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Localization of elastic waves in one-dimensional detuned 
phononic crystals with flexoelectric effect
Cheng Shena,b,c, Yifan Konga,b, Tian Jian Lua,b and Shasha Yangd
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R China; dSchool of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing, 
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ABSTRACT
Although forbidden band effect in perfectly periodic phononic 
crystals (PC) is very attractive, random disordered (i.e. detuning) 
phenomenon is inevitable in engineering processing, thus explor-
ing the effect of detuning on the wave characteristics of PC 
becomes a necessity. In this study, fundamental governing equa-
tions and boundary conditions are derived from the principle of 
virtual work. Wave characteristics and localization factor of one- 
dimensional (1D) detuned nano-PC are investigated based on the 
transfer matrix method, with flexoelectric effect duly accounted for. 
Subsequently, with BaTiO3� SrTiO3 nano-PC taken for illustration, 
forbidden band properties and localization factor of 1D elastic 
waves in harmonic and detuned states are systematically character-
ized. It is demonstrated that localization factor can characterize the 
energy band structure of 1D PC perfectly. Flexoelectric effect tends 
to widen the width of forbidden band with increasing detuning, 
and detuning is linearly related to the bandwidth. The forbidden 
band is more sensitive to flexoelectric coefficient detuning than 
thickness detuning. The research results provide useful theoretical 
guidance for designing high-frequency nanoscaled devices with 
the function of filtering based on band gap effect of nano-PC.
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1. Introduction

The flexoelectric effect belongs to electromechanical coupling, but it is not a simple 
higher-order extension of the piezoelectric effect. The piezoelectric effect acts only in 
non-centrosymmetric materials, while the flexoelectric effect exists in all dielectric materi-
als. Flexoelectricity is a symmetry independent electromechanical coupling phenomenon 
that outperforms piezoelectricity at micro and nanoscales, due mainly to its size- 
dependent behavior arising from gradient terms in its constitutive relations [1].

The flexoelectric effect describes the coupling between strain gradients and electrical 
polarization. A multitude of investigations has been carried out to understand the 
phenomenon and explore its underlying physical mechanisms. Ever since 
a phenomenological framework [2] was proposed to characterize the flexoelectric effect, 
theoretical research on flexoelectric effect has developed rapidly. For example, the 
microscopic mechanism of flexoelectric effect was proposed to explain the polarization 
signals resulting from shock loading a nonpiezoelectric material [3]. A polarization gra-
dient was added to the conventional elastic dielectric energy function to establish 
a theory to characterize the flexoelectric effect [4]; nonetheless, as the effect of strain 
gradient was not taken into account, the theory was not perfect and could only partially 
explain the experiment phenomenon. With the rapid development of flexoelectric the-
ories, the flexoelectric coefficient of cubic ion crystal has been continuously calculated [5]. 
Indenbom et al. [6] put forward the Landau theory of flexoelectric effect, dividing formally 
the flexoelectric effect and the nonlocal piezoelectric effect [7]. More recently, Maranganti 
et al. [8] developed a mathematical framework containing strain gradient and polarization 
coupling, proposed Green’s function solution of the governing equation, and solved the 
inclusion problem, while Shen et al. [9,10] established the dielectric variational principle 
by considering flexoelectric effect, surface effect, and electrostatic force and derived the 
corresponding governing equations and boundary conditions: the proposed theory can 
not only solve complex static electromechanical coupling problems in nanodielectrics but 
also analyze dynamic problems such as elastic wave propagation when kinetic energy is 
introduced into the dielectric variational principle. In general, a large number of studies 
have been carried out on the structures related to piezoelectric materials, including 
nonlinearity and nanosize [11]. However, the research on flexoelectricity is just beginning.

Wave propagation in phononic crystals (PC) has become another hot topic, for the 
emergence of band gap characteristics provides new ideas for energy control, leading to 
many important discoveries. The essence of studying PC is to investigate the propagation 
of elastic waves in periodic materials or structures. In fact, systematic studies on the 
propagation characteristics of waves in periodic materials [12] have been carried out long 
ago, but it was not until 1995 that the existence of elastic wave band gaps was firstly 
determined from the perspective of experiments [13]. Before 2000, the study of PC was 
limited to Bragg scattering principle, which requires that the lattice constant and band 
gap frequency should be in the same order of magnitude [14,15]. Afterward, a new PC 
structure with local resonant property was creatively proposed [16]. The lattice constant 
of this crystal is 2 orders of magnitude smaller than the wavelength corresponding to the 
band gap, which marks another major breakthrough in the study of PC. Currently, PC with 
increasingly smaller sizes is used to design complete acoustic band gap at high frequen-
cies, thus providing a vibration-free environment for high-precision mechanical systems 
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[15]. In addition, the propagation and resonance of horizontal shear waves in layered PC 
with strip cracks were studied [17], and the results reveal wave resonance and localization 
in band gap. Experiment measurements [18] were also made on the complete surface 
acoustic band gap of a two-dimensional piezoelectric PC. It was found that the frequency 
range of complete band gap was exactly the same as that predicted by theory. 
Nanomaterials with various dimensionalities (e.g. nanowires, nanofilms, two- 
dimensional materials, and three-dimensional nanostructures) have shown great poten-
tial in recent development of flexible electronics [19] and PC. However, most of existing 
studies were carried out by assuming perfect periodic PC at macroscopic scale, without no 
consideration of nanoscale as well as the detuning effect.

In general, the study of PC at nanoscale with flexoelectric effect considered is relatively 
lacking. Liu et al. [20] studied the dispersion relation of one-dimensional (1D) PC con-
sidering flexoelectric effect by using the transfer matrix method, while Yang et al. [21–23] 
developed theoretical models to analyze elastic waves in nanolayer PC, love waves in 
piezoelectric nanocomposites, and Lamb waves in infinite nanoplates. Further, Eliseev 
et al. [24] proved that shear horizontal waves can propagate near the smooth surface of 
nonpiezoelectric crystals by considering the flexoelectric effect, whereas Hu et al. [25] 
explored the propagation characteristics of bulk wave in elastic media when flexoelectric 
effect, micro-inertia effect, and strain gradient elasticity were considered simultaneously. 
In addition, the study of wave propagation in complex conditions and structures also has 
a lot of reference value. The wave propagation of functionally graded ceramic-metal 
plates [26], sandwich plate [27], and sandwich structure with a soft core and multi- 
hybrid nano-composite face sheets [28] have been studied in depth. However, as these 
theoretical studies are all based on the premise that the PC has perfect periodic nanos-
tructure, the effect of detuning on wave propagation in nano-PC with flexoelectric effect 
considered remains elusive. In practice, the detuning phenomenon is inevitable during 
the processing of periodic structures. Moreover, the band structure of PC can be adjusted 
by deliberately introducing the detuning, which in turn controls the propagation behavior 
of elastic waves. It is therefore particularly important to study the wave propagation 
properties of detuned flexoelectric nano-PC so that theoretical guidance for practical 
processing can be obtained.

This paper focused on studying theoretically the propagation properties of elastic 
waves in harmonic and detuned nano-PC with idealized 1D layered structures. The flexo-
electric theory is employed to establish the governing equation of wave propagation, 
with the effects of strain gradient and polarization gradient accounted for. The transfer 
matrix method and the Bloch theory are subsequently used to calculate the localization 
factor in the detuning state, which is then used to characterize the band structure and 
localization phenomenon of the detuned 1D PC. The influence of layer thickness detuning 
and flexoelectric coefficient detuning on energy band structure is quantified, and the 
underlying physical mechanisms are explored.

2. Problem statement

To study the wave characteristics of flexoelectric PC in detuning state, an idealized layered 
PC is selected for theoretical analysis, as shown in Figure 1. The 1D PC consisted of 
alternating sublayers A and B that are made of different materials, with layer thicknesses 
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d1 and d2, respectively. Its unit cell has thence a thickness of d ¼ d1 þ d2, i.e. the periodic 
thickness of the PC. In the present study, the thickness d1 of sublayer A is not fixed but 
varied for random detuning.

To introduce the effect of flexoelectricity, a constructive and effective approach is 
extending the linear piezoelectric theory. For non-centrosymmetric dielectrics, the bulk 
internal energy density function relating to polarization Pi, polarization gradient Pi;j , small 
strain εij, and strain gradient uj;kl can be written as [10]: 

Ub¼
1
2

aklPkPl þ
1
2

bijklPi;jPk;l þ
1
2

cijklεijεkl þ vijkεijPk þ eijklεijPk;l þ fijklPiuj;kl (1) 

Here, strain εij ¼
1
2 ui;j þ uj;i
� �

, (a; b; c; v; e; f ) are the material property tensors, a represents 
the second-order dielectric tensor, b is a high order dielectric constant, characterizing the 
coupling between the electric polarization gradients, c is the fourth-order elastic tensor, v 
is the third-order piezoelectric tensor, and e was introduced by Mindlin [29] in his theory 
of polarization gradient to link the gradients of polarization to strains, while the tensor f is 
related to strain gradient polarization coupling, its components commonly referred to as 
the flexoelectric coefficients [20,30].

To highlight the flexoelectric effect and neglect the influence of piezoelectric effect, it 
is assumed herein that all the subjects of the current study belong to central symmetric 
dielectrics, i.e. v ¼0 (i.e. the third-order piezoelectric tensor v is null in dielectrics with 
inversion symmetry). The bulk internal energy density function can thence be written 
as [10]: 

Ub¼
1
2

aklPkPl þ
1
2

bijklPi;jPk;l þ
1
2

cijklεijεkl þ eijklεijPk;l þ fijklPiuj;kl (2) 

Under the assumption of infinitesimal deformation, the constitutive equation can be 
expressed as: 

σij ¼
@Ub

@εij
¼ cijklεkl þ eijklPk;l (3) 

τijm ¼
@Ub

@ui;jm
¼ fkijmPk (4) 

Figure 1. Schematic of 1D layered PC.
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Ei ¼
@Ub

@Pi
¼ aijPj þ fijkluj;kl (5) 

Vij ¼
@Ub

@Pi;j
¼ bijklPk;l þ eklijuk;l (6) 

where σij is the stress tensor in classical elasticity, τijm is the higher-order stress (couple 
stress) tensor, Ei is the effective local electric field, and Vij is the higher-order local electric 
field. Note that σij ¼ σji and τijm ¼ τjim.

To incorporate the micro-inertia effect into mathematical model, the following expres-
sion for the kinetic energy density is considered as [31,32]: 

K ¼
1
2

ρ _ui _ui þ
1
2

ρl2€ui;j€ui;j (7) 

where ρ is the mass density, l is defined as the micro-inertia characteristic length (the 
scaling parameter for dynamics), and the dot over the vector component ui refers to time 
derivative.

Governing equations and boundary conditions are derived from the virtual work 
principle, which has the following form: 

�

ð

Ω
δUbdΩþ

ð

Ω
KdΩ ¼ 0 (8) 

where δ is the variational notation, Ω is the volume occupied by the dielectric material.
Applying the virtual work principle leads to the following governing equations [20]: 

ðσij � τijm;m þ ρl2€ui;jÞ;j þ Fi ¼ ρ€ui (9) 

Ei � Vij;j þ φ;i ¼ 0 (10) 

� ε0φ;ii þ Pi;i ¼ 0 (11) 

where ε0 represents the dielectric constant in vacuum, F represents the external force, and 
φ is the potential of Maxwell self-field defined as: 

Ei ¼ � φ;i (12) 

Since σij � τijm;m appears in the force balance relation, it can be understood as a “physical 
stress” [8,33], namely: 

σphys
ij ¼ σij � τijm;m (13) 

Upon substituting the constitutive equations (3)–(6) into the governing equations (9)– 
(11). For 1D PC, the elastic field and electric fields vary only in the x-direction when 
a longitudinal wave is incident vertically, so that the inhomogeneous equations consider-
ing flexoelectric effect can be obtained as: 

cÑ2uþ ðe � fÞÑ2Pþ ρl2Ñ2uþ F ¼ ρu (14) 

ðe � fÞÑ2uþ bÑ2P � aP � Ñφ ¼ 0 (15) 
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� ε0Ñ2φþ ÑP ¼ 0 (16) 

Since both tensor e and tensor f always appear in pairs, we define h (i.e. h ¼ e � f ) instead 
of (e � f ) for conciseness [8]. Neglect the influence of external force, so that Eqs. (14)–(16) 
can be reduced to inhomogeneous equations, as:

c @
2u
@x2 þ h @2P

@x2 ¼ ρ @2u
@t2 � ρl2 @4u

@x2@t2 (17) 

h
@2u
@x2 þ b

@2P
@x2 � aP �

@φ
@x
¼ 0 (18) 

@P
@x
� ε0

@2φ
@x2 ¼ 0 (19) 

Under the condition of open circuit that P � ε0ð@φ=@xÞ ¼ 0, Eq. (19) is satisfied. Then, the 
governing equations are 

c
@2u
@x2 þ h

@2P
@x2 ¼ ρ

@2u
@t2 � ρl2 @4u

@x2@t2 (20) 

h
@2u
@x2 þ b

@2P
@x2 � ηP ¼ 0 (21) 

Where η ¼ aþ ε� 1
0 .

Assume that the vertical incident longitudinal wave is steady-state harmonic, i.e. its 
displacement and potential vary with time harmonically. The solution to the above system 
of equations (20)and (21) can thence be expressed as: 

uðx; tÞ ¼ UðxÞ expð� iωtÞ (22) 

Pðx; tÞ ¼ PðxÞ expð� iωtÞ (23) 

where i ¼
ffiffiffiffiffiffiffi
� 1
p

. To facilitate the calculation, the dimensionless coordinate, ζi ¼
xj
�d1

, is 
introduced, where �d1 represents the average thickness of the first sublayer. The wave 
equations (20)and (21) can thence be rewritten as: 

cþ ρl2ω2� � @2UðζÞ
@ζ2 þ h

@2PðζÞ
@ζ2 þ

�d1
2ρω2UðζÞ ¼ 0 (24) 

h
@2UðζÞ
@ζ2 þ b

@2PðζÞ
@ζ2 �

�d1
2ηPðζÞ ¼ 0 (25) 

Detailed derivation process of Eqs. (24) and (25) is presented in the Appendix.
Eventually, the solution can be deduced by substituting Eqs. (22)and (23) into Eqs. (24) 

and (25), as: 

UjðζÞ ¼ C1jel1j ζ þ C2je� l1j ζ þ C3jeil2j ζ þ C4je� il2j ζ (26) 
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PjðζÞ ¼ �
1
hj
½C1jðcj þ ρjl

2
j ω2 þ

�d1
2ρjω2

l2
1j
Þel1j ζ þ C2jðcj þ ρjl

2
j ω2 þ

�d1
2ρjω2

l2
1j
Þe� l1j ζ

þC3jðcj þ ρjl
2
j ω2 �

�d1
2ρjω2

l2
2j
Þeil2j ζ þ C4jðcj þ ρjl

2
j ω2 �

�d1
2ρjω2

l2
2j
Þe� il2j ζ �

Here, C1j, C2j, C3j, and C4j are undetermined coefficients, j ¼ 1 and 2 represent the first 
and second sublayer, respectively, and l1j and l2j are given by: 

l1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cj þ ρjl2
j ω2

� �
ηj

�d1
2
� �d1

2ρjω2bj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cj þ ρjl2
j ω2

� �
ηj

�d1
2
þ �d1

2ρjω2bj

� �2
� 4�d1

4h2
j ρjω2ηj

r

2 bj cj þ ρjl2
j ω2

� �
� h2

j

� �

v
u
u
u
u
t (28) 

l2j ¼



2ρjω2ηj
�d1

4

cj þ ρjl2
j ω2

� �
ηj

�d1
2
� �d1

2ρjω2bj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cj þ ρjl2
j ω2

� �
ηj

�d1
2
þ �d1

2ρjω2bj

� �2
� 4�d1

4b2
j ρjω2ηj

r

v
u
u
u
u
t

(29) 

3. Transfer matrix method

The transfer matrix method is efficient in dealing with dynamic problems of 1D structure. 
In the present study, the transfer matrix between adjacent cells in the 1D PC can be 
derived from the continuity of mechanical and electrical boundary conditions. Specifically, 
in accordance with the definition in Ref [8,20], the physical stress σphys and electric tensors 
Vphys can be expressed, respectively, as: 

σphys ¼ c
@u
@ζ
þ h

@P
@ζ

(30) 

Vphys ¼ h
@u
@ζ
þ b

@P
@ζ

(31) 

For the 1D case of Figure 1, according to the derivation of the transfer matrix in Ref [34], 
the state vector is given by: 

v ¼ MjðζÞfU; P; σphys; Vphysg
T (32) 

It follows that the matrix equations at the left and right sides of the first sublayer in the nth 
unit cell are: 

vðnÞ1L ¼ M1ð0ÞfC11;C21;C31;C41g
T (33) 

vðnÞ1R ¼ M1ðd1ÞfC11;C21; C31;C41g
T (34) 

where the subscripts L and R represent the left and right sides of the sublayer, respec-
tively. Similarly, the matrix equations at the left and right sides of the second sublayer in 
the nth unit cell are: 

vðnÞ2L ¼ M2ðd1ÞfC12;C22; C32;C42g
T (35) 
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vðnÞ2R ¼ M2ðdÞfC12; C22;C32;C42g
T (36) 

Continuity at the interface between adjacent sublayers dictates that:
vðnÞ1R ¼ vðnÞ2L (37)
From Eqs. (32)–(37), the relationship between the left and right sides of the nth unit cell 

is obtained as: 

vðnÞ2R ¼ M2ðdÞ½M2ðd1Þ�
� 1M1ðd1Þ½M1ð0Þ�

� 1vðnÞ1R (38) 

It follows thence that the continuity condition between the right side of the ðn � 1Þth unit 
cell and the left side of the nth unit cell is:

vðnÞ1L ¼ vðn� 1Þ
2R (39)

The relationship between the ðn � 1Þth and nth unit cells is further derived as: 

vðnÞ2R ¼ M2ðdÞ½M2ðd1Þ�
� 1M1ðd1Þ½M1ð0Þ�

� 1vðn� 1Þ
2R (40) 

Therefore, T n ¼ M2ðdÞ½M2ðd1Þ�
� 1M1ðd1Þ½M1ð0Þ�

� 1 is the transfer matrix between two 
connected unit cells in the PC. Due to the transferability of the structure, Tn remains 
unchanged for any n when detuning is not considered and hence can be expressed as T. 
In other words, T can be viewed as the transfer matrix of the periodic PC, which is 
a function of sublayer thickness and frequency.

The problem of elastic wave propagation in a periodic system such as the one depicted 
in Figure 1 can be simplified to an eigenvalue problem by using the Bloch theory, as [35]: 

T � eikdI
�
�

�
� ¼ 0 (41) 

where I is a 4� 4 unit matrix, k is the Bloch wave number, and d ¼ d1 þ d2 is the thickness 
of the unit cell. By calculating the frequency ω corresponding to all wavenumbers k in the 
irreducible Brillouin zone, the dispersion curve of the 1D flexoelectric PC can be obtained.

4. Prediction of localization factor

Localization factor is an important concept introduced to describe vibration localization in 
near-periodic structures [36]. It describes the average exponential decay of fluctuation 
amplitude when an elastic wave propagates in a detuning periodic structure and can be 
used to characterize the influence of localization phenomenon on structural vibration and 
strength.

To calculate the localization factor, two approaches are commonly adopted: one is the 
Lyapunov method [37] and the other is the matrix eigenvalue method [38]. By contrast, 
the calculation with the method of matrix eigenvalue is fairly intuitive, while the calcula-
tion process of the Lyapunov method is more complex and cumbersome. For simplicity, 
the matrix eigenvalue method is employed in the present study.

With 1D detuned PC is assumed, the random variables can be chosen in a range of 
options, such as sublayer thickness detuning, elastic modulus detuning, density detuning, 
flexoelectric coefficient detuning, and so on. For the convenience of analysis, the random 
variable of the ith unit cell is noted as: 

εi ¼ ðεi1; εi2 � � � εiqÞ (42) 
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where q represents the number of random variables. According to the derivation of the 
transfer matrix above, the relationship between the ith and the ðiþ 1Þth state vectors can 
be written as: 

viþ1 ¼ TðεiÞvi (43) 

where TðεiÞ is the transfer matrix, which is related to the random variable εi. For 
a randomly detuned PC, the localization factor is an important characterization parameter 
that can be calculated from the eigenvalues of the transfer matrix, as: 

λl ¼ lim
N!1

1
N

XN

i¼1

ln λi;lðεiÞ
�
�

�
� (44) 

where λi;lðεiÞ is the lth eigenvalue of the transfer matrix TðεiÞ of the ith unit cell. There exist 
multiple eigenvalues of the transfer matrix. By definition, the minimum positive λl is 
selected as the localization factor [39]. Since εi is the random variable in a unit cell, it 
varies from one unit cell to another. If finite numbers of unit cells N are selected, the 
calculated localization factor is also random and determined by the value of N. When 
N!1, the localization factor converges to a certain value. Therefore, a large number of 
unit cells are often needed to ensure the convergence of the localization factor. The 
present calculation shows that when N is greater than 5000, the localization factor 
converges, and the localization factor corresponding to each frequency remains a fixed 
value. With random parameter given for each cell sample, an approximate localization 
factor can be obtained, namely: 

λl
ðNÞ ¼

1
N

XN

i¼1

ln λi;lðεiÞ
�
�

�
� (45) 

5. Results and discussion

Although the flexoelectric effect can exist in crystals with arbitrary symmetry, it is more 
attractive in crystals that exhibit centrosymmetry in the absence of piezoelectric proper-
ties. In other words, the force-electric coupling phenomenon can be solely attributed to 
the flexoelectric effect in centrosymmetric crystals. Therefore, in this section, two typical 
centrosymmetric dielectric materials, BaTiO3 (cubic phase) and SrTiO3, are selected for 
subsequent calculations in order to illustrate the influence of flexoelectricity on the 
structure of energy band. Specific material and geometrical features [20,40] are summar-
ized in Table 1.

It is worth noting that the value of micro-inertia characteristic length l is set to the 
lattice constant according to the literature [41]. The lattice constant of BaTiO3 in the cubic 
phase and SrTiO3 is 0.39 nm.

When considering the first sublayer thickness detuning, it is assumed that d1 obeys 
a uniform distribution with mean �d1 and detuning degree (coefficient of variation) δ. The 
range for the values of d1 can be shown as: 

d1 2 �d1ð1 �
ffiffiffi
3
p

δÞ; �d1ð1þ
ffiffiffi
3
p

δÞ
h i

(46) 
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Further, let r represent a random variable that is subjected to a standard uniform 
distribution, i.e. r 2 ð0; 1Þ. Then, d1 can be compactly expressed as: 

d1 ¼ �d1 1þ
ffiffiffi
3
p

δð2r � 1Þ
h i

(47) 

To facilitate the calculation, the thickness of the two sublayers in the unit cell can be 
nondimensionalized by �d1. With random detuning considered, let ζ1 and ζ2 represent 
essentially the dimensionless widths of sublayers A and B. ζ2 ¼ 1 means that only the 
detuning of sublayer A is discussed, and the width of sublayer B remains fixed. It is 
obvious that the detuned PC will turn into a classical harmonic PC if δ ¼ 0. In the 
following, the influence of flexoelectric effect and parameters detuning (such as thickness, 
flexoelectric coefficient) on band gap and localization factors are analyzed and discussed.

5.1 Harmonic PC with and without flexoelectric effect

First, to explore the influence of flexoelectric effect, Figure 2 shows the energy band 
structure of BaTiO3� SrTiO3 bilayer PC and the corresponding localization factor, with the 
thickness of both sublayers taken as 0.8 nm. Specifically, as shown in Figure 2, the red and 
black scatter points represent the energy band results with flexoelectricity and without 
flexoelectricity, respectively. The red line represents the energy band result with flexoe-
lectricity and micro-inertia effect. The detailed formulas of the transfer matrix are sum-
marized in the Appendix. It is seen from Figure 2 that the band gap starts and ends at 0 or 
π, which belongs to a typical Bragg-type band gap. In the presence of flexoelectricity, the 
band gap curve is no longer straight, representing a significant dispersion phenomenon 
of wave. Besides, it is interesting to note that, with flexoelectricity effect considered, the 
band gap becomes higher and broader. In other words, flexoelectricity increases the 
center frequency and width of the first band gap compared to the classical elastic results. 
By the way, note that the slope of the dispersion curve corresponds to the phonon group 
velocity, which affects the heat transport characteristics of nanoscale materials. Therefore, 
the present results show that flexoelectricity leads to larger phonon group velocity and 
hence larger thermal conductivity [42]. Besides, the micro-inertial effect has little effect on 
the energy band structure of our PC model that already considers flexoelectricity, so we 
follow the approach in the literature [20,21] and ignore the micro-inertial effect in the 
following discussions.

As shown in Figure 2, it is clear that the frequency range of the band gap coincides with 
that of the nonzero localization factor. In fact, the localization factor is another effective 
parameter that can well characterize the energy band structure in 1D harmonic PC [39]. 

Table 1. Material and geometry properties of 1D PC.
BaTiO3 SrTiO3

Relative permittivity ðaÞ 4� 103 3� 102

ρðkg=m3Þ 6:02� 103 5:12� 103

bðNm4=C2Þ 6:77� 10� 6 4:14� 10� 6

hðNm=CÞ � 1:03� 103 � 1:20� 103

cðN=m2Þ 1:62� 1011 3:5� 1011

ηðNm2=C2Þ 1:26� 1011 1:13� 1011
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According to the definition of localization factor, when it is nonzero, the propagation of 
an elastic wave is attenuated and the attenuation coefficient is e� λ. Instead, when the 
localization factor is zero, the elastic wave can pass smoothly through the multilayer 
medium, which corresponds to the passband in the energy band structure. Besides, in the 
presence of flexoelectric effect, the localization factor is remarkably larger than that in the 
purely elastic state, as shown in Figure 2, which means that flexoelectric effect can 
increase the attenuation rate of elastic waves.

In conclusion, flexoelectric effect influences significantly the band gaps of nanoscale 
PC, and it is necessary to consider the influence of flexoelectricity. Localization factor is an 
effective parameter to characterize the band structure of 1D harmonic PC.

5.2 Influence of thickness detuning with fixed thickness ratios

The primary aim of the present study is to study wave localization in a detuning PC using 
the localization factor when flexoelectric effect is considered, since flexoelectric effect 
cannot be ignored as discussed above. For this purpose, the material thickness ratio of 1D 
PC is reduced from 1 to 0.5 to study the influence of different detuning degrees δ (i.e. 0.1 
and 0.2), as shown in Figure 3. For reference, the corresponding variation curve of 
localization factor of a harmonic PC (i.e. δ ¼ 0) is also presented. At first glance, it is 
seen that the peak of localization factor decreases significantly as the detuning degree is 
increased. Besides, it is interesting to note that, as the detuning degree δ is increased, the 
band gap of the PC exhibits a widening trend, i.e. the detuning degree can widen the 
band gap. As for different thickness ratios, the influence law of detuning degree is similar. 
In the next section, the influence of thickness ratio will be discussed in detail.

In addition to localization factor and energy band, we further analyze the relationship 
between bandwidth and detuning degree. As shown in Figure 4, it is found that the first 
and second bandwidths show a clear increasing trend with the increase of detuning. 

Figure 2. Energy band structure and variation of localization factor with frequency 
(dBaTiO3 ¼ dSrTiO3 ¼ 0:8 nm).
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Specifically, the bandwidth of the first band gap is increased from 51.5 GHz to 136.5 GHz, 
and the bandwidth of the second band gap is increased from 119.5 GHz to 306.5 GHz. It is 
interesting to note that the trend exhibits a positive linear correlation, i.e. there is a clear 
regularity in the increase of forbidden bandwidth with the change of detuning degree, 
which is important for designing instruments with specific bandwidths. According to the 
above rules, one can change the degree of detuning to modulate a PC with forbidden 
band to meet specific needs. By the way, the results of Figure 4 also show that the 
bandwidth of the second band gap is significantly larger than that of the first band gap.

Physically, detuning implies a disorder in the structural parameters (dimensions or 
materials, etc.) of the original perfectly periodic PC. The disorder leads to partial reflections 
of the wave at each bay, which can occur even at the passband frequencies of the 
corresponding periodic system [43]. Such multiple reflections lead, on the one hand, to 
a failure of the wave to travel smoothly downstream, thus showing an increase in 
forbidden band bandwidth with increasing detuning in the bandwidth diagram. On the 
other hand, the multiple reflections lead to a phenomenon where the energy is actually 
concentrated in a certain part of the structure, which is also commonly referred to as 
localization [44]. In other words, the increase of the forbidden band width and the 
localization of energy are two macroscopic phenomena caused by detuning, and the 
mechanism behind them is actually the same.

5.3 Influence of thickness ratio with fixed thickness detuning

In this section, the thickness ratio of 1D PC is varied from 0.5 via 1 to 2 when the thickness 
detuning is either fixed at 0 or 0.2. As shown in Figure 5, when the thickness detuning is 
fixed, decreasing the thickness ratio enables the beginning and end of the forbidden 
band to shift toward lower frequencies. This means that, with the thickness detuning 
fixed, 1D PC with relatively low-frequency forbidden band can be obtained by decreasing 

Figure 3. Variation curve of localization factor with thickness detuning: (a) thickness ratio d1=d2 ¼ 1; 
(b) thickness ratio d1=d2 ¼ 0:5.
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its thickness ratio. Besides, it is interesting to note that as the thickness ratio is decreased, 
the localization factor in the forbidden band zone tends to increase, and the localization 
phenomenon becomes more pronounced.

5.4 Influence of flexoelectric coefficient detuning with fixed thickness ratio

The influence of flexoelectric efficient detuning is discussed when fixing the thickness 
ratio at 0.5, 1, and 2. Specifically, three detuning degrees (i.e. 0, 0.002, and 0.004) are 
selected, with the δ ¼ 0 case of harmonic PC taken as reference. As shown in Figure 6, the 
localization factor decreases with increasing detuning of the flexoelectric coefficient. 
Upon comparing Figure 6 with Figure 3, it is seen that the effect of flexoelectric coefficient 
detuning on localization factor is similar to that of thickness-induced detuning within the 
entire frequency range considered. From a specific value of detuning, a very slight (about 
0.001) fluctuation of the flexoelectric coefficient can lead to the localization phenomenon, 
implying that the sensitivity of flexoelectric effect to localization is much higher than that 
of the thickness parameter. This once again demonstrates that flexoelectric effect is 
important for dynamic analysis and cannot be ignored in nanoscale structures.

5.5 Influence of thickness ratio with fixed flexoelectric coefficient detuning

Finally, the influence of thickness ratio on localization is studied by fixing the flexoelectric 
coefficient detuning at either 0 or 0.004. Three thickness ratios (i.e. 0.5, 1, and 2) are 
selected, and the results are displayed in Figure 7. Generally, when the detuning degree is 
fixed, the localization phenomenon due to flexoelectric efficient detuning is similar to that 
due to thickness detuning shown in Figure 5. In particular, decreasing the thickness ratio 
shifts the beginning and end of the forbidden band to lower frequencies. In other words, 
for 1D PC with given flexoelectric detuning, one can obtain PC with relatively low- 

Figure 4. Variation of bandwidth with detuning degree for BaTiO3� SrTiO3 PC with d1=d2 ¼ 1.
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frequency forbidden band by decreasing the thickness ratio. Besides, it is noted that as 
the thickness ratio is decreased, the localization factor in the forbidden band is also 
increased and the localization phenomenon will be more obvious.

6. Conclusions

The variation of energy band structure of 1D harmonic and detuned PC has been 
analytically investigated, with flexoelectric effect accounted for. Generally, the calculated 
results show that detuning under flexoelectric effect affects significantly the band struc-
ture of the PC. First, the localization factor indeed reflects the energy attenuation rate and 
can effectively represent the band structure, including both the pass band and the 
forbidden band. Second, increasingly either the thickness detuning or flexoelectric 

Figure 5. Variation curve of localization factor with thickness ratio: (a) thickness detuning degree 
δ ¼ 0; (b) thickness detuning degree δ ¼ 0:2.

Figure 6. Influence of flexoelectric coefficient detuning on localization factor versus frequency curve 
with the thickness ratio fixed at (a) d1=d2 ¼ 0:5 and (b) d1=d2 ¼ 1.
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coefficient detuning leads to linearly widened band gap, and the second band gap width 
increases faster than the first band gap. In addition, the sensitivity of flexoelectric 
coefficient detuning is much higher than that of thickness detuning. The present results 
provide a theoretical basis for designing high-frequency nanoscaled devices with the 
function of filtering based on band gap effect in PC.
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Appendix

(1) Derivation of Equations (23) and (24)

The simplified inhomogeneous equations are: 

c
@2u
@x2 þ h

@2P
@x2 ¼ ρ

@2u
@t2 � ρl2 @4u

@x2@t2 

h
@2u
@x2 þ b

@2P
@x2 � ηP ¼ 0 

The solution of the above equations can be expressed as: 

uðx; tÞ ¼ UðxÞ expð� iωtÞ

Pðx; tÞ ¼ PðxÞ expð� iωtÞ

where i ¼
ffiffiffiffiffiffiffi
� 1
p

. Substituting the assumed solution into the inhomogeneous equations leads to: 

cþ ρl2ω2� � @2UðxÞ
@x2 þ h

@2PðxÞ
@x2 þ ρω2UðxÞ ¼ 0 

h
@2UðxÞ
@x2 þ b

@2PðxÞ
@x2 � ηPðxÞ ¼ 0 

To facilitate the calculation, the dimensionless coordinate, ζi ¼
xj
�d1

, is introduced. where �d1 repre-
sents the average thickness of the first sublayer. Therefore, the two equations above can be further 
simplified as: 

cþ ρl2ω2� � @2UðζÞ
@ζ2 þ h

@2PðζÞ
@ζ2 þ

�d1
2ρω2UðζÞ ¼ 0 

h
@2UðζÞ
@ζ2 þ b

@2PðζÞ
@ζ2 �

�d1
2ηPðζÞ ¼ 0 

(1) Calculation of transfer matrix with flexoelectric effect neglected

With the higher order terms and force-electric coupling caused by flexoelectric effect and micro- 
inertia effect neglected, the governing equation is simplified as: 

ec
d2W
d2x
þ ρω2W ¼ 0 

The displacement can be expressed as: 

WðxÞ ¼ eiγx Aþ e� iγxB 

where γ ¼ ω
ffiffi
ρ
ec

q
, while the stress is given by: 

σ ¼ ec
dW
dz
¼ iγeceiγxA � iγece� iλxB 

In the classical elastic case, the state vector is v ¼ MjðxÞfW; σgT , where 

MjðxÞ ¼
eiλx e� iλx

iλeceiλx � iλece� iλx

� �

, and j ¼ 1 and 2 represent the sublayers A and B of 1D PC. The 

transfer matrix is then obtained as Tn ¼ M2ðdÞ½M2ðd1Þ�
� 1M1ðd1Þ½M1ð0Þ�

� 1.
(1) Expression of state vector with flexoelectric effect accounted for
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The state vectors are: v ¼ MjðζÞfU; P; σphys; Vphysg
T 

Mjð1; 1Þ ¼ el1j ζ Mjð1; 2Þ ¼ e� l1j ζ Mjð1; 3Þ ¼ eil2j ζ Mjð1; 4Þ ¼ e� il2j ζ

Mjð2; 1Þ ¼
1
� hj
ðcj þ ρjl

2
j ω2 þ

�d1
2ρjω2

l2
1j
Þel1j ζ Mjð2; 2Þ ¼

1
� hj
ðcj þ ρjl

2
j ω2 þ

�d1
2ρjω2

l2
1j
Þe� l1j ζ

Mjð2; 3Þ ¼
1
� hj
ðcj �

�d1
2ρjω2

l2
2j
Þeil2j ζ Mjð2; 4Þ ¼

1
� hj
ðcj �

�d1
2ρjω2

l2
2j
Þe� il2j ζ

Mjð3; 1Þ ¼ � ð
�d1

2ρjω2

l1j
Þel1j ζ Mjð3; 2Þ ¼ ð

�d1
2ρjω2

l1j
Þe� l1j ζ

Mjð3; 3Þ ¼ ið
�d1

2ρjω2

l2j
Þeil2j ζ Mjð3; 4Þ ¼ � ið

�d1
2ρjω2

l2j
Þe� il2j ζ

Mjð4; 1Þ ¼ l1jhj½1 �
bj

hj
2 ðcj þ ρjl

2
j ω2 þ

�d1
2ρjω2

l2
1j
Þ�el1j ζ

Mjð4; 2Þ ¼ � l1jhj½1 �
bj

hj
2 ðcj þ ρjl

2
j ω2 þ

�d1
2ρjω2

l2
1j
Þ�e� l1j ζ

Mjð4; 3Þ ¼ il2jhj½1 �
bj

hj
2 ðcj �

�d1
2ρjω2

l2
2j
Þ�eil2j ζ

Mjð4; 4Þ ¼ � il2jhj½1 �
bj

hj
2 ðcj �

�d1
2ρjω2

l2
2j
Þ�e� il2j ζ 

where j ¼ 1 and 2 represent the sublayers A and B of 1D PC, respectively.
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