A refined quasi-3D zigzag beam theory for free vibration and stability analysis of multilayered composite beams subjected to thermomechanical loading

Bin Hana,b,c,g, Wei-Wei Hud, Qian-Cheng Zhangb,e, Zhen-Yu Zhaob,e, Feng Jinb,e, Qi Zhanga,e, Tian Jian Lub,h,v, Bing-Heng Lud

a School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
b MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an 710049, China
c School of Engineering, Brown University, Providence, RI 02912, USA
d The Fourth Academy of China Aerospace Science and Technology Corporation, Xi'an 710025, China
e State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
f Research institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311215, China

\textbf{A R T I C L E I N F O}

Keywords:
Quasi-3D zigzag beam theory
Layered structure
Vibration
Buckling
Thermomechanical loading

\textbf{A B S T R A C T}

A refined four-unknown quasi-3D zigzag beam theory is developed to model the free vibration and buckling behaviors of multilayered composite beams subjected to axial mechanical loading (e.g., distributed load and terminal force) and uniform temperature variation. Types of the composite beams considered include laminated composite beams, sandwich beams with composite face sheets, and fiber metal laminates. The proposed theory accounts for not only thickness stretching but also interlaminar continuity of transverse shear stresses and displacements. Associated eigenvalue problems for various boundary conditions are derived using the Ritz method. Accuracy and effectiveness of the theoretical predictions are verified by comparison with existing results and present finite element simulations. The theory is employed to quantify the effects of axial distributed load/terminal force and temperature variation on free vibration and buckling for different boundary conditions, geometric parameters and material properties. The present theory could produce sufficiently accurate predictions of natural frequencies and buckling capacities of multilayered beams at a very low computational cost.

1. Introduction

Lightweight laminated composite and sandwich structures have enjoyed widespread engineering applications due to their superior stiffness, strength, shock resistance and other excellent properties. Fiber metal laminates (FMLs), as a kind of hybrid material made of stacked metal sheets and fiber reinforced composite (FRC) layers [1], have also been increasingly applied as structural material for the aerospace industry (e.g., lower wing skin and internal parts of airplanes, Airbus A380 fuselage, etc.), attributed to their excellent fatigue, impact resistance, and damage tolerance [2]. This research aims to develop a refined four-unknown quasi-3D zigzag beam theory to characterize the free vibration and buckling behaviors of multilayered composite beams (including laminated composite, sandwich and FML beams). The beam is subjected to axial mechanical load, e.g., distributed load and terminal force, and uniform temperature variation.

Existing research on the dynamic response of FMLs has mainly focused on the classical or first-order beam/plate theories. For typical instance, based on the first-order shear deformation theory, Shooshatri and Razavi [3] employed the Galerkin method and multiple time scales method to study linear and nonlinear free vibration behaviors of a FML rectangular panel. Using the first-order shear deformation theory as well as the Fourier series method, Payeganeh et al. [4] investigated the dynamic response of FMLs subjected to low-velocity impact. By adopting the differential quadrature method, Nermark-beta method and iterative method, Fu et al. [5,6] studied the nonlinear dynamic response of delaminated FML beams and viscoelastic FML beams under thermal shock based upon the Timoshenko beam theory. Using the Galerkin method and Newmark method, Tao et al. [7] employed the Euler-Bernoulli beam theory to study nonlinear dynamic behavior of FML beams.

⁎ Corresponding authors at: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China (Q. Zhang). State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China (T.J. Lu).

\texttt{E-mail addresses:} henryzhang@mail.xjtu.edu.cn (Q. Zhang), tjl@xjtu.edu.cn (T.J. Lu).

\texttt{https://doi.org/10.1016/j.compstruct.2018.08.005}

Received 7 December 2017; Received in revised form 22 July 2018; Accepted 2 August 2018
Available online 04 August 2018

0263-8223/ © 2018 Elsevier Ltd. All rights reserved.
subjected to moving loads in thermal environment.

Beams subjected to axially distributed load, e.g., self-weight or acceleration-induced body force, are a class of commonly applied structures in civil and aerospace engineering. The axially distributed load plays an important role in affecting the stability and natural frequencies of the structures. As reviewed in our previous work [8], existing research studied the stability or post-buckling of beams subjected to axially distributed load using the classical Euler-Bernoulli beam theory, with the effect of transverse shear ignored. To address this deficiency, Han et al. [8] adopted the Timoshenko theory with both Engesser and Haringx types to study the stability and initial post-buckling of beams subjected to combined axially distributed load and terminal force. It was found that the effect of transverse shear deformation should not be neglected especially for predicting the buckling of sandwich and composite laminated beams, and the Engesser shear theory gave better predictions than the Haringx type.

Existing research on vibration analysis of beams subjected to axially distributed load was mostly carried out within the framework of Euler-Bernoulli and Timoshenko beam theories [9]. For example, taking account of self-weight, Naguleswaran [10] used the Frobenius method to investigate the natural frequencies of standing and hanging Euler-Bernoulli beams. Virgin et al. [11] evaluated the effect of gravity on the vibration of vertical Euler-Bernoulli cantilevers. Employing a multiple time-scales perturbation method, Hjømmissen and Horssen [12] studied the vibration of a standing Euler-Bernoulli beam with a tip-mass damper, and later the transverse vibration of a standing, uniform, cantilevered Timoshenko beam [13]. Abramovich [14] utilized the Galerkin method to investigate the free vibration of a hanging Timoshenko beam, while Xi et al. [15] studied the free vibration of a hanging or standing Rayleigh beam-column subjected to vertically oriented gravity load.

At present, higher-order shear deformation theories are scarcely employed to study the vibration and stability of FLM beams, or standing laminated and sandwich beams subjected to axially distributed load. The Euler-Bernoulli beam theory, as the simplest deformation beam theory, is inaccurate for reasonably thick and/or highly anisotropic composite beams, as it neglects transverse shear strain in the laminates. Timoshenko beam theory, or the first-order beam theory, considers constant transverse shear strain through the beam thickness and hence has to incorporate a shear correction factor to adjust the transverse shear stiffness. However, while the shear correction factor determines the accuracy, it could not in general be determined a priori from very special cases [16,17]. To address this issue, several higher-order shear deformation theories (HSDTs), e.g., polynomial, trigonometric, exponential and hyperbolic shear deformation theories, have been developed as the Equivalent Single Layer (ESL) theories, LayerWise (LW) theories, and Zigzag (ZZ) theories, which have been recently reviewed for laminated composites and sandwich beams [18–22] as well as functionally graded (FG) beams [23–25]. In the frame of one dimensional (1D) LW models, Léotoing et al. [26] investigated the geometrically nonlinear interaction between overall and local buckling modes of sandwich beams, Yu et al. [27] developed a 1D finite element model to simulate the instability of sandwich beams with high efficiency, and Sad Saoud and Le Grogneec [28] studied the post-buckling behavior of sandwich beams. In order to minimize the computational cost of the LW models, one can resort to ZZ theories [29]. Kapuria et al. [30] assessed the zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams. Hu et al. [31] evaluated different kinematic theories on the static and dynamic analysis of various sandwich beams with viscoelastic core, and found the zigzag theories were more accurate than classic laminated theory (CLT) and HSDT based ESL models. Carrera et al. [32,33] presented the static and dynamic analysis of laminated beams by using polynomial, trigonometric, exponential, and zigzag functions in the frameworks of the Carrea Unified Formulation. Tessler [34] developed the refined zigzag theory (RZT) based upon the Timoshenko beam theory for laminated composite beams. Referring to the kinematics of Tessler’s RZT, Di Sciuva et al. [35] and Tresviso et al. [36] developed a class of C0-continuous beam elements for the analysis of laminated beams. The C0-continuous kinematics of the in-plane components satisfying the continuity of transverse stresses can be efficiently reproduced by adopting the zigzag theories. However, most of the Zigzag theories are complicated when thickness expansion is taken into account and the pre-stress is considered under thermal environment.

For thick laminated, sandwich or FG beams, the normal strain effect, regarded as thickness stretching, becomes very important and should be considered in vibration and stability analysis [37]. Using a higher-order shear and normal deformation theory with axial and transverse displacements expanded in power series, Matsunaga [38] studied the vibration and buckling of a simply supported multilayered composite beam subjected to axial stresses. Mantari and Canales [39,40] utilized the Ritz method with hybrid series to study the buckling and vibration of laminated beams with various boundary conditions. To this end, they employed two quasi-3D higher-order shear deformation theories, which include both shear deformation and thickness effects with a higher-order variation of in-plane and out-plane displacements through the thickness. Based upon a refined quasi-3D polynomial theory, Vo et al. [24,41,42] developed analytical solutions and finite element (FE) models to investigate FG and composite laminated beams. Nguyen et al. [43] and Osofiero et al. [44] employed a variety of quasi-3D theories to investigate the vibration and buckling of FG sandwich beams. Existing quasi-3D theories are quite applicable to FG beams/plates, as they automatically satisfy the interlaminar continuity of both displacements and transverse shear stresses due to the continuous gradient change of materials along the thickness. However, for multilayered laminated beams, such theories violate the continuity conditions of transverse stresses due to the jump change of material properties at the layered interfaces, usually leading to overestimated prediction of natural frequency and buckling load [45,46]. As emphasized in a recent review [21], in view of minimizing the number of unknown variables, higher-order beam theories considering the effects of both the transverse normal deformation and interlaminar continuous transverse shear stresses on bending, buckling and vibration responses should be developed for laminated composite and sandwich beams.

In the present study, a refined and generalized quasi-3D zigzag beam theory is developed to characterize the free vibration and stability behaviors of composite, sandwich and FLM beams with different boundary conditions under axial mechanical (e.g., axially distributed load and terminal force) and thermal loading. In Section 2, the deformation theory is introduced by incorporating a refined four-un-known higher-order shear theory and zigzag-type continuous transverse functions, and accounts for both thickness stretching and interlaminar continuity of transverse shear stresses and displacements, which could produce sufficiently accurate results at low computational cost. The Ritz method in terms of boundary characteristic orthogonal polynomial functions is applied to solve the vibration and buckling problems. For validation, the theoretical predictions are compared with existing literature results and the present FE simulations in Section 3. In Section 4, three situations are considered and analyzed for various multi-layered configurations: (i) sandwich and laminated composite beams with different boundary conditions; (ii) micromechanics-based laminated beams with hinged-hinged boundary condition; (iii) fiber metal laminated (FML) beams with hinged-hinged boundary condition. Lastly, Section 5 closes the paper with conclusions.

2. Theoretical formulation

With reference to Fig. 1, consider a symmetric multi-layered composite beam composed of 2N + 1 layers perfectly bonded together. The beam has length L, width b, and total thickness h. The global coordinate system x-y-z is chosen such that the x-y plane coincides with the mid-plane of the beam. Let the superscript 0 denote all quantities referring
to the middle-layer or core-layer, and let “z_k” denote the material interface coordinate between the k-th and (k-1)-th layers. The beam may be a laminated composite, a composite sandwich, or a FML structure.

The linear thermoelastic constitutive relations of the k-th orthotropic layer/lamina with any fiber orientation with respect to the x-z plane may be expressed as:

$$
\begin{bmatrix}
\sigma_x(k) \\
\sigma_z(k) \\
\tau_{xz}(k)
\end{bmatrix} =
\begin{bmatrix}
Q_{11} & Q_{13} & 0 \\
Q_{13} & Q_{33} & 0 \\
0 & 0 & Q_{55}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x - \alpha_z \Delta T \\
\varepsilon_z - \alpha_x \Delta T \\
\gamma_{xz}
\end{bmatrix}
$$

where ΔT is temperature change from the stress free state, and a uniform temperature variation is assumed. While detailed expressions of the well-known reduced stiffness \(Q_{ij}\) can be found in [47], the coefficients of thermal expansion for the k-th layer in the laminated reference coordinates are:

$$\begin{aligned}
(\alpha_x, & \quad \alpha_z, \quad \alpha_{xz}) = \left(\cos^2 \theta \cdot \alpha_z + \sin^2 \theta \cdot \alpha_x, \quad \alpha_{xz}, \quad 0\right) \\
\end{aligned}$$

where \(\theta\) is the angle between the fiber direction and the x-axis of the individual layer.

2.1. Deformation field with quasi-3D shear deformation beam theory

The displacement field is constructed on the basis of a refined and generalized quasi-3D shear and normal deformable beam theory developed from Mohammed [42,48,49]. The in-plane displacement \(u(x, z, t)\) is expanded as odd functions of the thickness coordinate while the transverse displacement \(w(x, z, t)\) is splitted into bending, shear and thickness stretching parts, as:

$$
\begin{aligned}
u(x, z, t) &= u_0(x, t) - z\phi_u(z) w_{z,x} \\
w(x, z, t) &= w_0(x, t) + w_1(x, t) + g(z)\psi_1(x, t)
\end{aligned}
$$

where \(u_0(x, t), \quad w_0(x, t), \quad w_1(x, t)\) and \(\psi_1(x, t)\) are the four unknown functions of the beam, \(f(z)\) is the shape function determining transverse shear strains along the thickness, and \(g(z) = 1-f''(z)\). A prime denotes the derivative with respect to \(z\), and the subscript "\(z\)" represents the partial derivative with respect to \(z\). As a compact formulation, the above displacement field can take into account different higher-order shear deformation functions, satisfying the stress free boundaries at the top and bottom surfaces. However, within the frame of this quasi-3D shear deformation beam theory, the transverse stresses are not continuous at the interface between two neighboring layers.

2.2. Kinematics with improved quasi-3D zigzag shear deformation beam theory

With the k-th layer taken as an independent beam \((k = 0, \pm 1, \ldots, \pm N)\), its displacement components can be written as:

$$
\begin{align*}
\mathbf{u}^{(k)}(x, z, t) &= u_0^{(k)} + z\phi_u^{(k)}(z) w_{z,x}^{(k)} \\
\mathbf{w}^{(k)}(x, z, t) &= w_0^{(k)} + w_1^{(k)} + g^{(k)}(z)\psi_1^{(k)}(x, t)
\end{align*}
$$

where \(g^{(k)}(z) = 1-f''^{(k)}(z)\). In the present study, small elastic deformations are assumed, i.e., displacements and rotations are small, and they obey Hooke’s law. The strain field can be expressed as:

$$
\begin{align*}
\varepsilon_x^{(k)} &= \varepsilon_0^{(k)} - z\phi_{\varepsilon_x(z)}^{(k)}(z) w_{z,x}^{(k)} \\
\varepsilon_z^{(k)} &= g^{(k)}(z)\psi_{\varepsilon_z}^{(k)}(x, t) \\
\gamma_{xz}^{(k)} &= g^{(k)}(z)\psi_{\gamma_{xz}}^{(k)}(x, t)
\end{align*}
$$

From Eqs. (1) and (5), the transverse shear stress of the k-th layer can be obtained as:

$$
\tau_{xz}^{(k)} = Q_{55}^{(k)} g^{(k)}(z)(w_{z,x}^{(k)} + \psi_{\gamma_{xz}}^{(k)})
$$

It is assumed that

$$
\begin{align*}
w_0^{(k)} &= A_k w_z^{(0)} + B_k \psi_{\varepsilon_z}^{(0)} \\
\psi_1^{(k)} &= C_k \psi_{\varepsilon_z}^{(0)}
\end{align*}
$$

Upon inserting (7) into (6), the requirement of continuity of interlaminar shear stress at \(z_k\) yields:

$$
\begin{align*}
A_k &= \frac{Q_{55}^{(k)}}{Q_{55}^{(k-1)}} A_{k-1}, \quad A_0 = 1 \\
B_k &= \frac{Q_{55}^{(k)}}{Q_{55}^{(k-1)}} (B_{k-1} + C_{k-1}) - C_k, \quad B_0 = 0, \quad C_0 = 1
\end{align*}
$$

where the upper or lower sign on the right side is connected with the negative or positive values of \(k\), respectively. Substituting Eq. (7) into Eq. (4) and maintaining continuity of displacement components (i.e., \(u^{(k)}\) and \(w^{(k)}\)) at \(z_k\) yields:

$$
\begin{align*}
w_0^{(k)} &= w_0^{(0)} + (1-A_k) w_z^{(0)} + B_k \psi_{\varepsilon_z}^{(0)} \\
u_0^{(k)} &= u_0^{(0)} + D_k w_{z,x}^{(0)} + E_k \psi_{\gamma_{xz}}^{(0)}
\end{align*}
$$

where
As a result of the forgoing definitions, the displacement components of all the constituent layers have been written in terms of the corresponding components of the middle layer. Inserting Eqs. (7)–(10) into Eq. (4), an improved quasi-3D zigzag shear deformation beam theory is obtained as:

\[
\begin{align*}
C_k &= \frac{\rho_k^{(k+1)}(z_k)}{\rho_k^{(k+1)}(z_k)} C_{k+1}, \\
D_k &= D_{k+1} + z_k (A_{k+1} - A_k) + f^{(k)}(z_k) A_k - f^{(k+1)}(z_k) A_{k+1},
& D_0 = 0 \\
E_k &= E_{k+1} + z_k (B_{k+1} - B_k) + f^{(k)}(z_k) B_k - f^{(k+1)}(z_k) B_{k+1},
& E_0 = 0
\end{align*}
\]

(10)

As a result of the forgoing definitions, the displacement components of all the constituent layers have been written in terms of the corresponding components of the middle layer. Inserting Eqs. (7)–(10) into Eq. (4), an improved quasi-3D zigzag shear deformation beam theory is obtained as:

\[
\begin{align*}
\{u^{(k)}(x, z, t) &= u_0 - z w_0 - \psi_k(z) w_{k,x} - \eta_k(z) \phi_{k,x}, \\
\psi_k(z) &= \psi_0^{(k)} + \psi_0^{(k+1)} + \psi_0^{(k-1)}, \\
\eta_k(z) &= \eta_0^{(k)} + \eta_0^{(k+1)} + \eta_0^{(k-1)}
\end{align*}
\]

(11)

This form of displacement approximation yields continuous displacements and transverse shear stress throughout the multi-layered beam thickness, regardless of any a posteriori specified shape function \(f^{(k)}(z)\). Let

\[
f^{(k)}(z) = f(z), \quad g^{(k)}(z) = g(z) = 1 - f'(z)
\]

(12)

It follows that Eqs. (8) and (10) can be reduced to

\[
\begin{align*}
A_k &= \frac{Q_k^{(k+1)}}{Q_k^{(k+1)}} A_{k+1}, \\
& C_k = 1, \\
B_k &= \frac{Q_k^{(k+1)}}{Q_k^{(k+1)}} (B_{k+1} + 1) - 1 \\
D_k &= D_{k+1} + [z_k f(z_k)] (A_{k+1} - A_k) \\
E_k &= E_{k+1} + [z_k f(z_k)] (B_{k+1} - B_k) \\
& A_0 = 1, \\
& B_0 = D_0 = E_0 = 0
\end{align*}
\]

(13)

where \(A_k\) and \(B_k\) are dependent on layer sequence and material properties, while \(D_k\) and \(E_k\) are additionally determined by the thickness coordinate and shear shape function. Therefore, Eq. (11) can be rewritten as:

\[
\begin{align*}
\{u^{(k)}(x, z, t) &= u_0 - z w_0 - \psi_k(z) w_{k,x} - \eta_k(z) \phi_{k,x}, \\
\psi_k(z) &= \psi_0^{(k)} + \psi_0^{(k+1)} + \psi_0^{(k-1)}, \\
\eta_k(z) &= \eta_0^{(k)} + \eta_0^{(k+1)} + \eta_0^{(k-1)}
\end{align*}
\]

(14)

where \(u_0^{(k)}, w_0^{(k)}, w_0^{(k+1)}, \) and \(\phi_0^{(k)}\) are replaced by \(u_0, w_0, w_s,\) and \(\phi_s\), respectively; \(\psi_k(z)\) and \(\eta_k(z)\) denote two piecewise zigzag functions, expressed as

\[
\begin{align*}
\psi_k(z) &= f(z) A_k + z (1 - A_k) - D_k, \\
\eta_k(z) &= f(z) B_k - z B_k - E_k
\end{align*}
\]

(15)

Upon setting \(f(z) = 0\), the zigzag first-order (linear) shear deformation beam theory (FSDT) is obtained. On the other hand, by taking \(\psi_k(z) = f(z)\) and \(\eta_k(z) = 0\), Eq. (14) is reduced to the quasi-3D shear deformation beam theory of Eq. (3), as a kind of equivalent single layer (ESL) theories. In the present study, a combined hyperbolic sinusoidal and polynomial shape function for the quasi-3D zigzag shear deformation beam theory (HSFSDT) [49], as illustrated in Fig. 2, is chosen as: Fig. 3
Based on this formulation, the strain-displacement relationships are:

\[f(z) = z - h \sinh \left(\frac{z}{h} \right) + \frac{4}{3} \frac{z^3}{h^2} \cosh \left(\frac{z}{2h} \right) \]

(16)

where

\[\varepsilon_0 = u_{0,x}, \quad k^b_x = -w_{0,x,x}, \quad k^t_x = -\varphi_{0,x,x}, \quad \varepsilon_0 = \varphi_0, \quad \gamma_{0z} = g(z)Y_{0z0} \]

(17)

In contrast to the displacement field of Eq. (3), the quasi-3D zigzag shear deformation beam theory of Eq. (14) allows the interlaminar continuity of transverse shear stresses. It should also be noted that all interface and boundary conditions are exactly satisfied for displacements and transverse shear stress.

2.3. Stress resultants

The constitutive equations relating the force and moment resultants to strains and curvatures of the reference surface are given in the following form:

\[\begin{bmatrix} N_x \\ M_x^b \\ M_x^t \end{bmatrix} = \int_{-h/2}^{h/2} \sigma(z) \begin{bmatrix} 1 \\ \psi_x(z) \\ \eta_x(z) \end{bmatrix} \, dz, \quad S_{0z} = \int_{-h/2}^{h/2} \varepsilon_0^z(z) \, dz, \quad N_z \]

(19)

Upon inserting (14) and (17) into (19), the force and moment resultants are written as:

\[\begin{bmatrix} N_x \\ M_x^b \\ M_x^t \end{bmatrix} = \begin{bmatrix} A_{b1} & A_{b1}^t & A_{b1}^t \\ A_{b1} & B_{b1} & C_{b1} \\ A_{b1} & B_{b1} & C_{b1} \end{bmatrix} \begin{bmatrix} k^b_x \\ k^t_x \\ k^t_x \end{bmatrix} + \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} L_x \\ L_x \\ L_x \end{bmatrix} \]

\[N_z = L_x \varepsilon_{0z} + L_x k^b_x + L_x k^t_x + L_x k^t_x + R \varepsilon_{0z} - N_z \]

(20)

where
\[
\begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & B_{11} & B_{12} & B_{13} \\
A_{31} & B_{21} & C_{11} & C_{12} \\
A_{41} & B_{31} & C_{21} & D_{11}
\end{bmatrix}
+ \frac{\rho L^2}{A_0^2} \begin{bmatrix}
I_1 & 0 & 0 & 0 \\
0 & I_2 & 0 & 0 \\
0 & 0 & I_3 & 0 \\
0 & 0 & 0 & I_4
\end{bmatrix} = \lambda \begin{bmatrix}
\delta_{11} & \delta_{12} & \delta_{13} & \delta_{14} \\
\delta_{21} & \delta_{22} & \delta_{23} & \delta_{24} \\
\delta_{31} & \delta_{32} & \delta_{33} & \delta_{34} \\
\delta_{41} & \delta_{42} & \delta_{43} & \delta_{44}
\end{bmatrix}
\]

where \(A_{ij}, B_{ij}, C_{ij}, D_{ij}\) are the stiffness coefficients of the beam, \(I_1, I_2, I_3, I_4\) are the bending inertia moments, \(\rho L^2/A_0^2\) is the rotary inertia factor, and \(\lambda\) is the eigenvalue.

\[\nabla^2 \mathbf{w} + K \mathbf{w} = 0\]

where \(K\) is the stiffness matrix and \(\mathbf{w}\) is the displacement vector.

2.4. Ritz solution of vibration and stability problems

The Ritz method provides a convenient methodology for obtaining approximate solutions to boundary value problems. This approach is equally applicable to the buckling and free vibration problems of multi-layered composite beams. In the present study, application of the Ritz method requires the total potential energy \(\Pi\):

\[\Pi = U + V - T\]

where \(U\) is the strain energy, \(T\) denotes the kinetic energy, and \(V\) refers to the potential energies of external axial forces induced by thermal or mechanical loading. The strain energy of a multi-layered composite beam can be expressed as:

\[U = \frac{1}{2} \int_V \left[\varepsilon_{xx} \sigma_{xx} + \varepsilon_{yy} \sigma_{yy} + \varepsilon_{zz} \sigma_{zz} + \sigma_{xy} \varepsilon_{xy} + \sigma_{yz} \varepsilon_{yz} + \sigma_{zx} \varepsilon_{zx} \right] dV\]

The potential energy of external axial load \(\bar{N}_t\) due to uniform temperature variation or axially mechanical loading can be written as:

\[V_t = \frac{1}{2} b \int_0^L \bar{N}_t \left(\frac{\partial \theta_n}{\partial x} \right)^2 dx = \frac{1}{2} b \int_0^L \bar{N}_t (\theta_n(x_0 + x) + g(0)\phi(x))^2 dx\]

where \(\bar{N}_t = N_T^f\) for thermal loading or \(\bar{N}_t = P + q(L-x)\) for axial mechanical loading, which acts along the central axis of the beam. Here, \(q\) and \(P\) refer to the axially distributed load and terminal force, respectively.

The kinematic energy \(T\) of the beam is:

\[T = \frac{1}{2} \int_0^L \rho (\dot{u}^2 + \dot{w}^2) dV\]

where the kinetic energy of unit mass is:

\[\mathcal{K} = \frac{1}{2} \rho \int_0^L \left(\dot{u}^2 + \dot{w}^2 \right) dx\]

In the present study, the adopted admissible Ritz functions which satisfy at least the geometric boundary conditions for deflections and rotations of the beam are given by:

\[u_0(\xi, t) = \sum_{n=1}^{\infty} c_n \phi_n^u(\xi) \sin nt\]

\[w_0(\xi, t) = \sum_{n=1}^{\infty} d_n \phi_n^w(\xi) \sin nt\]

\[\phi_1(\xi, t) = \sum_{n=1}^{\infty} \phi_n^f(\xi) \sin nt\]

where \(c_n, d_n, \phi_n^u, \phi_n^w, \phi_n^f\) are unknown undetermined coefficients, \(\xi = x/L\) is the non-dimensional coordinate, and the basic functions are defined as:

\[\phi_n^u(\xi), \phi_n^w(\xi), \phi_n^f(\xi) = \{\xi^n, \xi^n, \xi^n, \xi^n, \xi^n - 1 - (\xi - 1)^n\}

The value of \(B\) is taken as 0, 1, or 2, which corresponds to free (F), simply supported (S)/hinged (H), and clamped (C) edge conditions, respectively \([50]\). The displacement components in the Ritz method should satisfy the edge boundary conditions, as tabulated in Table 1. Nine different boundary conditions are considered, namely: FF, SF, SS, SC, CF, CS, CC, HH and HC. It is noticed that if loaded by the axially distributed load, the loading direction points from the second end to the first end, e.g., from S-end to C-end for CS cases. (Here, SC and CS are different for beams under axially distributed load). The kinematic boundary conditions given in Table 1 can be satisfied by careful selection of specific indices (i.e., \(i, j, k, l, m\)) of the series in Eq. (28), with details illustrated in Table 2 for the boundary conditions considered. Free boundary conditions are approximately satisfied. In the present study, the upper limits of the series in Eq. (27) are defined to be equal, i.e., \(I = R = L = J\), which determine the convergence of the following vibration or buckling problems.

According to the Ritz method, minimizing the total potential energy with respect to unknown displacement parameters yields:

\[\delta \Pi = \delta \Pi_{\delta a} \delta a = \{0, 0, 0, 0\}\]

Substitution of Eq. (27) into Eqs. (22)–(26) and then into Eq. (29), yields the 4f dynamic equations as the following eigenvalue problem:

\[\left[K - \omega^2 [M] \right] \delta \Pi = 0\]

Table 1

<table>
<thead>
<tr>
<th>Kinematic conditions corresponding to different beam end conditions.</th>
<th>Boundary condition type</th>
<th>(\xi = 0, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simply supported (S)</td>
<td>(u_0 = 0, w_0 = w_1 = \phi_0 = 0)</td>
<td></td>
</tr>
<tr>
<td>Clamped (C)</td>
<td>(u_0 = u_1 = w_0 = w_1 = \phi_0 = \phi_1 = 0)</td>
<td></td>
</tr>
<tr>
<td>Free (F)</td>
<td>(u_0 = 0, w_0 = 0, w_1 = \phi_1 = 0) (no constraints)</td>
<td></td>
</tr>
<tr>
<td>Hinged (H)</td>
<td>(u_0 = 0, w_0 = w_1 = \phi_1 = 0)</td>
<td></td>
</tr>
</tbody>
</table>
\[[K] - [K_c] \Delta = 0 \] (31)

where \([K]\) is the structural stiffness matrix, \([K_c]\) is the geometric stiffness matrix induced by external axial load (i.e., thermal stress, or axially distributed load and terminal force), \([M]\) denotes the mass matrix, and \(\Delta\) refers to the column vector of unknown coefficients of Eq. (27). For stability analysis, Eq. (30) is reduced to:

\[([K] - [K_c])\Delta = 0 \] (31)

For the present study, although all the eigenvalues and eigenvectors can be computed using the above method for each deformation mode, special focus is placed upon the dominant eigenvalues corresponding to the lowest natural frequencies \(\omega\) and minimum critical temperature variations \(\Delta T_{cr}\) or critical buckling load \(P_{cr}\) or \(T_{cr}\). For vibration and buckling analysis, it has been demonstrated that convergence of the present solutions can be ensured with the selected upper limit of series \(I\) not exceeding 10.

Table 2
Displacement field indices for different boundary conditions. *

<table>
<thead>
<tr>
<th>Boundary condition</th>
<th>(l_0)</th>
<th>(r_0)</th>
<th>(l_0)</th>
<th>(j_0)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SF</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SS</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SC</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CF</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CS</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CC</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>HH</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HC</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

* In the present study, HH and HC boundary conditions are only discussed for beams under thermal loading.

3. Validation studies

3.1. Comparison with literature results

In this section, the theories denoted with superscripts ‘ds’ and ‘cs’ correspond to the cases that consider discontinuous interlaminar stresses and continuous interlaminar stresses, respectively. The natural frequencies, critical temperature changes and buckling loads predicted by the present quasi-3D zigzag theory (i.e., HSPSDT) are compared with existing results in Tables 4–9, with relevant material properties listed in Table 3. The numbers in parentheses in these tables refer to the percentage errors of the present results relative to those from the literature. Tables 4–7 present dimensionless natural frequencies of laminated and sandwich beams for selected length-to-thickness ratios \(L/h\), fiber-stacking sequences, vibration modal \(m\) and boundary conditions. Tables 8 and 9 present dimensionless critical temperature variations and critical buckling terminal forces of laminated beams with different boundary conditions.

It is observed from Tables 4–6 and 8 that the natural frequencies and critical buckling temperature variations obtained with the continuous theory take the lower values than the corresponding discontinuous case, which are consistent with the results of Aydogdu [18,19]. Tables 4 and 8 show that the present theory with thickness expansion included predicts slightly lower natural frequencies and critical temperature variations relative to those obtained with the theory neglecting thickness stretching [18,19]. The results of Tables 5 and 6 demonstrate that, HSPSDT_{cs} could provide accurate predictions of natural frequencies (even for the higher-order vibration modes), compared with those obtained using 3D elasticity solutions [51,52]. As tabulated in Tables 7 and 9, comparison of the present HSPSDT_{cs} with

Table 3
Material properties used in the present study.

Material 1	\(E_1/E_2=0.5\)	\(G_{12} = G_{13} = 0.6E_2\)	\(G_{23} = 0.8E_2\)	\(v_{12} = v_{13} = 0.25\)	\(\alpha_T = 0\)					
Material 2	\(E_1 = 181\)GPa	\(E_2 = 10.3\)GPa	\(G_{12} = G_{13} = 7.17\)GPa	\(G_{23} = 2.87\)GPa	\(\nu_{12} = \nu_{13} = \nu_{23} = 0.25\)	\(\rho = 1578\)kg/m\(^3\)				
Material 3	Face sheets	\(E_1 = 131\)GPa	\(E_2 = 6.9\)GPa	\(G_{12} = 3.58\)GPa	\(G_{23} = 3.08\)GPa	\(\nu_{12} = \nu_{13} = 0.32\)	\(\nu_{23} = 0.49\)	\(\rho = 1000\)kg/m\(^3\)	\(\alpha_T = 0\)	
Material 4	Other	\(E_1 = 2.33\)MPa	\(E_2 = 6\)MPa	\(G_{12} = 16.5\)MPa	\(G_{23} = 545\)MPa	\(G_{13} = 455\)MPa	\(\nu_{12} = 0.99\)	\(\nu_{13} = \nu_{23} = 0.00003\)	\(\rho = 70\)kg/m\(^3\)	\(\alpha_T = 1.36\)
Material 5	Al layer (AA2024-T3)	\(E_1 = 796.5\)GPa	\(E_2 = 7.2\)GPa	\(G_{12} = 8.97\)GPa	\(G_{23} = 2.62\)GPa	\(v_{12} = 0.2\)	\(v_{13} = 0.4\)	\(\rho = 2100\)kg/m\(^3\)	\(\sigma_0 = 1\) \(\times 10^{-9}\)/°C	\(\alpha_T = 6.84 \times 10^{-6}/\)°C \(\times 0.0003\)
Material 6		\(E_1 = 4.34\)GPa		\(G_{12} = 0.37\)GPa	\(\rho = 1304\)kg/m\(^3\)	\(\alpha_T = 43.92 \times (1 + 0.001\Delta T) \times 10^{-7}\)°C				

* For Material 3, \(\alpha_T\) refers to the thermal expansion coefficient of face sheet along the 2-principal direction of material.
alternative quasi-3D higher-order shear theory [40] shows that the Zigzag theory gives slightly lower predictions of natural frequencies and critical buckling load for beams with all kinds of angle-ply laminations and boundary conditions. However, the errors between the frequencies calculated using the two theories are large for the case of SF boundary condition.

3.2. Finite element validation

To further ensure the validity and accuracy of the method presented in this paper, finite element (FE) simulations via the commercially available FE code ABAQUS are carried out. Eight-noded plane strain quadrilateral elements with reduced integration (CPE8R) are used, with mesh convergence guaranteed for each calculation. Perfect bonding between two adjacent layers is assumed. The linear perturbation analysis is applied to extract the natural frequency, critical temperature variation, or critical buckling load, similar to [8,53]. Specifically, to determine the stability of beams under combined axially distributed load and terminal force, or the vibration of beams under axial mechanical or thermal loading, a two-step analysis is employed: a general step of static analysis is firstly carried out for calculating the initial stress field under the prescribed axially distributed load, terminal force or uniform temperature variation; subsequently, a linear perturbation step of buckle or frequency analysis is applied, and eigenvalue extraction procedure is carried out using the Lanczos solver. For the case of vibration analysis for beams under no axial loading (i.e., neither mechanical nor thermal loading), or the case of thermal stability for beams subject to uniform temperature variation, only a buckle analysis is needed to obtain the natural frequency or the critical temperature variation.

As illustrated in Tables 7 and 9, compared with FE simulations, the zigzag HSPSDT theory (HSPSDT_{ds}) gives better predictions than the quasi-3D theory of Canales and Mantari [40], for all the boundary conditions considered. Additional FE simulations are also carried out to validate the proposed theory, as shown in Figs. 5–8. Unless otherwise stated, HSPSDT_{ds} is employed in all subsequent discussions.

4. Results and discussions

In this section, the quasi-3D zigzag shear deformation beam theory HSPSDT_{ds} is applied to selected free vibration and stability examples. A variety of boundary conditions, geometric parameters and material

Table 4
Comparison of non-dimensional natural frequencies $\tilde{\omega} = (\omega L^2/h) \sqrt{\rho / E}$ of a three-layer symmetric cross-ply laminated beam [0°/90°/0°]. $E_1/E_2 = 40$, Material 1).

<table>
<thead>
<tr>
<th>L/h</th>
<th>Theory</th>
<th>Boundary condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FF</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>HSPSDT_{ds}</td>
<td>19.296 (−0.490)</td>
</tr>
<tr>
<td></td>
<td>A_{mc}</td>
<td>18.976</td>
</tr>
<tr>
<td></td>
<td>HSPSDT_{ds}</td>
<td>18.663 (−1.649)</td>
</tr>
<tr>
<td></td>
<td>HSPSDT_{ds}</td>
<td>36.288 (0.008)</td>
</tr>
<tr>
<td></td>
<td>A_{mc}</td>
<td>36.024</td>
</tr>
<tr>
<td></td>
<td>HSPSDT_{ds}</td>
<td>35.776 (−0.688)</td>
</tr>
</tbody>
</table>

* A: Results from [19].

Table 5
Comparison of non-dimensional natural frequencies $\tilde{\omega} = (\omega L^2/h) \sqrt{\rho / E}$ of a four-layer SS symmetric cross-ply laminated beam [0°/90°/0°/90°]. $E_1/E_2 = 40$, Material 2).

<table>
<thead>
<tr>
<th>L/h</th>
<th>m</th>
<th>Theory</th>
<th>Boundary condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>A</td>
<td>HSPSDT_{ds}</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>6.806</td>
<td>6.987 (2.659)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16.515</td>
<td>16.892 (2.283)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>26.688</td>
<td>27.164 (1.784)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>9.341</td>
<td>9.486 (1.531)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>27.224</td>
<td>27.947 (2.456)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>46.419</td>
<td>47.665 (2.652)</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>10.640</td>
<td>10.707 (0.630)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>37.374</td>
<td>37.944 (1.525)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>71.744</td>
<td>73.366 (2.261)</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>11.193</td>
<td>11.215 (0.197)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>44.477</td>
<td>44.589 (0.252)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>98.988</td>
<td>99.336 (0.352)</td>
</tr>
</tbody>
</table>

* A: Exact solutions from [51].

Table 6
Comparison of non-dimensional natural frequencies $\tilde{\omega} = (\omega L^2/h) \sqrt{\rho / E}$ of a thick sandwich beam ([face/core/face], $L/h = 5$, $h_l/h_l = 8$, Material 3).

<table>
<thead>
<tr>
<th>Boundary condition</th>
<th>Theory</th>
<th>m</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>A</td>
<td>16.072</td>
<td>23.631</td>
<td>34.324</td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>16.579</td>
<td>24.580</td>
<td>35.696 (3.997)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>16.091</td>
<td>23.591</td>
<td>34.171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>11.307</td>
<td>20.961</td>
<td>29.974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>A</td>
<td>11.722</td>
<td>21.780</td>
<td>31.132 (3.863)</td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>11.722</td>
<td>21.780</td>
<td>31.132 (3.863)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>11.105</td>
<td>20.919</td>
<td>29.878</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>11.018</td>
<td>(−0.200)</td>
<td>0.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>A</td>
<td>3.636</td>
<td>11.638</td>
<td>21.837</td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>3.759 (3.833)</td>
<td>12.137</td>
<td>22.879 (4.772)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>3.655 (0.523)</td>
<td>11.739</td>
<td>22.014 (0.811)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>7.815</td>
<td>17.243</td>
<td>26.820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>8.096 (3.956)</td>
<td>17.915</td>
<td>27.830 (3.766)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>7.815 (0.000)</td>
<td>17.194</td>
<td>26.722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>(−0.284)</td>
<td>(−0.365)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>A</td>
<td>8.252</td>
<td>17.669</td>
<td>27.352</td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>8.924 (8.143)</td>
<td>18.552</td>
<td>28.682 (4.863)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>8.326 (0.897)</td>
<td>17.829</td>
<td>27.587 (0.859)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>8.965</td>
<td>18.084</td>
<td>27.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>9.442 (5.321)</td>
<td>19.341</td>
<td>29.577 (5.946)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSPSDT_{ds}</td>
<td>9.070 (1.171)</td>
<td>18.376</td>
<td>28.468 (1.974)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* A: Elasticity solutions from [52].
are increased to 40, the fundamental frequency \(\bar{\omega} \) exceeds the terminal force (32) of an angle-ply laminated beam ([0°/90°/0°], L/h = 10, \(E_i/E_3 = 40 \), Material 1).

\[
\Delta T = \frac{\rho h}{2 E_2} \Delta h^2, \quad \bar{\omega} = \frac{q L_2^4}{k h^3 E_2} \quad \text{for sandwich beams, } \rho \text{ and } E_2 \text{ refer to the density and elastic modulus of the face sheets, respectively.}
\]

For sandwich beams, \(\rho \text{ and } E_2 \) are introduced as:

\[
\bar{\omega} = \sqrt{\frac{q L_2^4}{k h^3 E_2}}, \quad \mathbf{\Sigma} = \Delta T \alpha_1 \times 10^3, \quad \bar{q} = \frac{q L_2^4}{100h^3 E_2}, \quad \bar{P} = \frac{P L_2^2}{h^3 E_2} \quad \text{(32)}
\]

The effects of axially distributed load and temperature variation on the fundamental and higher-order frequencies of laminated beams are shown in Figs. 5 and 6. The fundamental frequencies associated with different boundary conditions decrease monotonically to zero when the axially distributed load or temperature variation is increased to the critical buckling one, because the geometric stiffness matrix \([K_0] \) of Eq. (30) induced by external axial load (i.e., axially distributed load, or thermal stress) increases rapidly as soon as the axially distributed load or the temperature variation reaches to the critical one. In contrast, the higher-order frequencies are not sensitive to the axially distributed load or temperature variation, as shown in Fig. 7.

In Fig. 7a, the buckling capacity of laminated beams under combined axially distributed load and terminal force is depicted. The case of CS shares the same critical terminal load \(\overline{P_{cr}} \) with that of SC when the distributed force \(\overline{q_{cr}} = 0 \), but diverges when \(\overline{q_{cr}} \) is increased. The relationship between the distributed load \(\overline{P_{cr}} \) and the terminal force \(\overline{q_{cr}} \) is nearly linear for the types of boundary conditions considered. It is also noticed that the critical buckling load is higher for stronger end constraints, with the greatest one gained by the beams with CC boundary conditions. As a specific case, Fig. 7b plots further a comprehensive 3D interaction diagram of the fundamental frequency, terminal force and distributed load of a CC laminated beam. Concurrent terminal force and distributed load are seen to cause rapid decrease of the fundamental frequency.

4.2. Micromechanics-based thermo-mechanical model with hinged-hinged boundary condition

Different from the previous case of laminated beams with specified material properties, a micromechanics-based thermo-mechanical model is employed in this subsection. The material parameters can be systematically varied by varying the fiber volume fraction \(V_f \) (or the matrix volume fraction \(V_m = 1 - V_f \)). In the micromechanical model, the fibers are assumed transversely isotropic while the matrix is assumed isotropic. The effective material properties of a fiber-reinforced composite (FRC) can be written as [54]:

\[
E_1 = E_f V_f + E_m V_m, \quad E_2 = E_z V_m + E_f V_f, \quad E_3 = E_f, \quad G_{12} = \frac{G_{12}^{cm} V_f + G_{12}^{cm} V_m}{V_f + V_m},
\]

\[
G_{13} = G_{23} = \frac{E_z}{2(1 + \nu_{13})}, \quad \nu_{12} = \frac{G_{12}^{cm} V_f + \nu_{12}^{cm} V_m}{E_f V_f + E_m V_m}, \quad \nu_{23} = \frac{G_{12}^{cm} V_m + \nu_{23}^{cm} V_f}{E_f V_f + E_m V_m},
\]

\[
\sigma_1 = \frac{\sigma_f V_f + \sigma_m V_m}{V_f + V_m}, \quad \sigma_2 = \alpha_f (\sigma_f + \nu_{12} \sigma_f) V_f + (1 + \nu_{23}) \sigma_m V_m, \quad \sigma_3 = \sigma_m,
\]

\[
\rho = \rho_f \bar{V}_f + \rho_m \bar{V}_m \quad \text{(33)}
\]

Based upon the micromechanical model, a three-layered cross-ply laminate is considered. The micromechanical model is employed in this subsection. The material parameters can be systematically varied by varying the fiber volume fraction \(V_f \) (or the matrix volume fraction \(V_m = 1 - V_f \)). In the micromechanical model, the fibers are assumed transversely isotropic while the matrix is assumed isotropic. The effective material properties of a fiber-reinforced composite (FRC) can be written as [54]:

\[
E_1 = E_f V_f + E_m V_m, \quad E_2 = E_z V_m + E_f V_f, \quad E_3 = E_f, \quad G_{12} = \frac{G_{12}^{cm} V_f + G_{12}^{cm} V_m}{V_f + V_m},
\]

\[
G_{13} = G_{23} = \frac{E_z}{2(1 + \nu_{13})}, \quad \nu_{12} = \frac{G_{12}^{cm} V_f + \nu_{12}^{cm} V_m}{E_f V_f + E_m V_m}, \quad \nu_{23} = \frac{G_{12}^{cm} V_m + \nu_{23}^{cm} V_f}{E_f V_f + E_m V_m},
\]

\[
\sigma_1 = \frac{\sigma_f V_f + \sigma_m V_m}{V_f + V_m}, \quad \sigma_2 = \alpha_f (\sigma_f + \nu_{12} \sigma_f) V_f + (1 + \nu_{23}) \sigma_m V_m, \quad \sigma_3 = \sigma_m,
\]

\[
\rho = \rho_f \bar{V}_f + \rho_m \bar{V}_m \quad \text{(33)}
\]

Based upon the micromechanical model, a three-layered cross-ply laminate is considered. The micromechanical model is employed in this subsection. The material parameters can be systematically varied by varying the fiber volume fraction \(V_f \) (or the matrix volume fraction \(V_m = 1 - V_f \)). In the micromechanical model, the fibers are assumed transversely isotropic while the matrix is assumed isotropic. The effective material properties of a fiber-reinforced composite (FRC) can be written as [54]:

\[
E_1 = E_f V_f + E_m V_m, \quad E_2 = E_z V_m + E_f V_f, \quad E_3 = E_f, \quad G_{12} = \frac{G_{12}^{cm} V_f + G_{12}^{cm} V_m}{V_f + V_m},
\]

\[
G_{13} = G_{23} = \frac{E_z}{2(1 + \nu_{13})}, \quad \nu_{12} = \frac{G_{12}^{cm} V_f + \nu_{12}^{cm} V_m}{E_f V_f + E_m V_m}, \quad \nu_{23} = \frac{G_{12}^{cm} V_m + \nu_{23}^{cm} V_f}{E_f V_f + E_m V_m},
\]

\[
\sigma_1 = \frac{\sigma_f V_f + \sigma_m V_m}{V_f + V_m}, \quad \sigma_2 = \alpha_f (\sigma_f + \nu_{12} \sigma_f) V_f + (1 + \nu_{23}) \sigma_m V_m, \quad \sigma_3 = \sigma_m,
\]

\[
\rho = \rho_f \bar{V}_f + \rho_m \bar{V}_m \quad \text{(33)}
\]
FRC laminated beam with hinged-hinged boundary conditions is considered, for which the fiber volume fraction of each ply is identical. As listed in Table 3 (see Material 3), the materials properties are temperature-dependent for the matrix, but temperature-independent for the fiber with a negative coefficient of thermal expansion along the fiber direction. Both the cases considering temperature-independent and temperature-dependent material properties are discussed, which are referred to below as TI and TD cases, respectively. For the latter case (TD), an iterative procedure is utilized to obtain convergent critical temperature variations.

Fig. 8 shows the influence of fiber volume fraction on fundamental frequency ω and critical temperature variation ΔT_{cr} of the HH laminated beam as predicted by the micromechanical model. As shown in Fig. 8a, the fundamental frequency ω under selected temperature variations ΔT increases with increasing V_f. The TI case gives higher predictions of ω and ΔT_{cr} than the TD case. As V_f is increased, the difference in the two cases tends to vanish, attributed to the decreased volume fraction of the TD matrix. It is interesting to notice that, as ΔT is increased, ω decreases when $V_f < 0.37$, but increases when $V_f > 0.37$. With $V_f = 0.37$, ω seems insensitive to ΔT. Correspondingly, as shown in Fig. 8b, the relationship between ΔT_{cr} and V_f is approximately hyperbolic, with ΔT_{cr} converging towards positive or negative infinity when V_f approaches 0.37. The laminated beam buckles upon heating when $V_f < 0.37$, but buckles upon cooling when $V_f > 0.37$, which is attributed to the appearance of negative α_2/α_1 at large V_f. As V_f reaches 0.37, the laminated beam may not buckle whether they are heated or cooled, i.e., the so-called non-thermal buckling occurs. For specific material properties, the axial thermal loading N_x as shown in Eq. (21) may vanish, thus causing the non-thermal buckling. Similar behaviors were observed for composite plates and beams [18,55].

4.3. Fiber metal laminated (FML) beams with hinged-hinged boundary condition

The FML beams studied here are hinged-hinged symmetric GLARE beams, which are consisted of cross-ply glass fiber-reinforced plastic (polyester) composite (GFRP) and aluminum (Al) layers, with material properties listed in Table 3. The GFRP has a lay-up of $[0/90/0/90/0]$. Each FML beam has 10 layers that are numbered from top to bottom, of which only 2 are Al layers. The 2 Al layers are placed symmetrically in the FML, with their positions systematically varied as (1, 10), (2, 9), (3, 8), (4, 7), and (5, 6) to evaluate their position effect on free vibration and stability of the FML structure.

Fig. 9a and b present separately the effects of Al layer stacking sequence and length-to-thickness ratio of the structure on the fundamental frequency (under thermal loading) and critical temperature variation.
variation of FML beams. For reference, the case that no Al layers are inserted is also included. The results of Fig. 9 demonstrate that, replacing only the outer layers (i.e., layers (1, 10)) of a 10-layer GFRP laminated beam with the Al layers leads to the highest fundamental frequency and critical temperature variation, since this arrangement of the Al layers with the highest elastic modulus (see Material 5 of Table 3) can always result in the maximum flexural rigidity, which maximizes the structural stiffness matrix K. Interestingly, this conclusion coincides with the previous finding that placing Al sheets in the outer layers always results in the best impact resistance of the FML [56,57]. In other words, these results imply that placing Al sheets in the outer layers of a FML structure enables it to exhibit the highest fundamental frequency, best thermal buckling and impact resistance.

5. Conclusions

A generalized refined quasi-3D zigzag beam theory, with consideration of thickness stretching and interlaminar continuity of both transverse shear stress and displacements, has been developed to study the free vibration and buckling behaviors of multilayered composite beams subjected to axially distributed load, terminal force and/or uniform thermal loading. A combined hyperbolic sinusoidal and polynomial shear shape function was employed to construct the theory. The types of composite beam considered included laminated composite beams, sandwich beams with composite face sheets, and fiber metal laminates (FML). Solutions were obtained for different boundary conditions by using the Ritz method in terms of boundary characteristic orthogonal polynomial functions. For validation, the theoretical predictions were compared with exiting results and the present FE simulations, and good agreements were achieved. The effects of axially distributed force and terminal load, together with temperature variation on free vibration and buckling of the composite beam were quantified for various boundary conditions, geometric parameters and material properties. It has been demonstrated that the proposed theory can be considered as an appropriate and highly efficient method for analyzing the vibration and stability behaviors of various multilayered beams under mechanical/thermal loadings.
Acknowledgments

This work was supported by the National Natural Science Foundation of China (51375369, 11472209, 11702326 and 11472208), China Postdoctoral Science Foundation (2016M600782), Postdoctoral Scientific Research Project of Shaanxi Province (2016BSHYDZZ18), Zhejiang Provincial Natural Science Foundation of China (LGG18A020001), Natural Science Basic Research Plan in Shaanxi Province of China (2018JQ1078), and the Fundamental Research Funds for Xi’an Jiaotong University (xjj2015102).

Appendix A. Elements of \([\mathbf{K}], [\mathbf{M}], \text{ and } [\mathbf{K}_G]\) matrices

The structural stiffness matrix is

\[
\begin{bmatrix}
K_{cc} & K_{cd} & K_{ce} & K_{cf} \\
K_{dc} & K_{dd} & K_{de} & K_{df} \\
K_{ec} & K_{ed} & K_{ee} & K_{ef} \\
K_{fc} & K_{fd} & K_{fe} & K_{ff}
\end{bmatrix}
\]
\tag{A.1}

where

\[
K_{cc} = \int_0^L A_1 \phi_{x, cc} \phi'_{x, cc} \, dx \\
K_{cd} = -\int_0^L A_1 \phi_{x, cd} \phi'_{x, cd} \, dx \\
K_{ce} = -\int_0^L A_1 \phi_{x, ce} \phi'_{x, ce} \, dx \\
K_{cf} = -\int_0^L A_1 \phi_{x, cf} \phi'_{x, cf} \, dx \\
K_{dc} = \int_0^L (L \phi_{x, cd} \phi'_{x, cc} - A_1 \phi_{x, dc} \phi'_{x, cc}) \, dx \\
K_{dd} = \int_0^L B_1 \phi_{x, dd} \phi'_{x, dd} \, dx \\
K_{de} = \int_0^L B_1 \phi_{x, de} \phi'_{x, de} \, dx \\
K_{df} = \int_0^L B_1 \phi_{x, df} \phi'_{x, df} \, dx \\
K_{ec} = \int_0^L (B_1 \phi_{x, ec} \phi'_{x, cc} - L \phi_{x, ec} \phi'_{x, cc}) \, dx \\
K_{ed} = \int_0^L (C_1 \phi_{x, ed} \phi'_{x, cc} + A_1 \phi_{x, de} \phi'_{x, cc}) \, dx \\
K_{ef} = \int_0^L (D_1 \phi_{x, ef} \phi'_{x, cc} - L \phi_{x, ef} \phi'_{x, cc}) \, dx \\
K_{fe} = \int_0^L (R \phi_{x, ef} \phi'_{x, cc} + A_1 \phi_{x, ef} \phi'_{x, cc}) \, dx \\
K_{ff} = \int_0^L (A_1 \phi_{x, ff} \phi'_{x, cc} + A_1 \phi_{x, ff} \phi'_{x, cc}) \, dx \\
\]
\tag{A.2}

The geometric stiffness matrix induced by external axial load is

\[
\begin{bmatrix}
K_{c0} & 0 & 0 & 0 \\
0 & K_{cc} & 0 & 0 \\
0 & K_{cc} & K_{dc} & K_{ce} \\
0 & K_{cc} & K_{dc} & K_{ff} \\
\end{bmatrix}
\]
\tag{A.3}

where

\[
\Delta T = 1000a_0 \Delta T \text{ on fundamental frequency } \dot{\omega} = (aL^2/\rho E) \sqrt{G/F}(L/h = 20) \text{, and (b) effect of length-to-thickness ratio } L/h \text{ on critical temperature variation } \Delta T_c \text{ of HH FML beams with different Al layer sequences (Material 5). The subscript } f \text{ refers to the corresponding material properties of GFRP.}
\]
\[K_{ij}^{de} = \int_{0}^{L} \hat{N}_i \phi_j^d \phi_j^e \, dx \]
\[K_{ij}^{de} = \int_{0}^{L} \hat{N}_i \phi_j^d \phi_j^e \, dx \]
\[K_{ij}^{de} = \int_{0}^{L} \hat{N}_i \phi_j^d \phi_j^e \, dx \]
\[K_{ij}^{de} = \int_{0}^{L} \hat{N}_i \phi_j^d \phi_j^e \, dx \]
\[K_{ij}^{de} = \int_{0}^{L} \hat{N}_i \phi_j^d \phi_j^e \, dx \]
\[K_{ij}^{de} = \int_{0}^{L} \hat{N}_i \phi_j^d \phi_j^e \, dx \]
\[K_{ij}^{de} = \int_{0}^{L} \hat{N}_i \phi_j^d \phi_j^e \, dx \]
\[K_{ij}^{de} = \int_{0}^{L} \hat{N}_i \phi_j^d \phi_j^e \, dx \]

The mass matrix is

\[[M] = \begin{bmatrix} M_{ii}^{ce} & M_{i}^{ce} & M_{i}^{df} & M_{i}^{ef} \\
M_{i}^{ce} & M_{i}^{de} & M_{i}^{tf} & M_{i}^{df} \\
M_{i}^{de} & M_{i}^{td} & M_{i}^{ef} & M_{i}^{df} \\
M_{i}^{df} & M_{i}^{tf} & M_{i}^{df} & M_{i}^{ef} \end{bmatrix} \]

\[\text{(A.5)} \]

where

\[M_{ii}^{ce} = \int_{0}^{L} I_2 \phi_i^e \phi_i^e \, dx \]
\[M_{i}^{ce} = \int_{0}^{L} I_2 \phi_i^e \phi_i^e \, dx \]
\[M_{i}^{ef} = \int_{0}^{L} I_2 \phi_i^e \phi_i^e \, dx \]
\[M_{i}^{df} = \int_{0}^{L} I_2 \phi_i^e \phi_i^e \, dx \]
\[M_{ij}^{de} = \int_{0}^{L} (I_2 \phi_i^e \phi_j^e + I_3 \phi_i^e \phi_j^e) \, dx \]
\[M_{ij}^{de} = \int_{0}^{L} (I_3 \phi_i^e \phi_j^e + I_3 \phi_i^e \phi_j^e) \, dx \]
\[M_{ij}^{de} = \int_{0}^{L} (I_3 \phi_i^e \phi_j^e + I_3 \phi_i^e \phi_j^e) \, dx \]
\[M_{ij}^{de} = \int_{0}^{L} (I_4 \phi_i^e \phi_j^e + I_4 \phi_i^e \phi_j^e) \, dx \]
\[M_{ij}^{de} = \int_{0}^{L} (I_4 \phi_i^e \phi_j^e + I_4 \phi_i^e \phi_j^e) \, dx \]

\[\text{(A.6)} \]

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.compstruct.2018.08.005.

References