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A B S T R A C T   

Combining honeycomb and corrugation to construct a multifunctional hybrid core for all-metallic sandwich 
construction can significantly enhance not only its stiffness and strength but also energy absorption and sound 
absorption relative to its honeycomb or corrugated sandwich counterpart of equal mass. However, how hy-
bridization affects its vibration characteristics remains poorly understood, especially from a theoretical point of 
view. To address this deficiency, this study develops a theoretical model based on three-dimensional (3D) 
elasticity such that the free vibration of a hybrid-cored sandwich plate with arbitrary boundary conditions can be 
systematically evaluated. Based on micromechanics analysis of the representative volume element, the effect of 
honeycomb-corrugated coupling is duly accounted and the incorrectly expressed equivalent constitutive of 
hexagonal honeycombs in previous studies are modified. The model is validated against 3D finite element 
simulations. The natural frequencies of a honeycomb-corrugated sandwich construction are consistently higher 
than its honeycomb or corrugated sandwich counterparts, due mainly to mechanisms: honeycomb filling sup-
presses local vibration of face sheets and corrugated members, and mutual constraint of honeycomb and 
corrugation enhance the flexural rigidity of hybrid core. The proposed theoretical model can be easily extended 
to analyze other cases, such as sound radiation and sound insulation of hybrid sandwiches.   

1. Introduction 

All-metallic corrugated sandwich constructions are widely used in 
transportation, construction, and aerospace engineering fields due to 
their ultralightweight, good structural performance (stiffness/strength 
and energy absorption), active cooling capability, sound absorption (one 
face sheet as well as corrugated members perforated with periodically 
distributed micro-holes), ease of fabrication and reparability, relatively 
low manufacturing costs [1–8]. However, in the absence of lateral 
support, the relatively thin corrugated members and face sheets are 
prone to local buckling under quasi-static or dynamic loading, thus 
limiting the load-bearing and energy absorbing capacity of corrugated 
sandwich structures. 

To address the issue, filling the interstices of the corrugated core with 
other materials has been envisioned as a potential approach to enhance 
the mechanical performance of the sandwich. For example, Vaziri et al. 
[9] proposed to fill all-metallic corrugated sandwich plates with cellular 
polymer foams. However, a rather disappointing conclusion was 

obtained, as their study demonstrated that a foam-filled sandwich plate, 
when subjected to impulsive loading, exhibits no obvious load-bearing 
advantage compared with its unfilled counterpart of equal mass. This 
may be because the polymer foam selected as filler is mechanically 
rather weak and hence cannot provide sufficient lateral support for 
metallic corrugated members against plastic yielding and buckling. 
Subsequently, to improve the structural performance, all-metallic 
corrugated sandwich structures filled with cellular metallic foam were 
extensively studied [10–16]. Compared with empty corrugated sand-
wiches, the rigidity, strength, and energy absorption of metal foam-filled 
corrugated structures are indeed significantly improved, for the strong 
lateral support of metallic foam-filling to metallic corrugated members 
delays their plastic yielding and local buckling. Nonetheless, another 
drawback of the foam-filling approach emerges: the mass of hybrid 
foam-corrugated core is also significantly increased by the filled metallic 
foams, which makes the structural advantage of a metal foam-filled 
corrugated sandwich not obvious compared to its empty counterpart 
of equal mass. 
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Built upon the somewhat disappointing foam-filling approach for all- 
metallic sandwich constructions, either because the foam fillers are too 
weak or too heavy, reduce the weight of the core, the present authors 
[17,18] proposed filling an all-metallic corrugated sandwich panel with 
metallic honeycomb blocks and systematically studied its quasi-static 
mechanical performance, both experimentally and numerically. We 
demonstrated that compared to a sandwich panel with either empty 
corrugated or honeycomb core having equal mass, the rigidity, strength, 
and energy absorption of the hybrid honeycomb-corrugated sandwich 
panel under out-of-plane compression, transverse shear, and three-point 
bending are all dramatically enhanced with minimal increase in struc-
tural mass. For instance, as shown in Fig. 1, under quasi-static out-of- 
plane compression, the experimentally measured flow stress of the 
proposed hybrid-core sandwich is significantly higher than that ob-
tained from summing its constituent contributions, i.e., the curve ‘Sum’. 
Further, the large shaded area between the curves of ‘Honeycomb- 
corrugated hybrid’ and ‘Sum’ in Fig. 1 implies the interaction (coupling) 
effect between honeycomb and corrugation is strong: while the honey-
comb provides lateral support to the corrugated members, the corru-
gated members also strengthen the honeycomb; as a result, the crushing 
modes of both constituents at large plastic deformation are altered, as 
shown by the inserted images of Fig. 1. Subsequently, by introducing 
periodically distributed micro-perforations onto the incident face sheet 
as well as the corrugated members, it has also been demonstrated that 
the proposed honeycomb-corrugated sandwich construction also ex-
hibits superior sound absorbing capability [19]. 

In addition to high rigidity/strength/energy absorption, the vibra-
tion characteristics of the proposed hybrid sandwich are also found to be 
significant. Zhang et al. [20] used both finite element (FE) simulation 
and experimental measurement to study the free vibration of a 
honeycomb-corrugated sandwich beam, after obtaining its equivalent 
parameters via a homogenization approach. Nonetheless, as will be 
demonstrated later in the current study, the unreasonable use of hon-
eycomb equivalent stiffness and the neglect of honeycomb-corrugated 
interaction by Zhang et al. [20] led to large errors in the predicted 
high-order natural frequencies of the hybrid-cored sandwich beam. In 
addition to numerical simulation and experimental measurement, 
theoretical modeling of free vibration of honeycomb-corrugated sand-
wiches is rarely reported. Although the equivalent single layer theories 
(such as the classical laminate theory, the first-order shear deformation 
theory, the high-order deformation theories [21–23], etc.) and, more 

recently, the layer-wise theories [24–27] have been adopted to describe 
the displacement field of a sandwich structure, certain assumptions on 
stresses and strains must be introduced to eliminate the errors caused by 
ignoring the deformation in its thickness direction, thus leading to 
inaccurate predictions of frequency responses when the sandwich core is 
relatively thick. Since no assumptions are made about the deformation 
and stress of plates, the three-dimensional (3D) elasticity theory [28] is 
deemed more suitable for the analysis of sandwich plates with 
honeycomb-corrugated cores. For sandwich plates with complex cores 
(such as graded auxetic honeycomb core [29] and foam-filled composite 
corrugated core [30], etc.), an approach combining core homogeniza-
tion and plate deformation theory is widely used to study the free vi-
bration characteristics. 

The present study aims to establish a theoretical model that com-
bines the homogenization of sandwich core with the 3D elasticity theory 
to analyze the free vibration performance of sandwich plates with 
honeycomb-corrugated hybrid cores. Based on micromechanics analysis 
of representative volume element (RVE), the proposed model not only 
accounts for the effect of honeycomb-corrugated coupling but also 
presents accurate equivalent constitutive relations of hexagonal hon-
eycombs that had been incorrectly expressed in previous studies. Upon 
validating the proposed theoretical model against 3D FE simulations, the 
model is employed to explore how mutual restraint between the con-
stituents of the hybrid core suppresses local vibration of the sandwich 
structure, resulting in a higher frequency response than competing 
sandwich constructions of equal mass. 

The paper is arranged as follows: In Section 2, the equivalent elastic 
constants of the honeycomb-corrugated hybrid core are obtained based 
on the homogenization method; in Section 3, the free vibration of the 
homogenized sandwich plate is analyzed based on the 3D elasticity 
theory; in Section 4, the accuracy and convergence of the equivalent 
parameters of honeycomb-corrugated hybrid core are verified by the FE 
model; in Section 5, the influence of the geometric parameters on the 
fundamental frequency of the honeycomb-corrugated sandwich plate is 
analyzed, the first three natural frequencies of the hybrid sandwich plate 
are compared with the traditional sandwich structures, and the effect of 
hybrid design on structure weight is studied. Finally, the conclusion of 
this study is given in Section 6. 

2. Homogenization of honeycomb-corrugated hybrid core 

Fig. 2(a) presents schematically the manufacturing process of an 
ultralightweight all-metallic sandwich plate with honeycomb- 
corrugated core. For a typical instance, the hybrid core is composed of 
corrugated thin aluminum (Al) plate and trapezoidal Al honeycomb 
blocks. For simplicity, the standard hexagonal honeycombs are consid-
ered, although honeycombs with different morphologies can also be 
used to construct the proposed hybrid core. The hexagonal honeycomb 
is manufactured using an expansion manufacturing process [31] (Fig. 2 
(a): ①–③). Then, as shown in Fig. 2(a): ④, trapezoidal honeycomb 
blocks are precisely cut from the prepared honeycomb using electrical 
discharge machining (EDM). Subsequently, the corrugated plate (folded 
plate) is produced using the stamping method as depicted in Fig. 2(a): 
⑤. Finally, as shown in Fig. 2(a): ⑥–⑦, the hybrid-cored sandwich plate 
is fabricated by inserting the trapezoidal honeycomb blocks into the 
corrugated plate, fixed by epoxy adhesive and then adhesively bonded to 
the Al face sheets. The aviation-grade epoxy adhesive Loctite® EA E- 
120HP is used for bonding and is required to solidify at room temper-
ature for 36 h. Photograph of a typical sample fabricated via this route is 
presented in Fig. 2(b). Alternatively, the core and the face sheets can be 
bonded with brazing. For instance, if the corrugated core and the face 
sheets are both made of 304 stainless steel, then the corrugated sand-
wich can be first prepared by vacuum brazing using BNi-7 brazing alloy 
at a brazing temperature of 1040 ◦C and a vacuum atmosphere of 5 ×
10− 3 Pa [32,33]. Then, trapezoidal honeycomb blocks (say, made of Al) 
are inserted into the corrugated sandwich and glued with epoxy 

Fig. 1. Experimentally measured, quasi-static out-of-plane compressive stress 
versus strain curves of sandwiches having honeycomb, empty corrugated, and 
hybrid honeycomb-corrugated cores, together with typical deformation images 
of empty corrugated and hybrid cores captured at ε = 0.25 [18]. 
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adhesive. 
With either adhesive bonding or brazing, it has been established that 

the bonding strength between the face sheets and the core is sufficiently 
high, as FE simulations assuming perfect bonding agreed well with the 
experimentally measured dynamic response of hybrid-cored sandwich 
panel under impulsive loading [32,33]. 

To investigate theoretically the free vibration performance of the 
novel honeycomb-corrugated sandwich, the following assumptions are 
made: (1) the whole sandwich plate experiences linear small elastic 
deformation, and no local buckling occurs; (2) the size of honeycomb 
cell is much smaller than the macroscopic size of the sandwich; (3) the 
two face sheets are perfectly connected with the hybrid core, while the 
honeycomb cells are tightly connected with adjacent corrugated mem-
bers and do not experience relative displacement under loading. 

Based upon the foregoing assumptions, the honeycomb-corrugated 
hybrid core can be analyzed at two different scales: (a) at the macro-
scopic scale, the core is treated as a homogeneous orthotropic material, 
as illustrated in Fig. 2(c); (b) at the mesoscopic scale, contributions of 
the honeycomb and corrugation to the whole hybrid are separately 
considered, with their coupling effect duly accounted for. 

Based on the method of homogenization, the meso-macro relation-
ship of the hybrid core is obtained by analyzing its RVE, or unit cell, 
which is depicted in Fig. 2(c). Note that, in practice, to facilitate weld-
ing/gluing between face sheets and the core, a corrugated platform is 
commonly introduced, as shown in Fig. 2(c). 

2.1. Geometric configuration 

The geometric configuration and reference coordinate system of the 
RVE (i.e., unit cell) selected for the honeycomb-corrugated hybrid core 
is displayed in Fig. 3. The Cartesian coordinates x-y-z represent the 
global coordinates of the RVE, while the Cartesian coordinates X-Y-Z 
represent the local coordinates of the inclined corrugated plate. Rele-
vant geometric parameters are: honeycomb wall length lH, honeycomb 
wall thickness tH, honeycomb cell angle Ф, corrugated length lC, corru-
gated thickness tC, corrugated angle θ, and width of corrugated platform 
d. Accordingly, the volume fractions of honeycomb and corrugated 
plate, λH and λC, can be separately expressed as [34]: 

λH =
2tH

(1 − cosΦ)sinΦlH
(1a)  

λC =
tC(lC + d)

(tC + lCsinθ)(d + lCcosθ)
(1b) 

Let EH, vH, and ρH denote Young’s modulus, Poisson ratio and mass 
density of the isotropic material make for the honeycomb. Let EC, vC, and 
ρC denote the corresponding material properties of the corrugated plate. 
The mass density of the honeycomb-corrugated hybrid core is thence 
given by: 

ρcore = ρCλC + ρHλH(1 − λC) (2) 

Fig. 2. (a) Schematic of manufacturing process for honeycomb-corrugated sandwich plate; (b) Photograph of as-fabricated sandwich sample; (c) Representative 
volume element (RVE) of hybrid core. 
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2.2. Equivalent elastic constants of RVE 

The macro-homogeneity equality of Hill [35] is adopted in the pre-
sent study, which reads: 

Σ⋅E = 〈σ⋅ε〉Ω =
1
Ω

∫

Ω
σ⋅ε dΩ (3)  

E = 〈ε〉Ω =
1
Ω

∫

Ω
ε dΩ (4)  

Σ = 〈σ〉Ω =
1
Ω

∫

Ω
σ dΩ (5)  

where σ and ε denote the microscale stress tensor and the microscale 
strain tensor, Σ and E denote the macroscopic stress tensor and the 
macroscopic strain tensor, respectively, Ω represents the volume of the 
RVE, and 〈•〉Ω denotes volume averaging. Thus, Σ⋅EΩ is the macroscopic 
strain energy density and 

∫
Ω σ ⋅ ε dΩ is the total strain energy density of 

the admissible microscopic fields. Eq. (3) implies that the volume 
averaged strain energy density of an inhomogeneous material can be 
obtained by multiplying the separate volume averages of microscopic 
stresses and strains. 

Consider next the case when the RVE produces a deformation shown 
in Fig. 4(a) under the uniform displacement boundary condition of u =
E⋅x, where x represents the point on the boundary and E represents the 
macroscopic strain tensor in the x-z plane. For small deformations, it is 
assumed that a uniform strain field is generated inside the RVE under the 
displacement boundary condition. Thus, the macroscopic strain of the 
RVE and the microscopic strain of each of its constituents can be cor-
responded using a simple geometric relationship. For the sake of theo-
retical analysis, the influence of the corrugated platform on the 
equivalent elastic constants of the hybrid core is ignored, because the 
platform is taken as perfectly connected to the face sheet and hence its 
deformation is consistent with the latter. The corrugated member (i.e., 
the inclined plate) can be characterized as an Euler-Bernoulli beam of 
unit width along the y-direction, with both of its ends clamped [36]. 

Analogous to the analysis of pin-reinforced foam core and foam-filled 
corrugated core [30,37], the macroscopic strain energy density of the 
present honeycomb-corrugated core can be calculated as: 

U = UC +UH (6)  

UC =
1
Ω

∑2

i=1
[
1
2
(u(i) + 2u(i)

p )
TK(i)u(i)] (7)  

UH = (1 − λC)(
1
2
ΞTCHΞ) (8)  

Ξ = (Ξ1, Ξ2, Ξ3, Ξ4, Ξ5, Ξ6)
T
= (E11, E22, E33, 2E23, 2E13, 2E12)

T (9)  

with. 

Fig. 4. (a) Deformation of RVE subjected to macroscopic strain E, and (b) 
forces acting on corrugated member (inclined plate). 

Fig. 3. Geometric configuration and reference coordinate system of the RVE.  
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Ω = 2(lCcosθ + d)(lCsinθ + tC) (10) 

Here, UC and UH are the macroscopic strain energy density of the 
corrugated and honeycomb, respectively; Ξ is the macroscopic strain 
vector; CH is the stiffness matrix of the honeycomb; u(i) is the global 
nodal displacement vector of the i-th inclined beam characterized by end 
nodes ξ and τ, as shown in Fig. 4(b): 

u(i) = T(i)Tu(i)
e (11)  

u(i)
e = (wξ, vξ, ψξ, wτ, vτ, ψτ)

(i)T (12)  

where w, v, and ψ represent the displacement components of the end 
node in local coordinate plane X-Z. T(i) is the transformation matrix 
between local and global coordinates for the i-th inclined beam, and its 
detailed expression is presented in Appendix B. For small deformations, 
the global nodal displacement Δ is given by [36]: 

Δ = lCEn0 = (Δ1m, Δ2r) (13)  

E =

[
E11 E13
sym E33

]

(14)  

where n0 denotes the unit vector along the inclined beam, Δ1 and Δ2 are 
projections of Δ along with the x and z coordinates, and m and r 
represent unit vectors along the x and z coordinates, respectively. Then, 
u(i) can be expressed as: 

u(i) = (Δ1, Δ2, 0, 0, 0, 0)(i)T (15) 

In Eq. (4), up 
(i) is the global nodal displacement vector of the i-th 

inclined beam induced by lateral normal stress p(i), as shown in Fig. 4(b). 
It represents the coupling effect between honeycomb and corrugated 
plate and can be expressed as: 

u(i)
p = T(i)Tu(i)

pe (16)  

u(i)
pe = (

vCp(i)lC

EC/(1 − v2
C)
, 0, 0, 0, 0, 0)

(i)T

(17)  

where the influence of shear stress on the corrugated plate is ignored, 
and only elongation of the corrugated plate induced by lateral support of 
adjacent honeycomb blocks is considered. For simplicity, with p(i) taken 
as uniformly distributed on the lateral surface of the i-th inclined plate, it 
can be approximately calculated as: 

p(i) = n(i)T
1

⎡

⎣
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤

⎦

H

n(i)
1 (18)  

σH = CHΞ (19)  

where n1
( i) is the unit vector normal to the lateral surface of the i-th 

corrugated plate. 
In Eq. (4), K(i) is the global stiffness matrix that satisfies the trans-

formation between local and global coordinates, as: 

K(i) = TT(i)K(i)
e T(i) (20)  

where Ke
(i) is the elementary stiffness matrix of the i-th inclined beam, as 

given in Appendix B. It follows that the effective stiffness of the RVE in 
the x-z plane can be calculated as: 

Cij =
∂2U

∂Ξi∂Ξj
(21) 

In the global x-z plane, the macroscopic equivalent stiffnesses of the 
honeycomb-corrugated hybrid core can thence be obtained as: 

C11 =
2ECtClC

(1 − v2
C)Ω

cos4θ +
ECt3

C

2(1 − v2
C)lCΩ

sin22θ +
vCtClC

Ω
(
CH

11sin22θ

+ 4CH
13cos4θ

)
+ (1 − λC)CH

11 (22)  

C13 =
ECtClC

2(1 − v2
C)Ω

sin22θ −
ECt3

C

2(1 − v2
C)lCΩ

sin22θ +
vCtClC

Ω
(
2CH

11sin4θ

+ CH
13sin22θ + 2CH

33cos4θ
)
+ (1 − λC)CH

13 (23)  

C33 =
2ECtClC

(1 − v2
C)Ω

sin4θ +
ECt3

C

2(1 − v2
C)lCΩ

sin22θ +
vCtClC

Ω
(
4CH

13sin4θ

+ CH
33sin22θ

)
+ (1 − λC)CH

33 (24)  

C55 =
ECtClC

2(1 − v2
C)Ω

sin22θ +
ECt3

C

2(1 − v2
C)lCΩ

cos22θ −
2vCtClC

Ω
CH

55sin22θ

+ (1 − λC)CH
55 (25) 

If a macroscopic strain E11 (E22, or E33) is solely imposed on the RVE 
(Fig. 5), the equilibrium equation of macroscopic force and mesoscopic 
force in the y-direction can be expressed as: 

C12E11Ω = 2E11cos2θ
ECvC

1 − v2
C

tClC + 2vCp1tClC +(1 − λC)CH
12E11Ω (26)  

C22E22Ω = 2E22
EC

1 − v2
C

tClC + 2vCp2tClC +(1 − λC)CH
22E22Ω (27)  

C23E33Ω = 2E33sin2θ
ECvC

1 − v2
C

tClC + 2vCp3tClC +(1 − λC)CH
23E33Ω (28) 

Here, the first and third terms on the right-hand side of the equi-
librium equation represent the mesoscopic forces contributed by the 
corrugated plate and the honeycomb, respectively, and (p1, p2, p3) 
represent the lateral normal stresses between honeycomb and corru-
gated plate. Using similar procedures to derive the lateral normal stress 
p(i), one arrives at: 

pj = nT
1

⎡

⎣
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤

⎦

j

n1 (29)  

Fig. 5. Deformation of RVE subjected to macroscopic strain E11.  
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σj =

⎧
⎨

⎩

CH(E11, 0, 0, 0, 0, 0)T j = 1
CH(0, E22, 0, 0, 0, 0)T j = 2
CH(0, 0, E33, 0, 0, 0)T j = 3

(30) 

When subjected to macroscopic shear strain E21 or E23, the distrib-
uted shear flow in the RVE is shown in Fig. 6(a) or (b), in which cases the 
coupling effect of honeycomb and corrugation vanishes. Force balance 
of the RVE can be written as: 

C442E23Ω = 2τ21tClCsinθ+(1 − λC)CH
442E23Ω (31)  

C662E21Ω = 2τ23tClCsinθ+(1 − λC)CH
662E12Ω (32)  

where the first and second terms on the right-hand side represent 
mesoscopic forces contributed by the corrugation and the honeycomb, 
respectively, and τ21 and τ23 represent separately shear stresses in local 
coordinates X-Y-Z. Correspondingly, the local shear strains are calcu-
lated as: 

ε21 =
τ21

2G
; ε23 =

τ23

2G
; G =

EC

2(1 + vC)
(33)  

where G is the shear modulus of the base material. 
Finally, the remaining macroscopic equivalent stiffnesses related to 

the global y-coordinate are obtained as: 

C12 =
2ECvCtClC

(1 − v2
C)Ω

cos2θ +
2vCtClC

Ω
(
sin2θCH

11 + cos2θCH
13

)
+ (1 − λC)CH

12

(34)  

C22 =
2ECtClC

(1 − v2
C)Ω

+
2vCtClC

Ω
(
sin2θCH

12 + cos2θCH
23

)
+ (1 − λC)CH

22 (35)  

C23 =
2ECvCtClC

(1 − v2
C)Ω

sin2θ +
2vCtClC

Ω
(
sin2θCH

13 + cos2θCH
33

)
+ (1 − λC)CH

23 (36)  

C44 =
ECtClC

(1 + vC)Ω
sin2θ+(1 − λC)CH

44 (37)  

C66 =
ECtClC

(1 + vC)Ω
sin2θ+(1 − λC)CH

66 (38) 

It should be pointed out that the stiffness matrix of hexagonal hon-
eycomb presented in a previous study [20] is somewhat inaccurate. In 

the following section, the correct stiffness matrix is derived. 

2.3. Stiffness matrix of hexagonal honeycomb 

In a honeycomb-corrugated sandwich plate, the inserted honeycomb 
blocks mainly play the role of supporting the face sheets and corrugated 
members and have a relatively small contribution to the bending stiff-
ness of the sandwich. However, if honeycomb stiffness is not determined 
correctly, the accuracy of subsequent free vibration analysis of the 
hybrid-cored sandwich is in doubt. 

Fig. 7 displays the geometry of the hexagonal honeycomb described 
in a previous free vibration study of the hybrid-cored sandwich beam 
[20]. Let the length and thickness of the horizontal cell wall be denoted 
by l1 and tl, and the length and thickness of the inclined cell wall by l2 
and t2, respectively. For the hexagonal honeycomb of concern, l1 = l2 
and t1 = 2 t2. In Ref. [20], the elastic constants of the inserted honey-
comb were derived based on the honeycomb stiffness matrix presented 
in Hohe et al. [38]. When the geometry of the honeycomb is set to l1 = 1 
mm, t1 = 0.12 mm, Ф = 120◦, and the material properties are set to EH =

Fig. 6. (a) Shear flow of RVE subjected to macroscopic strain E21, and (b) shear flow of RVE subjected to macroscopic strain E23.  

Fig. 7. Geometric parameters of hexagonal honeycomb in Ref. [20].  
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70 GPa and vH = 0.3, its stiffness matrix is calculated as: 

CH =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3387 1.2074 0 0 0 0
1.2175 0 0 0 0

6.4663 0 0 0
0.9326 0 0

sym 0.5829 0
50518

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

GPa (39) 

Nonetheless, without changing the above settings of geometrical and 
material parameters, the stiffness matrix of the hexagonal honeycomb 
derived according to the formulas presented by Shi et al. [39] is 
calculated: 

CH =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.4631 1.4514 0 0 0 0
1.4573 0 0 0 0

6.4663 0 0 0
0.9326 0 0

sym 1.3990 0
0.0256

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

GPa (40)  

which exhibits significant differences from the stiffness matrix given by 
Ref. [20]. By comparing the corresponding equivalent stiffness expres-
sions in the three existing studies, namely, Refs. [20,38,39], it is 
established that the discrepancies are mainly attributed to two causes: 

(1) The formula expression for γ1 presented in Hohe et al. [38] ex-
hibits a clerical error, which was inherited by Zhang et al. [20] in 
their analysis of hybrid-cored sandwich beams, as: 

γ1 = 1+ 2
t2
2

l2
2
cos3Φ+ 2

t3
2

t1l2
2γ

sinΦcosΦ (41) 

The correct expression of γ1 derived according to Shi et al. [39] is: 

γ1 = 1+ 2
t2

t1
cos3Φ+ 2

t3
2

t1l2
2γ

sinΦcosΦ (42)    

(2) In addition to inheriting the clerical error from [38], the elastic 
constants of honeycomb in Ref. [20] contain additional clerical 
errors. For example, in equation of CH

11, the denominator is 
incorrectly magnified 6 times, which makes CH

11 extremely small; 
in equation of CH

22, the minus sign in the numerator is changed to 
a plus sign; in equation of CH

66, β6 in the denominator is missing, 
which makes CH

66 extremely large. 

Finally, based upon the equivalent constitutive equations derived by 
Shi et al. [39] using a two-scale method, the correct stiffness matrix of 
the hexagonal honeycomb shown in Fig. 7 is obtained as follows: 

CH =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CH
11 CH

12 0 0 0 0
CH

22 0 0 0 0
CH

33 0 0 0
CH

44 0 0
sym CH

55 0
CH

66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(43)  

CH
11 = EH

t1l1

(
1 −

γ1
β

)
− 2t2l2

(
l1γ1
l2β − cosΦ

)
cos3Φ

2l2(l1 − l2cosΦ)sinΦ
(44)  

CH
12 = EH

− t2(
l1γ1
l2β − cosΦ)sinΦcosΦ

l1 − l2cosΦ
(45)  

CH
22 = EH

t2

(
sin2Φ −

l1γ2
l2β cosΦ

)
sinΦ

l1 − l2cosΦ
(46)  

CH
33 = EH

l1t1 + 2l2t2

2l2(l1 − l2cosΦ)sinΦ
(47)  

CH
44 = GH

t2sinΦ
l1 − l2cosΦ

(48)  

CH
55 = GH

t1l1 + 2t2l2cos2Φ − t1 l2+2t2 l2cosΦ
t1 l2+2t2 l1

(t1l1 + 2l2t2cosΦ)

2l2(l1 − l2cosΦ)sinΦ
(49)  

CH
66 =

EH
(
l1 − l2cosΦ + l1sin2Φ

)(
1 − l2

l1
cosΦ + l1cosΦ

l2γ6
− 2cos2Φ

γ6

)

2l2sinΦ(l1 − l2cosΦ)β6
(50)  

γ = 1+ 2(1 + vH)
t2
2

l2
2

(51)  

γ1 = 1+ 2
t2

t1
cos3Φ+ 2

t3
2

t1l2
2γ

sinΦcosΦ (52)  

γ2 = 2
t2

t1
(sinΦ −

t2
2

l2
2γ
)sinΦcosΦ (53)  

γ6 = 1 −
l1

l2
cosΦ (54)  

β = 1+ 2
t2l1

t1l2
cos2Φ+ 2

l1t3
2sin2Φ

t1l3
2(1 − v2

H)γ
(55)  

β6 =
l2
1

2t3
1γ6

(2 +
t3
1l2

t3
2l1

)+ 2
1 + vH

t1γ6
(γ6 +

l1t1

2l2t2
+

l1

l2
cosΦ)+

l2γ6

2(1 − v2
H)l1t2sin2Φ

(56) 

Fig. 8. (a) Sandwich plate with homogenized hybrid core and reference Cartesian coordinate system, and (b) labels for each edge.  
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Eqs. (44)–(56) are employed in the present study to analyze the free 
vibration of honeycomb-corrugated sandwich plates. 

3. Mathematical formulations for free vibration analysis 

For the sandwich plate of concern, the hybrid core is taken as an 
equivalent homogeneous orthotropic material, and the face sheets are 
assumed made of a homogeneous isotropic material. The original 
honeycomb-corrugated sandwich plate then becomes a sandwich plate 
with a homogenized hybrid core or, equivalently, a three-layer laminate, 
as shown in Fig. 8(a). The Cartesian coordinate system x-y-z (consistent 
with global coordinates in Section 2) is used for analysis. Let u, v, and w 
represent the displacement components of the sandwich in x, y, and z 
directions, respectively. Three sets of independent springs (denoted 
herein by ku, kv, and kw) are introduced to the edges of the plate to 
achieve arbitrary adjustment of boundary conditions. For example, the 
classical clamped or free boundary can be modeled by setting the related 
spring stiffness to approach infinity or zero. To avoid ambiguity, the 4 
edges of the sandwich are marked as (1), (2), (3), and (4) counter-
clockwise, as shown in Fig. 8(b). Meanwhile, in subsequent derivation 
and analysis, the boundary conditions of each edge are also expressed in 
this order. 

3.1. Constitutive laws and kinematic relations 

For linear elastic deformation, the 3D elastic constitutive relation of 
face sheet material can be written as: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σxx
σyy
σzz
σxy
σxz
σyz

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(i)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B B 0 0 0
A B 0 0 0

A 0 0 0
C 0 0

sym C 0
C

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(i)⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γxy
γxz
γyz

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(i)

(57)  

where superscript i = 1 and 3 represent the lower face sheet and the 
upper face sheet, respectively, and the stiffness coefficients are given by: 

A =
Ef vf

(
1 + vf

)(
1 − 2vf

)+
Ef

1 + vf
;

B =
Ef vf

(
1 + vf

)(
1 − 2vf

);

C =
Ef

2
(
1 + vf

)

(58) 

Here, Ef, vf, and ρf are Young’s modulus, Poisson ratio, and mass 
density of face sheet material. 

With the equivalent stiffnesses of the hybrid core derived in Section 
2, its 3D elastic constitutive relation can be expressed as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σyz

σxz

σxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(i)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

sym C55 0
C66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(i)⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γyz
γxz
γxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(i)

(59)  

where superscript i = 2 represent the hybrid core layer. In Appendix C , 
reasons for adopting the 3D formulation in the current study are further 
explained. 

According to the linear, small-strain elasticity theory, the strain 
components are defined using the displacement u, v, and w, as: 

εxx =
∂u
∂x
; εyy =

∂v
∂y
; εzz =

∂w
∂z

;

γxy =
∂u
∂y

+
∂v
∂x
; γxz =

∂u
∂z

+
∂w
∂x

; γyz =
∂v
∂z

+
∂w
∂y

(60)  

3.2. Energy expressions 

The strain energy Ue of the sandwich plate is given by: 

Ue =
1
2
∑3

i=1

∫

V(i)
(σ(i)

xx εxx + σ(i)
yy εyy + σ(i)

zz εzz + σ(i)
yz γyz + σ(i)

xz γxz + σ(i)
xy γxy)dV (i)

(61)  

where V(i) is the volume of the i-th layer of the sandwich plate. 
Substituting Eqs. (57), (59), and (60) into Eq. (61) leads to: 

Ue =
1
2

∫ a

0

∫ b

0

{∫ tf 1

0
A

[(
∂u
∂x

)2

+

(
∂v
∂y

)2

+

(
∂w
∂z

)2
]

+ 2B
(

∂u
∂x

∂v
∂y

+
∂u
∂x

∂w
∂z

+
∂v
∂y

∂w
∂z

)

+ C

[(
∂u
∂y

)2

+

(
∂v
∂x

)2

+

(
∂u
∂z

)2

+

(
∂w
∂x

)2

+

(
∂v
∂z

)2

+

(
∂w
∂y

)2
]

+ 2C
(

∂u
∂y

∂v
∂x

+
∂u
∂z

∂w
∂x

+
∂v
∂z

∂w
∂y

)

dz +
∫ tf 1+tcore

tf 1

C11

(
∂u
∂x

)2

+ C22

(
∂v
∂y

)2

+ C33

(
∂w
∂z

)2

+ 2
(

C12
∂u
∂x

∂v
∂y

+ C13
∂u
∂x

∂w
∂z

+ C23
∂v
∂y

∂w
∂z

)

+ C66

[(
∂u
∂y

)2

+

(
∂v
∂x

)2
]

+ C55

[(
∂u
∂z

)2

+

(
∂w
∂x

)2
]

+ C44

[(
∂v
∂z

)2

+

(
∂w
∂y

)2
]

+ 2
(

C66
∂u
∂y

∂v
∂x

+ C55
∂u
∂z

∂w
∂x

+ C44
∂v
∂z

∂w
∂y

)

dz

+

∫ h

tf 1+tcore

A

[(
∂u
∂x

)2

+

(
∂v
∂y

)2

+

(
∂w
∂z

)2
]

+ 2B
(

∂u
∂x

∂v
∂y

+
∂u
∂x

∂w
∂z

+
∂v
∂y

∂w
∂z

)

+ C

[(
∂u
∂y

)2

+

(
∂v
∂x

)2

+

(
∂u
∂z

)2

+

(
∂w
∂x

)2

+

(
∂v
∂z

)2

+

(
∂w
∂y

)2
]

+ 2C
(

∂u
∂y

∂v
∂x

+
∂u
∂z

∂w
∂x

+
∂v
∂z

∂w
∂y

)

dz

}

dxdy

(62)  

where h = tf1 + tcore + tf3 represents the total thickness of the sandwich 
plate, tf1 and tf3 represent the thickness of the lower face sheet and the 
upper face sheet, respectively, and tcore is the thickness of the hybrid 
core. 

The elastic potential energy stored in the springs of the sandwich 
plate boundary can be expressed as: 

Uspring =
1
2

∫ h

0

∫ b

0

[
(kux0 + kuxa)u2 + (kvx0 + kvxa)v2 + (kwx0 + kwxa)w2]dydz

+
1
2

∫ h

0

∫ a

0

[(
kuy0 + kuyb

)
u2 +

(
kvy0 + kvyb

)
v2 +

(
kwy0

+ kwyb
)
w2]dxdz

(63)  

where the subscripts x0, xa, y0, and yb indicate the positions of the 
springs. For example, x0 and xa indicate that the springs are distributed 
along the edge x = 0 and edge x = a, respectively. 

The kinetic energy T of the sandwich plate is given by: 

T =
1
2
∑3

i=1

∫

V(i)
ρ(i)((

∂u
∂t
)

2
+ (

∂v
∂t
)

2
+ (

∂w
∂t
)

2
)dV (i) (64)  

where ρ(i) is the mass density of the i-th layer of the sandwich, with ρ(i) =

ρf when i = 1 and 3 and ρ(i) = ρcore when i = 2. 

R. Kang et al.                                                                                                                                                                                                                                    



Composite Structures 298 (2022) 115990

9

3.3. Admissible displacement functions and solution procedure 

To avoid the potential discontinuity of the first-order displacement 
derivative at the edge of the sandwich plate, modified 3D Fourier cosine 
series supplemented with closed-form auxiliary functions are selected as 
the displacement functions that satisfy arbitrary boundary conditions, 
namely [28]: 

u(x, y, z, t) =

[
∑∞

m=0

∑∞

n=0

∑∞

l=0
Amnlcos(λmx)cos(λny)cos(λlz) +

∑∞

m=0

∑∞

n=0

×
∑2

k=1
amnkcos(λmx)cos(λny)ξkz(z) +

∑∞

m=0

∑2

k=1

×
∑∞

l=0
amklcos(λmx)ξky(y)cos(λlz) +

∑2

k=1

∑∞

n=0

×
∑∞

l=0
aknlξkx(x)cos(λny)cos(λlz)

]

eiωt (65)  

v(x, y, z, t) =

[
∑∞

m = 0

∑∞

n=0

∑∞

l=0
Bmnlcos(λmx)cos(λny)cos(λlz) +

∑∞

m=0

∑∞

n=0

×
∑2

k=1
bmnkcos(λmx)cos(λny)ξkz(z) +

∑∞

m=0

∑2

k=1

×
∑∞

l=0
bmklcos(λmx)ξky(y)cos(λlz) +

∑2

k=1

∑∞

n=0

×
∑∞

l=0
bknlξkx(x)cos(λny)cos(λlz)

]

eiωt (66)  

w(x, y, z, t) =

[
∑∞

m=0

∑∞

n=0

∑∞

l=0
Cmnlcos(λmx)cos(λny)cos(λlz) +

∑∞

m=0

∑∞

n=0

×
∑2

k=1
cmnkcos(λmx)cos(λny)ξkz(z) +

∑∞

m=0

∑2

k=1

×
∑∞

l=0
cmklcos(λmx)ξky(y)cos(λlz) +

∑2

k=1

∑∞

n=0

×
∑∞

l=0
cknlξkx(x)cos(λny)cos(λlz)

]

eiωt (67)  

where Amnl, Bmnl, Cmnl, amnk, bmnk, cmnk, amkl, bmkl, cmkl, aknl, bknl, and cknl 
are unknown coefficients, ω is the natural frequency of the sandwich 
plate, i is the imaginary unit, and t is the time. The closed-form auxiliary 
functions are given as: 

ξkx(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x(
x
a
− 1)2 k = 1

x2

a
(
x
a
− 1) k = 2

(68)  

ξky(y) =

⎧
⎪⎪⎨

⎪⎪⎩

y(
y
b
− 1)2 k = 1

y2

b
(
y
b
− 1) k = 2

(69)  

ξkz(z) =

⎧
⎪⎪⎨

⎪⎪⎩

z(
z
h
− 1)2 k = 1

z2

h
(
z
h
− 1) k = 2

(70) 

Based on the Rayleigh-Ritz method, the Lagrangian function of the 
sandwich plate system can be expressed as: 

L = T − Ue − Uspring (71)  

where the strain energy of sandwich plate Ue, the potential energy of 
springs Uspring, and the kinetic energy T have been defined in Eqs. (62), 
(63), and (64), respectively. Substituting the three equations into (71) 
and minimizing the Lagrangian function against all unknown co-
efficients yields: 

∂L
∂η = 0; η = Amnl, amnk, amkl, aknl,Bmnl, bmnk, bmkl, bknl,Cmnl, cmnk, cmkl, cknl

(72) 

Finally, the free vibration problem of the hybrid-cored sandwich 
plate having arbitrary boundary conditions is transformed into a stan-
dard eigenvalue problem, with the following governing equation 
obtained: 

([K] + [KS] − ω2[M]){Θ} = {0} (73)  

where [K] is the symmetric stiffness matrix obtained from the strain 
energy of the sandwich plate, [KS] is the stiffness matrix obtained from 
the potential energy of the springs, [M] is the mass matrix, and Θ is the 
column vector of unknown coefficients. 

4. Verification of equivalent elastic properties 

To check the accuracy of equivalent elastic properties derived from 
the present theoretical method, a FE model of the RVE was established 
for the proposed honeycomb-corrugated sandwich to calculate its 
equivalent elastic properties, with periodic boundary conditions 
applied, as shown in Fig. 9. For the macroscopic strains E11, E22, and E33, 

Fig. 9. FE model of the RVE.  
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the boundary conditions can be expressed as [40]: 

ux+ − ux− = ux; ux = E11⋅Ox;

uy+,z+ = uy− ,z− ;

vx+,y+,z+ = vx− ,y− ,z− ;

wx+,y+,z+ = wx− ,y− ,z−

(74)  

vy+ − vy− = vy; vy = E22⋅Oy;

ux+,y+,z+ = ux+,y− ,z− ;

vx+,z+ = vx− ,z− ;

wx+,y+,z+ = wx− ,y− ,z−

(75)  

wz+ − wz− = wz; wz = E33⋅Oz;

ux+,y+,z+ = ux− ,y− ,z− ;

vx+,y+,z+ = vx− ,y− ,z− ;

wx+,y+ = wx− ,y−

(76)  

where u, v, and w are the displacement components of the RVE along x, 
y, and z directions (Fig. 9), respectively. The subscript x+ and x−
represent nodes on the two boundaries perpendicular to the x-axis. Ox, 
Oy, and Oz are separately the length, width, and height of the RVE. 
Similarly, boundary conditions for the other macroscopic strains (i.e., 
E12, E13, E23) can also be obtained, but not presented here for brevity. 

As shown in Fig. 9, the FE model is established using shell element 
(linear quadrilateral element S4R in ABAQUS nomenclature), with at 
least 4 grids divided along honeycomb wall length to ensure the accu-
racy of calculation. Geometric dimensions of the RVE are listed in 
Table 1 and the base material properties (Al) are: Young’s modulus 70 
GPa, Poisson ratio 0.3, and mass density 2700 kg/m3. The nodal force 
and nodal displacement of each element are obtained via the Standard & 
Explicit module of ABAQUS. Then, the stress acting on the RVE 
boundary is obtained by dividing the sum of the associated directional 
nodal forces generated at the boundary nodes by the area of the affected 
boundary. This stress value is subsequently used to estimate the ho-
mogenized Young’s modulus of the RVE by dividing it by the applied 
strain. For example, the equivalent Young’s modulus of the RVE along 
the x-axis is calculated by [40]: 

E1 =

∑n
i f (i)11

Oy⋅Oz⋅E11
(77)  

where n represents the total number of nodes on the boundary perpen-
dicular to the x-axis, and f11 represents the x-directional nodal force of 
boundary nodes. At the same time, the transverse strains caused by the 
axial force are obtained by using the nodal displacement data, from 
which the equivalent Poisson ratios of the RVE are obtained by dividing 
the transverse strains by the applied axial strain. Similarly, the equiva-
lent shear moduli are estimated by dividing the shear stress values by the 
shear strains applied in the two corresponding directions. Once the 
equivalent moduli and equivalent Poisson ratios are obtained, the 
equivalent elastic constants of the RVE can be converted from the 
following relationship: 

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
C66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= S− 1 (78) 

where S denotes the compliance matrix of the orthotropic material: 

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
E1

−
v12

E2
−

v13

E3
0 0 0

−
v21

E1

1
E2

−
v23

E3
0 0 0

−
v31

E1
−

v32

E2

1
E3

0 0 0

0 0 0
1

G23
0 0

0 0 0 0
1

G13
0

0 0 0 0 0
1

G12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(79) 

Fig. 10 presents stress distribution maps and deformation modes of 
the RVE corresponding to the six macroscopic strains that are applied 
individually. Table 2 compares the equivalent properties deduced 
theoretically and those obtained via FE simulations. Except for C13 and 
C23, the theoretical results are in good agreement with the simulation 
results. Theoretically, given that the volume fraction of the honeycomb 
λH ≪ 1, Shi et al. [39] assumed the transverse Poisson ratios v31 = v32 =

0 such that the honeycomb equivalent properties CH
13 and CH

23 are equal 
to zero, as shown in Eq. (43). However, this assumption is not considered 
in the present FE analysis, thus leading to the discrepancy between the 
theoretical and FE results in Table 2. Nonetheless, it is worth noting that, 
for C13 and C23, although the assumption of zero Poisson ratios causes 
certain discrepancies between theoretical and the FE results, its influ-
ence on the natural frequency of the hybrid-cored sandwich plate is 
negligible (more details presented later in Section 5.2). 

Next, to ensure the convergence of the proposed method, the effect of 
RVE size on the equivalent properties of the hybrid core is investigated. 
As shown in Fig. 11(a), four RVEs containing 1 × 1, 2 × 2, 3 × 3, and 4 ×
4 periodic unit cells respectively are established to represent the change 
of RVE size. In the theoretical method, the same setting of RVE size is 
adopted. Fig. 11(b) to (d) plot both the theoretically predicted (red solid 
lines) and numerically simulated (black dotted lines) equivalent prop-
erties as functions of RVE size. It can be seen that the proposed theo-
retical method and the FE simulation both exhibit excellent 
convergence. 

5. Results and discussion 

Hitherto, a 3D model of free vibration for novel ultralight sandwich 
plates with homogenized honeycomb-corrugated hybrid cores has been 
established. This section attempts to (1) determine the stiffnesses of the 
introduced springs for classical boundary conditions; (2) verify the ac-
curacy and convergence of the proposed theoretical model; (3) analyze 
the influence of key geometric parameters on the natural frequency of 
the hybrid-cored sandwich plate; (4) compare its frequency response 
with those of honeycomb sandwich plate and an empty (unfilled) 
corrugated sandwich plate having equal mass; (5) study the effect of 
hybrid design on structure weight. To this end, detailed geometric pa-
rameters of an all-metallic hybrid-cored sandwich plate are given in 
Table 3. The material make of the whole sandwich (faces, corrugated 
plate, and honeycomb) is Al, which has the following material proper-
ties: Young’s modulus E0 = 70 GPa, Poisson ratio v0 = 0.3, and mass 
density ρ0 = 2700 kg/m3. 

5.1. Determination of spring stiffness 

As shown schematically in Fig. 8(a), upon introducing uniformly 
distributed elastic springs at the 4 edges of the sandwich plate, its 
boundary conditions can be easily altered by assigning specific values to 
the stiffnesses of these springs. Theoretically, the classical boundary 
conditions such as simply supported and fully clamped can be realized 

Table 1 
Geometric dimensions of the RVE.  

tH lH Ф tC θ d Ox Oy Oz 

0.1 
mm 

1 
mm 

120◦ 0.5 
mm 

45◦ 0 
mm 

30 
mm 

17.32 
mm 

15 
mm  
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only when the stiffnesses of the corresponding springs are infinite. As it 
is not convenient to numerically process infinitely large values, setting 
reasonable stiffness values to the springs is necessary to ensure the ac-
curacy of calculation results. Fig. 9 plots the non-dimensional funda-
mental frequency of honeycomb-corrugated sandwich plate as a 
function of spring stiffness for selected boundary conditions. The non- 
dimensional frequency parameter λ is defined as: 

λ = ωab
/

π2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(ρ0h)/D0

√
; D0 = E0h3

/[
12

(
1 − v2

0

)]
(80) 

Note that, in subsequent numerical examples, all frequency param-
eters are denoted in the non-dimensional form of (80). It can be seen 
from Fig. 12 that, regardless of the type of boundary conditions 
considered, the fundamental frequency converges gradually when the 
spring stiffness is greater than 1e16. Therefore, conservatively, 1e17 is 
taken in the current study as the spring stiffness to represent classical 
boundary conditions. A similar conclusion was reached in our previous 
study [41]. Spring stiffness values thus identified for three classical 
boundary conditions, i.e., free (referred to as F), simply supported 
(referred to as S), and clamped (referred to as C), are summarized in 
Table 4. 

5.2. Convergence and accuracy 

To solve the problem of free vibration under arbitrary boundary 
conditions, the displacements of the honeycomb-corrugated sandwich 
plate are expressed as 3D Fourier series. The dimensionality of the 
eigenvalue equation (73) is directly dependent upon the number of se-
ries expansion terms: when the number tends to infinity, the eigenvalues 
gradually converge to the exact solution. However, too many expansion 
terms would greatly reduce the computational efficiency, so it is 

necessary to carry out a convergence study to determine a suitable 
truncated number of the Fourier series. Table 5 shows how the first six 
natural frequencies of a CFSF hybrid sandwich plate vary with the 
truncated number. The theoretical calculation results are compared with 
those obtained by performing FE simulations via the commercially 
available FE code ABAQUS. Further, based on the first-order shear 
deformation theory (FSDT) [42], the frequency response of the hybrid 
sandwich plate calculated using a three-layer laminate model is also 
presented in Table 5 to demonstrate the accuracy of the method pro-
posed in the present study. 

Since the thickness of the face sheets, corrugated plates, and hon-
eycomb cell walls are much smaller than the macro-dimensions of the 
honeycomb-corrugated sandwich plate, the FE model is constructed 
using shell elements (linear quadrilateral element S4R in ABAQUS 
nomenclature). To ensure the accuracy of the model, there should be at 
least 4 elements in the honeycomb wall length, and the FE meshing is 
shown in Fig. 13(a). In particular, geometrical parameters of the model 
for theoretical calculation and FE analysis are reset, as summarized in 
Table 6, because an excessively large geometric model significantly in-
creases the number of FE grids and makes the simulation calculation 
difficult to complete. 

The results of Table 5 demonstrate that, when the truncated number 
of the 3D Fourier series exceeds 18 × 18 × 9, the theoretical results 
converge and are consistent with the FE simulation results. For other 
boundary conditions, the convergence and accuracy of the theoretical 
model are also considered, as detailed in Appendix A. Therefore, M × N 
× L = 18 × 18 × 9 is selected as the default truncated number in sub-
sequent analysis. Fig. 13(b) and (c) display the first four transverse vi-
bration modes of a CFSF hybrid-cored sandwich plate obtained using the 
proposed theoretical model and FE simulation, respectively. The vibra-
tion modes obtained by the two approaches are completely consistent, 

Table 2 
Comparison between equivalent properties deduced by theoretical method and FE simulation.  

Method Equivalent elastic properties [GPa] 

C11 C12 C13 C22 C23 C33 C44 C55 C66 

Present  3.244  2.842  0.092  5.850  0.060  11.237  2.098  3.071  0.723 
FE  3.414  2.897  2.330  5.840  1.981  11.466  2.042  3.000  0.719  

Fig. 10. Stress distribution map and deformation mode of the RVE corresponding to macroscopic strain: (a) E11; (b) E22; (c) E33; (d) E23; (e) E13; (f) E12.  
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thus verifying the accuracy of the theoretical model proposed in the 
present study. In contrast, the three-layer laminate model based on the 
FSDT leads to significant errors compared with the present method, thus 
indicating that the latter is more accurate for sandwich plates with 
relatively thick cores. 

Next, to evaluate the accuracy of the corrected honeycomb 

Fig. 11. (a) RVEs containing 1 × 1, 2 × 2, 3 × 3, and 4 × 4 periodic unit cells. Equivalent properties of hybrid core plotted as a function of RVE size: (b) C11, C22, C33; 
(c) C12, C13, C23; (d) C44, C55, C66. Red solid line: theoretical method. Black dotted line: FE simulation. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 3 
Geometric parameters of honeycomb-corrugated sandwich plate.  

tH lH Ф tC θ d tf tcore a b 

0.1 mm 1.5 mm 120◦ 1 mm 45◦ 0 mm 1 mm 15 mm 200 mm 200 mm  

Fig. 12. Non-dimensional fundamental frequency of honeycomb-corrugated 
sandwich plates plotted as a function of spring stiffness for three different 
boundary conditions. 

Table 4 
Spring stiffness setup for classical boundary conditions.  

Mark number Edge Boundary condition Spring stiffness [N/m] 

ku kv kw 

(1) x = 0 Free (F) 0 0 0 
(1) x = 0 Simply supported (S) 0 1e17 1e17 
(1) x = 0 Clamped (C) 1e17 1e17 1e17 
(2) y = 0 Free (F) 0 0 0 
(2) y = 0 Simply supported (S) 1e17 0 1e17 
(2) y = 0 Clamped (C) 1e17 1e17 1e17 
(3) x = a Free (F) 0 0 0 
(3) x = a Simply supported (S) 0 1e17 1e17 
(3) x = a Clamped (C) 1e17 1e17 1e17 
(4) y = b Free (F) 0 0 0 
(4) y = b Simply supported (S) 1e17 0 1e17 
(4) y = b Clamped (C) 1e17 1e17 1e17  
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equivalent stiffness, the frequency response of the hybrid sandwich plate 
calculated based on the formulae of Ref. [20] is compared with the re-
sults obtained using the present method. Table 7 lists the first six order 
natural frequency responses of hybrid sandwich plates under different 
boundary conditions. The geometric parameters are the same as those in 
Table 6. Results show that using the incorrect honeycomb equivalent 
stiffness of Ref. [20] causes relatively large errors to natural frequencies; 
further, with the increasing order of natural frequency, the error grad-
ually increases. In addition, the stronger the boundary constraint, the 
larger the error. 

5.3. Influence of geometric parameters 

Compared with material properties and boundary conditions, the 
geometric configuration of a honeycomb-corrugated sandwich plate is 
more complicated. It is therefore necessary to systematically study how 
geometric parameters affect the free vibration characteristics so that the 

role played by each geometric parameter can be clarified; the remaining 
parameters are consistent with Table 3. 

Fig. 14(a) plots the fundamental frequency of the CCCC honeycomb- 
corrugated sandwich plate as a function of corrugated angle θ for 
selected ratios of corrugated thickness to face thickness, tC/tf. The 
corrugated angle is varied within a practically attainable range, from 
30◦ to75◦. The fundamental frequency first increases, reaching a peak, 
and then decreases as tC/tf is increased. As described in the governing 
equation of (73), the fundamental frequency of the sandwich plate in-
creases with increasing bending stiffness and decreases with increasing 
mass density. When the corrugated angle θ is increased, both the 
bending stiffness and mass density of the sandwich plate increase. 
Fig. 14(b) plots the ratio of hybrid core relative density to the normal-
ized base material density, ρcore/ρ0, as a function of corrugated angle θ 
for selected values of tC/tf. When the corrugated angle is small, the 
relative density changes little, and the fundamental frequency increases 
with increasing bending stiffness. When the corrugated angle becomes 
sufficiently large, the relative density increases rapidly, and the funda-
mental frequency decreases as the relative density is increased. In 
addition, it can be seen from Fig. 14(a) that the greater the corrugated 
thickness, the smaller the fundamental frequency, implying that the 
influence of increased bending stiffness on fundamental frequency as a 
result of enlarged corrugated thickness is small; on the contrary, because 
the mass of the hybrid core is increased, the fundamental frequency is 
reduced. In short, a proper corrugated angle can maximize the funda-
mental frequency of the hybrid-cored sandwich plate, and the influence 
of corrugated thickness on fundamental frequency is dominated by 
mass. 

Fig. 15(a) plots the fundamental frequency of the CCCC honeycomb- 
corrugated sandwich plate as a function of corrugated length lC 
(normalized by corrugated thickness tC) for selected ratios of corrugated 

Table 5 
Convergence and accuracy study of non-dimensional frequency parameter λ for 
a CFSF hybrid-cored sandwich plate.  

M × N × L Natural frequency 

λ1 λ2 λ3 λ4 λ5 λ6 

4 × 4 × 2  0.420  0.912  1.558  1.589  1.812  2.541 
8 × 8 × 4  0.366  0.882  1.134  1.360  1.789  2.226 
12 × 12 × 6  0.357  0.876  1.101  1.320  1.784  2.155 
16 × 16 × 8  0.354  0.874  1.089  1.303  1.782  2.126 
17 × 17 × 9  0.353  0.874  1.087  1.302  1.781  2.123 
18 × 18 × 9  0.353  0.874  1.086  1.301  1.781  2.121 
FE  0.353  0.874  1.081  1.288  1.782  2.099 
FSDT  0.358  0.876  1.129  1.382  1.789  2.267  

Fig. 13. (a) FE meshing of hybrid-cored sandwich plate and the first four transverse vibration modes of CFSF hybrid-cored sandwich plate obtained using (b) 
theoretical model and (c) 3D direct FE simulation. 
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platform width d to corrugated thickness tC. Since the volume fraction of 
corrugated core is a function of lC and d, its mass and stiffness also vary 
with lC and d. Therefore, in Fig. 15(b), the mass of the hybrid core is 
plotted as a function of lC/tC and d/tC. In general, increasing the mass of 
a structure results in decreased natural frequency. The results of Fig. 15 
reveal that the natural frequency and mass of the hybrid-cored sandwich 
plate increase monotonically with the increase of lC, which means that 
increasing lC also increases the bending stiffness of the plate such that 
the natural frequency is dominated by stiffness. This is because 

increasing lC enlarges the thickness of the core, and the increase in 
bending stiffness of the sandwich is more significant than the increase in 
mass caused by core thickening. In addition, it is also found that the 
influence of corrugated platform d on core mass and natural frequency is 
small. It can be seen from the enlarged figure of Fig. 15(a) that the in-
crease of d slightly reduces the natural frequency, but the mass remains 
almost unchanged, indicating that the increase of d slightly reduces the 
bending stiffness of the hybrid structure. This means that the effect of 
d on structural stiffness does not need to be concerned in the actual 
manufacturing process, as long as the selection of d ensures a good 
connection between the core and the face sheets. 

Next, Fig. 16(a) and (b) plot separately the fundamental frequency as 
a function of honeycomb cell wall thickness tH and length lH, both 
normalized by corrugated thickness tC, under different boundary con-
ditions. The fundamental frequency is seen to decrease with increasing 
tH and increase with increasing lH. According to equation (1a), the vol-
ume fraction of the honeycomb is proportional to tH and inversely pro-
portional to lH. This means that, when tH is increased, the mass of the 
hybrid core is also increased, resulting in a decrease in fundamental 
frequency; when lH is increased, the mass of the hybrid core is reduced, 
thus increasing fundamental frequency. Although changing the 

Table 6 
Geometric parameters of hybrid-cored sandwich plate for convergence and accuracy study.  

tH lH Ф tC θ d tf tcore a b 

0.06 mm 1 mm 120◦ 0.6 mm 45◦ 3.6 mm 1.4 mm 11.4 mm 300 mm 58.89 mm  

Table 7 
Natural frequencies of hybrid sandwich plates under different boundary condi-
tions: comparison between the method of Ref. [20] and the present method.  

BCs Method Natural frequency 

λ1 λ2 λ3 λ4 λ5 λ6 

CCCC present  5.949  6.192  6.641  7.314  8.186  9.239 
CCCC Ref. [20]  6.133  6.777  7.661  8.653  9.670  10.695 
CFCF present  0.505  1.182  1.305  1.333  2.375  2.678 
CFCF Ref. [20]  0.497  1.254  1.462  2.237  2.418  3.373 
SFSF present  0.228  0.598  0.879  1.271  1.868  2.093 
SFSF Ref. [20]  0.226  0.610  0.857  1.789  2.306  2.341  

Fig. 14. (a) Dimensionless fundamental frequency and (b) normalized hybrid core relative density plotted as functions of corrugated angle θ for CCCC honeycomb- 
corrugated sandwich plates with different corrugated thicknesses. 

Fig. 15. (a) Fundamental frequency of a CCCC honeycomb-corrugated sandwich plate plotted as a function of normalized corrugated length lC/tC for selected values 
of corrugated platform width d/tC. (b) Mass of hybrid core plotted as a function of lC/tC and d/tC. 
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geometric parameters of the honeycomb will also change the bending 
stiffness of the hybrid core, the latter has much less influence on natural 
frequency than the mass, for the bending stress of the sandwich plate is 
mainly borne by its face sheets. 

Finally, the fundamental frequency of the honeycomb-corrugated 
sandwich plate is plotted in Fig. 17(a) as a function of face sheet 
thickness tf (normalized by corrugated thickness tC) under different 
boundary conditions. It can be found that with the increase of tf, the 
fundamental frequency increases monotonically. Fig. 17(b) plots the 
fundamental frequency as a function of the normalized thickness of the 
hybrid core under different boundary conditions. Same as Fig. 17(a), the 
fundamental frequency increases monotonically with increasing core 
thickness. This is because the increase of either face sheet thickness or 
core thickness will significantly increase the bending stiffness of the 
sandwich. Therefore, face sheet and core thicknesses play a more 

significant role in the free vibration of a hybrid-cored sandwich plate. 

5.4. Comparison between hybrid-cored sandwich plate with competing 
sandwich plates 

Through the above analysis of geometrical parameters, it is estab-
lished that the influence of corrugated thickness, honeycomb cell wall 
thickness, and honeycomb cell wall length on the natural frequency of 
honeycomb-corrugated sandwich plate is dominated by mass. When 
changes in geometrical parameters cause the mass of the hybrid core to 
increase, the natural frequency decreases. To further explore the supe-
riority of hybrid-core design, as the corrugated angle is systematically 
varied, the first three natural frequencies obtained using the proposed 
theoretical model for the honeycomb-corrugated sandwich plate are 
compared with those of both honeycomb and empty corrugated sand-
wich plates having equal mass. Relevant geometric parameters of the 
three different sandwich plates are presented in Table 8, and the data not 
shown are obtained by converting the mass of the hybrid-cored sand-
wich plate. 

It should be noted that, based on the present theoretical model, while 
the natural frequency of a honeycomb sandwich plate can be obtained 
by setting the corrugated thickness to zero, the natural frequency of an 
empty corrugated sandwich plate cannot be obtained by setting the 
honeycomb wall thickness to zero. Because the unfilled interstices of the 
corrugated core lack effective support for both face sheets, the empty 

Fig. 16. Fundamental frequency of honeycomb-corrugated sandwich plate plotted as a function of (a) honeycomb wall thickness tH and (b) honeycomb wall length 
lH, both normalized by corrugated thickness, tC, under different boundary conditions. 

Fig. 17. Fundamental frequency of honeycomb-corrugated sandwich plate changes with the thickness of (a) face sheets and (b) hybrid core under different 
boundary conditions. 

Table 8 
Geometric parameters of sandwich plates with three different cores.*  

Core Geometric parameters [mm] 

tH lH Ф tC d tf tcore a b 

Hybrid  0.1  1.5 120◦ 1 0 1 15 245 163 
Honeycomb   1.5 120◦ – – 1 15 245 163 
Corrugated  –  – –  0 1 15 245 163  

* ’ – ’ denotes parameters not included in core geometry. 
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corrugated sandwich plate is prone to local vibration modes, which 
cannot be considered by the method of homogenization. Therefore, for 
the purpose of comparison, the natural frequency of empty corrugated 
sandwich plate is obtained via 3D direct FE simulations. 

To verify the accuracy of the proposed scheme, the theoretical results 
of a honeycomb sandwich beam are compared with existing experi-
mental and simulation results [43] (Table 9), while the simulation re-
sults of a corrugated sandwich plate are compared with existing 
experimental and simulation results [7] (Table 10). Geometric param-
eters of the honeycomb sandwich and the corrugated sandwich are 

consistent with Ref. [43] and Ref. [7], respectively. The results of Ta-
bles 9 and 10 demonstrate that the present results agree well with those 
in the open literature, thus confirming the accuracy of the proposed 
scheme. 

In Fig. 18, the first three natural frequencies of the CCCC 
honeycomb-corrugated sandwich plate, honeycomb sandwich plate, and 
empty corrugated sandwich plate having equal mass are plotted as a 
function of corrugated angle. Within the considered corrugated angle 
range (40◦~75◦), the natural frequencies of the honeycomb-corrugated 
sandwich plate are always greater than those of either honeycomb or 
empty corrugated sandwich plate, because honeycomb filling suppresses 
local vibration of the face sheets and corrugated members, and the 
mutual constraint between honeycomb and corrugation enhances the 
flexural rigidity of the hybrid core. This demonstrates again that the 
proposed honeycomb-corrugated hybrid sandwich construction not only 
exhibits excellent specific stiffness/strength, energy absorption, and 
sound attenuation as previously reported [17–19] but also is endowed 
with superior vibration characteristics. When the corrugated angle is 
reduced, the natural frequency of empty corrugated sandwich decreases 
significantly due to the local vibration modes of its face sheets; Fig. 19. 
When the corrugated angle becomes sufficiently large, the first-order 
natural frequency of the empty corrugated sandwich is greater than 
the honeycomb sandwich but smaller than the honeycomb-corrugated 
sandwich. This is because although the larger corrugated angle in-
creases the bending rigidity of the corrugated core, local vibration 
modes of the face sheets and the lack of honeycomb-corrugated coupling 
caused the fundamental frequency to drop below that of a hybrid-cored 
sandwich. For a honeycomb sandwich with the same mass, increasing 
the mass of the honeycomb core reduces its natural frequency. Different 
from the first-order natural frequency of Fig. 18(a), in Fig. 18(b) and (c), 
the second- and third-order natural frequencies of honeycomb 

Table 9 
Comparison of theoretical natural frequencies of a honeycomb sandwich beam 
with existing experimental and numerical results [43].  

Source Natural frequencies [Hz] 

Mode 1 Mode 2 Mode 3 

Exp. [43] 1107 2900 5043 
FE [43] 1235.2 3041.5 5336.2 
Present 1231.4 3067.8 5377.1  

Table 10 
Comparison of numerical natural frequencies of a corrugated sandwich plate 
with existing experimental and numerical results [7].  

Source Natural frequencies [Hz] 

Mode 1 Mode 2 Mode 3 

Exp. [7]  615.2  693.4  1015.6 
FE [7]  616.75  728.13  1057.6 
Present  616.45  742.75  1106.2  

Fig. 18. First three natural frequencies of CCCC honeycomb-corrugated sandwich plate, honeycomb sandwich plate, and an empty corrugated sandwich plate having 
equal mass plotted as functions of corrugated angle: (a) first-order; (b) second-order; (c) third-order. 
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sandwiches are consistently larger than those of empty corrugated 
sandwiches. This may be because the large corrugated angle suppresses 
low-order local vibration modes of empty corrugated sandwich, but 
cannot suppress the higher-order ones. 

Finally, the effect of hybrid design on structure weight is studied. To 
this end, sandwich structures with a honeycomb core, a corrugated core, 
and a honeycomb-corrugated hybrid core are selected as examples. The 
length, width, height, face sheet thickness, and material properties of 
the three sandwich structures are set to be the same, whereas the volume 
fraction of honeycomb core and that of corrugated core are varied. As 
shown in Fig. 20, the vertical axis represents the volume fraction of 
honeycomb core (λH) and the horizontal axis represents the volume 
fraction of corrugated core (λC), both varying in the range of 0.1 ~ 0.3. 
The color of point (λC, λH) in region 1 indicates the weight increase (%) 
of the hybrid sandwich relative to the corrugated sandwich. Similarly, 
the color of any point in area 2 indicates the weight increase (%) of the 
hybrid sandwich relative to the honeycomb sandwich. The results of 
Fig. 20 demonstrate that the larger the volume fraction difference be-
tween honeycomb and corrugated cores, the smaller the mass increase of 
the resulting hybrid structure. This is one of the reasons why we use Al 
honeycomb instead of Al foam to fill the interstices of corrugated core. It 
must however be pointed out that, with minimal increase in mass, the 
proposed hybrid design can not only significantly increase the stiffness, 
strength (peak load), energy absorption, and sound absorption of the 
sandwich construction, but also lead to superior free vibration 
performance. 

6. Concluding remarks 

Based on the theory of 3D elasticity, a theoretical model has been 
developed to predict the free vibration performance of a novel multi-
functional honeycomb-corrugated sandwich rectangular plate, with 
arbitrary boundary conditions considered using sets of elastic springs. 
The method of homogenization is utilized to establish the equivalent 

elastic constants of the hybrid core, with the correct equivalent consti-
tutive equations of honeycomb employed and the coupling effect be-
tween inserted honeycomb blocks and corrugated members duly 
accounted for based on micromechanics analysis of its RVE (represen-
tative volume element). Convergence and accuracy of the proposed 
model are validated against finite element (FE) simulations for different 
boundary conditions, with excellent agreement achieved. 

The validated theoretical model is adopted to quantify the effects of 
corrugated angle, corrugated thickness, corrugated length, width of 
corrugated platform, honeycomb wall thickness, honeycomb wall 
length, core thickness, and face sheet thickness on free vibration char-
acteristics of the hybrid-cored sandwich. It is demonstrated that filling 
honeycomb blocks to the interstices of corrugations not only can lead to 
significantly enhanced stiffness, strength, impact energy absorption, and 
sound absorption but also superior free vibration performance, with 
minimal increase in structural mass. The natural frequencies of 
honeycomb-corrugated sandwich construction are consistently higher 
than its counterparts - honeycomb sandwich and empty corrugated 
sandwich of equal mass. This is mainly attributed to mechanisms: (1) 
honeycomb filling suppresses local vibration of the face sheets and 
corrugated members, and (2) mutual constraint of honeycomb and 
corrugation enhance the flexural rigidity of hybrid core. The proposed 
theoretical model can be easily extended to other cases, such as sound 
radiation and sound insulation analysis of honeycomb-corrugated 
sandwich plates. 
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Fig. 19. First three vibration modes of CCCC empty corrugated sandwich plate with a corrugated angle of 45◦.  

Fig. 20. Dependence of weight increase of hybrid structure on volume fraction 
of honeycomb core and volume fraction of corrugated core. 
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