeds45◦. Similar to the effect of folding angle α, the change in folding 
angle β does not bring about a transformation in the initial failure mode, 
which is always FA. For HOCM specimens with small β (e.g., β = 30o), 
the stress concentration tends to occur at the folded prongs, making the 
structure susceptible to fail or deform, which leads to the lower σp 

andEv. 

Table 5 
Geometrical parameters of the initial HOCM structure selected for parametric analysis.  

Sample a 
(mm) 

l 
(mm) 

l1 

(mm) 
t 
(mm) 

t1 

(mm) 
s 
(mm) 

α β γ ρ 

Initial HOCM 100 76 8 0.80 0.80 10 60◦ 45◦ 60◦ 0.049  
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6. Multi-objective optimal design 

A variety of engineering applications (e.g., special vehicles and high- 
speed trains) demand multifunctional structures that are lightweight 
and yet possess simultaneously superior stiffness/strength and energy 
absorption [45,46]. In this section, a multi-objective optimization 
method combining the fully connected neural network surrogate model 
(FCNNs) and the non-dominated sorting genetic algorithm II (NSGA-II) 
is proposed to find optimal HOCM structures that are ultralightweight 
and possess excellent SPS and SEA with assured stiffness. 

6.1. Definition of the optimization problem 

According to the analysis in Section 5, p1 plays a more significant 
role in the compression performance of a HOCM structure thanp2. 
Meanwhile, the results also indicate that a larger α is more favorable for 
enhanced compression performance. However, too large α is not 
conducive to the manufacturing of the structure. Therefore, in the pre-
sent study, two geometric parameters (p1 and β) are identified as the key 
design variables to generate a design space constrained by 5⩽p1⩽35 
and30◦⩽β⩽80◦, with p2 = 1 and α =70◦. Meanwhile, similar to the 

Fig. 9. Initial failure modes of a HOCM structure.  

Table 6 
Initial failure modes of HOCM specimens selected for parametric study.  

No. p1 p2 α 
(◦) 

β 
(◦) 

Failure 
mode 

Interpretation 

1 5 1 60 45 FA Wrinkling 
2 9.5 1 60 45 FA Wrinkling 
3 14 1 60 45 FB Plastic yielding: face sheets 
4 18.5 1 60 45 FB Plastic yielding: face sheets 
5 23 1 60 45 FC Euler buckling: face sheets 
6 9.5 0.5 60 45 FA Wrinkling 
7 9.5 2 60 45 FD Shear buckling 
8 9.5 3 60 45 FD Shear buckling 
9 9.5 4 60 45 FE Euler buckling: corrugated 

core 
10 9.5 1 50 45 FA Wrinkling 
11 9.5 1 70 45 FA Wrinkling 
12 9.5 1 80 45 FA Wrinkling 
13 9.5 1 85 45 FA Wrinkling 
14 9.5 1 60 30 FA Wrinkling 
15 9.5 1 60 60 FA Wrinkling 
16 9.5 1 60 75 FA Wrinkling  

Fig. 10. Effect of slenderness ratio p1 on (a) peak strength and specific peak strength and (b) energy absorption and specific energy absorption.  
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foregoing parametric study, the remaining parameters are fixed at a =
100 mm, l = 76 mm, t = 0.8 mm, s = 1.25l1, and γ =60◦. Note that, for 
consistency, the mass of the structure remains unchanged within the 
design space. Besides, the equivalent compressive modulus is taken as a 
constraint as well, i.e., the compressive modulus of the optimally 

designed structure shall not be smaller than that of the initial structure 
listed in Table 5, which is calculated as 2.24 GPa from Eq. (42). Upon 
substituting p1 and p2 into Eq. (42), the equivalent compressive modulus 
Ezzzz can be expressed as: 

Fig. 11. Effect of wall thickness ratio p2 on (a) peak strength and specific peak strength and (b) energy absorption and specific energy absorption.  

Fig. 12. Effect of folding angle α on (a) peak strength and specific peak strength and (b) energy absorption and specific energy absorption.  

Fig. 13. Effect of folding angle β on (a) peak strength and specific peak strength and (b) energy absorption and specific energy absorption.  
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Ezzzz =
(4p2 + 2)sin3α′ ⋅csc3φ⋅B2′ 2′ 2′ 2′

[
a

2t1
sin2β + 2l

t1
cscφ⋅cosα′ ⋅sinβ + 2l

t1p1
sinγ⋅cscα + (4p2 + 2)cscα

]

(43) 

whereB2
′
2
′
2
′
2
′

, withp1, p2 and s = 1.25l1 substituted into it, is given 
by: 

B2′ 2′ 2′ 2′ =
E
[
3.5p2sin2γ +

( t1
l

)2p2
1(1 − ν2)(0.25 + cosγ)

]

1.75(2p2 + 1)(1 − ν2)sin2γ
(44) 

Therefore, the equivalent compressive modulus Ezzzz can be derived 
as a function of p1 and β analytically. The SPS and SEA are thence chosen 
as the design objectives to evaluate the capacity of the meta-sandwich 
panel for simultaneous load-bearing and energy absorption. However, 
unlikeEzzzz, as both the SPS and SEA exhibit highly nonlinear relation-
ships with the design variables, obtaining an analytical solution for each 
proves to be difficult. Thus, surrogate modeling based on the technique 
of machine learning (i.e., FCNNs) is employed for approximate evalua-
tion, with details presented in Section 6.2. 

In the current study, the optimization problem for the proposed 
HOCM structures is defined as: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max {SPS(p1, β), SEA(p1, β)}
5⩽p1⩽35

30◦⩽β⩽80◦

Ezzzz⩾Ezzzz
0 (i.e., 2.24 GPa)

(45)  

6.2. Surrogate model 

6.2.1. Machine learning method 
Generally speaking, the SPS and SEA of a HOCM structure exhibit 

complicated behaviors, due mainly to its nonlinear structural deforma-
tion. Therefore, the ML-based surrogate model, i.e., FCNNs, that was 
proved efficient for nonlinear problems [25,26,47], is implemented into 

the present optimization task. To reduce local fluctuations and improve 
the approximating accuracy, loops are introduced into the machine 
learning model [48], with the flow chart shown in Fig. 14. As is shown, 
the FCNNs machine learning model is set up with three layers, with fifty 
neurons (i.e., temporary random variables, the blue discs in Fig. 14) in 
each layer, to train the data generated in the design space. To ensure the 
accuracy of the model, the method introduces four loop iterations. The 
initial sampling points data set generated in the design space is listed in 
Table 7, and the other three loops are conducted based on the judgment 
of approximating accuracy (detailed in Section 6.2.2), with their sam-
pling points listed in Table 7 as well. 

6.2.2. Accuracy of surrogate model 
Following the principle of cross-validation error analysis [49], sur-

rogate accuracy is determined. Specifically, a certain number of vali-
dation points are excluded from the sampling point data set, one at a 
time. The approximation coefficients are recalculated for each of the 
excluded points, and the actual (FE calculation) and predicted (surro-
gate model) values are compared. After that, the currently removed 
point is returned to the sampling point data set, and the next point is 
removed. Note that, all the points in the data set of one loop are selected 
to perform cross-validation in this work. Further, the relative error of 
surrogate models is evaluated using the R-square (R2) and the 
Maximum-Absolute-Percentage-Error (MAPE) for global and local ac-
curacy, respectively, as: 

R2 = 1 −
∑N

i=1(yi − ŷi)
2

∑N
i=1(yi − yi)

2 (46)  

MAPE = max
(
|yi − ŷi|

yi

)

(47)  

where yi,yi, and ŷi are separately the actual (FE calculation) value, the 
average FE value, and the surrogate model predicted value at these 
validation points, and N is the number of validation points. 

The two quantitative parameters used to evaluate the accuracy of 

Fig. 14. Flow chart of the FCNNs machine learning method.  
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Table 7 
Sampling points and FE results at these points.  

Loops No. p1 β (◦) SPS SEA Loops No. p1 β (◦) SPS SEA 

Loop1 1 5 30 0.256 0.144 Loop1 29 27.5 60 0.695 0.481 
2 5 45 0.298 0.138 30 27.5 75 0.666 0.358 
3 5 60 0.304 0.133 31 32 30 0.608 0.485 
4 5 75 0.314 0.108 32 32 45 0.651 0.486 
5 9.5 30 0.433 0.236 33 32 50 0.676 0.486 
6 9.5 45 0.475 0.243 34 32 55 0.671 0.472 
7 9.5 50 0.466 0.242 35 32 60 0.676 0.466 
8 9.5 55 0.488 0.243 36 32 75 0.661 0.385 
9 9.5 60 0.497 0.240 Loop2 37 15.5 65 0.656 0.453 
10 9.5 75 0.514 0.228 38 18.5 55 0.694 0.413 
11 14 30 0.533 0.374 39 20 75 0.690 0.351 
12 14 45 0.596 0.405 40 21.5 55 0.701 0.424 
13 14 50 0.584 0.383 41 23 50 0.686 0.443 
14 14 55 0.594 0.392 42 30.5 30 0.609 0.489 
15 14 60 0.597 0.404 43 35 30 0.596 0.471 
16 14 75 0.601 0.413 44 35 55 0.658 0.443 
17 18.5 30 0.580 0.453 Loop3 45 20 60 0.697 0.395 
18 18.5 45 0.669 0.422 46 21.5 50 0.683 0.429 
19 18.5 60 0.696 0.418 47 21.5 80 0.669 0.295 
20 18.5 75 0.685 0.358 48 26 30 0.608 0.483 
21 23 30 0.626 0.480 49 29 30 0.597 0.484 
22 23 45 0.677 0.442 50 32 80 0.651 0.327 
23 23 60 0.688 0.428 51 33.5 40 0.637 0.478 
24 23 75 0.680 0.344 52 35 40 0.638 0.461 
25 27.5 30 0.604 0.498 Loop4 53 29 65 0.678 0.420 
26 27.5 45 0.652 0.474 54 29 80 0.640 0.300 
27 27.5 50 0.676 0.482 55 30.5 45 0.658 0.444 
28 27.5 55 0.666 0.448 56 33.5 70 0.668 0.396  

Fig. 15. Error analysis of surrogate models for (a) SPS and (b) SEA and final surrogate models for (c) SPS and (d) SEA.  
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surrogate models of the four loops are compared in Fig. 15a and c. As 
the loops increase, the MAPE of the surrogate models for both the SPS 
and SEA decreases significantly, thus indicating obviously improved 
local accuracy. Meanwhile, the R2 increases with loops adding up, 
indicating improved global accuracy as well. After loop4, the R2 of 
surrogate models for the SPS and SEA are all greater than 98%, with the 
MAPE less than 8%, which indicates that the surrogate models exhibit 
sufficient accuracy. The surrogate modeling task based on machine 
learning is thus completed. Fig. 15b and c present the results of surro-
gate models for the SPS and SEA, respectively. It can be seen that the 
function between the SEA and design variables is more nonlinear than 
that of the SPS. 

Next, to further demonstrate the advantages of machine learning, the 
nonlinear multiple regression method based on the polynomial fitting 
algorithm, commonly used to predict the compressive performances of 
cellular structures/tubes [35,50,51], is employed as another strategy to 
obtain surrogate models for both the SPS and SEA. For brevity, the 
detailed functions are presented in Appendix A. As shown in Fig. 16a 
and b, the surrogate model obtained by the nonlinear multiple regres-
sion fitting method for the SPS is similar to the machine learning result 
(loop4), while the nonlinear multiple regression fitting result for the SEA 
is quite different from that predicted via machine learning. The strongly 
nonlinear behavior can not be characterized accurately by such a 
traditional method. As presented in Fig. 16c and d, the R2 of the sur-
rogate model obtained by nonlinear multiple regression fitting of the 
SEA is only 90.569% while the MAPE is more than 50%, which is much 
worse than the machine learning method, though the R2 and MAPE of 
the SPS of both methods are similar. Note that, the sampling points for 
performing nonlinear multiple regression include all data from the 4 
loops in the machine learning method, which are encrypted at the 
stronger nonlinearity. In other words, even though the traditional 
method inherits an excellent sample set, its surrogate model for the 
strongly nonlinear condition is still not accurate enough compared to the 
present method based on machine learning. 

6.3. Optimization algorithm 

To determine the optimal configuration of the proposed HOCM 
structure for superior SPS and SEA, the NSGA-II multi-objective opti-
mization algorithm [52] is employed. For non-dominant sorting, the 
NSGA-II algorithm adopts an elite retention technique and a no- 
parameter niche operation, which solves problems of high computa-
tional complexity, poor algorithm execution speed, and the need to 
determine the shared radius in conventional nondominant sorting ge-
netic algorithms [52]. It is thus widely applied in the optimizations to 
approach the true Pareto front. For the present optimal task, the key 
parameters of this algorithm, i.e., the population size, number of gen-
erations, crossover probability, crossover distribution index and muta-
tion distribution index, are set as 100, 200, 0.9, 20 and 40, respectively. 

6.4. Optimization results 

For a HOCM structure, the present optimization aims to achieve 
optimal performance of its SPS and SEA, subjected to the constraints 
listed in Section 6.1. Conflict between the two design objectives usually 
leads to a Pareto set where each point represents an optimal design in 
different situations. The Pareto set obtained for the present optimization 
problem is presented in Fig. 17a. To compare with the initial structure 
design in Section 5, the Pareto set is processed and redrawn in the form 
of enhancement ratio as shown in Fig. 17b. It can be seen that the two 
objectives (SPS and SEA) of the optimal design results exhibit significant 
enhancement of 64.73–86.83% and 114.04–144.95%, respectively. The 
distribution of Pareto set in the design space is presented in Fig. 17c for 
the SPS and in Fig. 17d for the SEA, respectively. It can be found that the 
design variables (p1 and β) at these points vary in the range of 21.86⩽ 
p1⩽27.56 and30◦⩽β⩽54.52◦, respectively. These results suggest that the 
number of corrugations in inclined parallelogram corrugated sandwich 
plates should not be too few or too many, preferably 14–18, and the 
folding angle β should not be too large. 

Fig. 16. Surrogate models predicted through nonlinear multiple regression with a full cubic polynomial fit of (a) specific peak strength and (b) specific energy 
absorption; error analysis of surrogate models predicted by machine learning and nonlinear multiple regression for (c) specific peak strength and (d) specific en-
ergy absorption. 
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Finally, to verify the accuracy of present optimization results, the 
HOCM structures corresponding to three representative points in the 
Pareto set (marked in Fig. 17a) are selected for FE simulations. As shown 
in Table 8, the error between the numerical results and optimization 
solutions are all less than 2%, thus confirming the reliability of the 
present optimization approach. 

7. Conclusions 

With focus placed upon revealing the parametric sensitivity on the 
compressive performance of a hierarchical origami-corrugation meta- 
sandwich (HOCM) structure, an analytical approach to predict its 
macro-equivalent compressive modulus has been developed, while a 
multi-objective optimization strategy associated with a surrogate model 
based on a fully connected neural network (FCNN) algorithm has been 
employed to explore further its compressive strength and energy ab-
sorption capacity. Main findings are summarized as follows:  

(i) The proposed two-level homogenization approach can efficiently 
predict the macro-equivalent compressive modulus of HOCM 
structures.  

(ii) Comparison between experimental results and finite element 
simulations reveals that the selected representative volume 
element (RVE) can well mimic the compressive performance of 
HOCM structures.  

(iii) Five initial failure modes in the hierarchical architecture of 
HOCM structure are captured via parametric study. Its specific 
peak strength (SPS) and specific energy absorption (SEA) exhibit 
different sensitivities to key geometric parameters. The effect of 
slenderness ratio on compressive performance is found to be 
significant.  

(iv) Under the principles of cross-validation, the surrogate model 
based on the FCNN algorithm provides highly efficient accuracy 
for both the SPS and SEA. Compared to the traditional approxi-
mation method, the machine learning method adopted in the 
present study exhibits high accuracy for strongly nonlinear 
problems, especially when the SEA needs to be predicted.  

(v) For multi-objective optimizations of the HOCM structure, the 
Pareto set provides significant enhancement in both the SPS and 
SEA: up to 87% for the former, and 150% for the latter. Results 
obtained with the optimization strategy are validated against 
finite element simulation results. 

Fig. 17. Optimal design results: (a) Pareto set and (b) enhancement ratio of Pareto set. Distribution of Pareto set in design space: (a) specific peak strength and (b) 
specific energy absorption. 

Table 8 
Comparison between FE calculation results and optimized solutions.  

Specimen p1 β (◦) Compressive modulus (GPa) Objectives ML surrogate model FE model Error (%) 

Point 1 27.15 49.44 3.8566 SPS 0.6752 0.6799 − 0.69 
SEA 0.4742 0.4823 − 1.68 

Point 2 21.86 54.42 3.8571 SPS 0.6928 0.6883 0.65 
SEA 0.4266 0.4292 − 0.61 

Point 3 27.24 30 4.0807 SPS 0.6108 0.6104 0.07 
SEA 0.4882 0.4881 0.02  
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Appendix A 

To obtain surrogate models of specific peak strength (SPS) and specific energy absorption (SEA) for HOCM structures by using the method of 
nonlinear multiple regression, the full cubic polynomial functions are employed. Specifically, as given below, formula (A. 1) is the function for SPS of 
HOCM structures, while formula (A. 2) is the function for SEA of HOCM structures: 

SPS = − 0.1061 + 0.0649p1 + 0.0017β − 0.0025p2
1 + 2.7940 × 10− 4p1β

+1.7031 × 10− 5β2 + 2.8644 × 10− 5p3
1 − 2.4615 × 10− 6p2

1β
− 1.8291 × 10− 6p1β2 − 2.8936 × 10− 7β3

(A. 1)  

SEA = 0.2985 + 0.0617p1 − 0.0297β − 0.0021p2
1 + 7.8456 × 10− 5p1β

+6.1239 × 10− 4β2 + 2.1960 × 10− 5p3
1 + 3.1116 × 10− 6p2

1β
− 2.8163 × 10− 6p1β2 − 3.8243 × 10− 6β3

(A. 2)  
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