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a b s t r a c t 

It is demonstrated that analytical models of permeability and effective thermal conductivity for open-cell 

metallic foams can be developed using fractal theory, for the theory lends itself better to the problem 

at hand where the pore morphology of the foam is typically random. Upon determining the average tor- 

tuosity based on selected representative flow streamlines in a representative structure (RS) of the foam, 

the permeability as a function of porosity, average tortuosity and pore size ratio is analytically obtained, 

with no empirical or fitting parameter needed. Similarly, the analytical fractal model of effective thermal 

conductivity does not include any empirical or fitting parameter. Good agreement with experimental data 

verifies both models, squarely justifying the applicability of using fractal theory to characterize open-cell 

metallic foams. It is also demonstrated that the present fractal models can better characterize the ran- 

domness of pore distributions than previous permeability and conductivity models built upon simplified 

geometries including periodically distributed unit cells. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

With attributes like high porosity, ultra-low density, high spe- 

ific area and fluid blending capability, open-cell metallic foams 

ave been widely involved in a broad range of engineering ap- 

lications [1-5] such as thermal management of electronics de- 

ices, thermal energy storage, chemical catalyst, fuel cells, porous 

urner, refrigeration, volumetric solar receiver, and biomedical ap- 

lications. For such applications, permeability and thermal conduc- 

ivity of the porous metals are key parameters. Macroscopically, 

haracterization of permeability and conductivity serves the basis 

or utilizing metal foams since they quantitatively justify fluid and 

hermal transport in a porous medium. Microscopically, it is essen- 

ial to get in-depth understanding on the relevant transport phe- 

omena in porous media at pore scale. 

Since metallic foams are consisted of randomly-distributed solid 

igaments that form inter-connected pore space, directly solving 

he Navier-Stokes equations to obtain permeability or solving the 
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aplace heat conduction equations to achieve thermal conductiv- 

ty seem impossible. For simplification, the complicated porous 

tructure is often assumed to be periodically distributed. Unit cells 

UCs) or part of the UC are typically selected to represent both the 

opological and morphological features of a bulk porous medium. 

ased upon UC selection, two common methods have been pro- 

osed to determine the permeability and conductivity of open- 

elled metallic foam. On the one hand, its randomly-distributed 

tructure was modelled as packed spheres, thus enabling calcu- 

ating its permeability via modifying the Kozeny-Carmen equation 

6] and its conductivity by extending the Maxwell-Eucken equa- 

ion [7] . Although satisfactory agreement could be obtained thanks 

o the fitting empirical constants for either permeability or con- 

uctivity, there were empirical constants in the equations of the 

ozeny-Carmen model for permeability and the Maxwell-Eucken 

odel for conductivity; these empirical constants were also differ- 

nt for different porous media. Besides, the UC of packed spheres 

eemed inappropriate for representing the cellular matrix of open- 

elled metal foam, for transport physics between the two types of 

orous medium was significantly different. On the other hand, to 

etter represent the porous structure of metal foam, a periodically- 
istributed cubic lattice truss was selected as the UC. The method 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121509
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
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Nomenclature 

Symbols 

a Weight value 

C Empirical parameters 

d Microscopic length scale (m) 

d E Euclidean dimension 

d s Ligament thickness (m) 

d p Pore diameter of representative structure (m) 

D f Fractal dimension of the pore size distribution 

D T Fractal dimension of the average tortuosity 

G Geometric shape factor 

k Thermal conductivity (W/m-K) 

K Permeability (m 

2 ) 

l Length (m) 

L 0 Characteristic length (m) 

P Perimeter of the cross section (m) 

S Area of the cross section (m 

2 ) 

V Volume (m 

3 ) 

V total Total of volueme (m 

3 ) 

V pore Pore of volume (m 

3 ) 

Greek symbols 

μ Dynamic viscosity (Pa � s) 

λ Pore diameter (m) 

ε Porosity 

τ Tortuosity 

γ Dimensionless number 

Subscript 

av Average 

e Effective 

exp Experiment 

f Fluid 

max Maximum 

min Minimum 

pre Prediction 

RS Representative structure 

s Solid 

t Total 

f volume-averaging was thence used to solve the Hagen-Poiseuille 

ow in the cubic UC for permeability [8] , while the thermal resis- 

ance network model was employed for modelling heat conduction 

n the UC [9] . Although these effort s based upon packed spheres, 

ubic lattices [10] and polyhedrons [11-15] were undertaken to un- 

erstand and predict the permeability and effective conductivity 

f open-celled metal foams, the assumptions made thereof were 

oo ideal to account for the randomness of pore structure typically 

ound in these porous metals. It is therefore envisioned that a new 

odel that can better represent the factual randomness of pore 

ize and distribution in metal foams is needed. 

It has been established that fractal theory can describe and 

haracterize porous media with randomly-distributed pores [16] , 

uch as metal foams, Sierpinski structures, fibrous materials, soil, 

il/gas reservoir, etc. Therefore, given that the pore structure and 

istribution in open-cell metallic foams are random, the problem 

f disorderly arranged pores and tortuous flow at pore scale may 

e solved with the fractal theory to predict the permeability and 

ffective thermal conductivity. 

For permeability modelling, fractal distribution of capillaries 

as firstly applied to a capillary bundle model to develop an ana- 

ytical formulas of permeable flow in bi-dispersed porous medium 

17] , which inspired subsequent studies on permeable transport 

ow in fractal porous media. Subsequent theoretical studies con- 
2 
inuously contributed to the development of permeable flow in 

ractal porous materials. Correspondingly, effects of fractal poros- 

ty and pore volume distribution, tortuosity, maximum pore size, 

ize distribution of contact areas and surface roughness on fluid 

ransport and permeability for various kinds of porous media were 

uantified, as summarized in recent reviews [18] . 

For conductivity modelling, the fractal theory provides an al- 

ered methodology to estimate the effective thermal conductivity 

f porous materials with random pore sizes and distributions [19] , 

uch as porous rocks, particle porous media and fibrous materials. 

or typical instance, the geometric percolation model was incorpo- 

ated into the fractal theory to thermal transport in porous media, 

hus enabling expressing the effective conductivity as a function 

f porosity and microstructural parameters. Nonetheless, the frac- 

al theory is yet used to analytically calculate the effective thermal 

onductivity of open-cell metal foams. 

To be conclusive, previous investigations contributed to the de- 

elopment of fractal theory on understanding thermal and fluid 

ransport phenomena in porous media and predicting their per- 

eability and conductivity. However, little attention has been paid 

o specific fractal considerations of the micro pore structures of 

pen-cell foams and the validity of using fractal theory to develop 

ermeability and conductivity models for open-cell foams against 

xperimental measurements. Besides, justification of the predicted 

ontribution of micro pore structure to flow features inside open- 

ell metal foams using fractal theory remains elusive. This paper 

ollows the basis assumption of isotropic microstructure for metal 

oam proposed by previous studies [ 12 , 20 ], the anisotropy ef- 

ects [ 21 , 22 ] caused by cell elongations that make significant con- 

ribution to the fluid flow and heat conduction are not consid- 

red in the current study. To this end, in the current study based 

n the isotropic assumption, pore-scale geometric characterization 

as performed for open-cell metallic foams, which was then em- 

loyed to construct analytical fractal models for permeability as 

ell as effective thermal conductivity. Subsequently, model esti- 

ations were compared with existing experimental data of per- 

eability and conductivity for a wide variety range of open-cell 

etallic foams. Finally, the models were employed to quantify the 

ariation of pressure drop with porosity as well as the effects of 

etal foam materials and filling fluids on effective thermal con- 

uctivity. 

. Theoretical model 

.1. Theory for fractal porous media 

Cumulative size distribution of pores in a porous medium or 

pots on an engineering surface follows typically a fractal scaling 

aw [23] . Thus, in the theory of fractal geometry, the measure of a 

ractal object M(l) and the measurement scale l obey the following 

caling law [23] : 

 ( l ) ∝ l D f (1) 

here D f is the fractal dimension of the fractal object. Conse- 

uently, for a porous medium such as open-cell metal foam, the 

ractal scaling law between the number N of pores and the pore 

ize λ can be expressed as [17] : 

 ( l ≥ λ) = ( λmax /λ) 
D f (2) 

here λmax denotes the maximum pore size and N( l ≥ λ) repre- 

ents the total number of pores having sizes no less than λ. Upon 

eplacing λ with the minimum pore diameter λmin , the total num- 

er N t of pores can be obtained as [17] : 

 t ( l ≥ λ ) = ( λmax / λ ) 
D f (3) 
min min 
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Fig. 1. High porosity open-cell aluminum foam: (a) cellular morphology [20] ; (b) 

scanning electronic microscope (SEM) image [20] ; (c) idealized cubic representa- 

tion for random pore structure and distribution; (d) representative structure (RS) 

for open-cell metal foams 
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Upon differentiating λ in Eq. (2) , the number of pores in the in- 

n itesimal range of λ to λ + d λ can be obtained as [24] : 

d N = D f λ
D f 
max λ

−( D f +1 ) d λ (4) 

Dividing Eq. (4) by Eq. (3) gives further: 

dN 

N t 
= D f λ

D f 
min 

λ−( D f +1 ) d λ= f ( λ) d λ (5) 

here f (λ) = D f λ
D f 
min 

λ−( D f +1 ) is the probability density function of 

ores in the fractal porous medium [ 16 , 17 ]. According to the the-

ry of probability, the integral of probability density function ex- 

ibits the following relationship [ 16 , 17 ]: 

 + ∞ 

−∞ 

f ( λ) dλ = 

∫ λmax 

λmin 

f ( λ) dλ = 1 −
(

λmin 

λmax 

)D f 

≡ 1 (6) 

f and only if: 

λmin 

λmax 

)D f 

∼= 

0 (7) 

It has been suggested [16] that using the relationship of 

q. (6) is a key step for employing the theory of fractal geometry 

o deal with porous media. For instance, based on the Sierpinski 

arpet and the Sierpinski sponge model, analytical expressions of 

ractal dimensions could be derived from Eq. (6) [16] . 

Equations (1) to (7) lay the theoretical basis of fractal geometry 

or porous media. 

.2. Fractal model of permeability 

With tortuous flow in a porous medium modelled as flow in- 

ide a bundle of tortuous circular capillary tubes having circular 

ross-sections, a fractal model of permeability had been proposed 

17] , as: 

 = 

π

128 

L 0 
−1 −D T D f 

3 + D T − D f 

λ3+ D T 
max (8) 

here L 0 is the characteristic length containing all fractal pores 

from the smallest to the largest size) of the porous medium, D T 

s the fractal dimension of average tortuosity, λmax is the maxi- 

um pore diameter, and D f denotes the fractal dimension of pore 

ize distribution. For two-dimensional space, 1 < D f < 2 ; for three- 

imensional space, 2 < D f < 3 . An expression for D f as was further 

roposed as [16] : 

 f = d E − ln ε 

ln ( λmin / λmax ) 
(9) 

here λmin is the minimum pore diameter, ε is the porosity, and 

 E is the Euclidean dimension, e.g., d E = 2 , 3 are the two- and 

hree-dimensional space, in respective. 

As the model of Eq. (8) is yet proven to be applicable for pre-

icting the permeability of open-cell metal foams, its key param- 

ters ( L 0 , D T , λmax and G ) are determined below for high-porosity 

etallic foams having open cells. 

.2.1. Characteristic length L 0 
Fig. 1 (a) and (b) depict both optical (low magnification) and 

canning electronic microscopic (SEM) images for a high poros- 

ty, open-cell aluminum foam. Both large and small pores are ob- 

erved, especially from the SEM image of Fig. 1 (b), and these pores 

re randomly distributed, in accordance with the fundamental as- 

umption of fractal theory. In the current study, for simplicity, the 

rregular pores are assumed to be cubic with random sizes, as 

hown in Fig. 1 (c). Out of the disordered cubic pores, the joint 

ith three struts is selected as the representative structure (RS) for 

ubsequent characterization analysis. With reference to Fig. 1 (d), 
3 
et d, d p and d s represent separately the microscopic length scale, 

he pore size and the ligament thickness of the RS. 

The characteristic length L 0 characterizes a size scale in which 

ll the fractal pores, from smallest to largest size, are contained. 

ithin the length scale, the porosity of the foam with length L 0 
an be calculated as: 

 = 

V pore 

L 3 
0 

(10) 

here V pore is the volume of all the pores in the foam. For a high

orosity open-cell metallic foam, its pores typically exhibit a shape 

lose to dodecahedron or tetrahedron [25] . Therefore, to simplify 

he current calculation, the pores are idealized as spherical ones. 

he total pore volume may thence be calculated as [26] : 

 pore = 

πD f, 3 λ
3 
max 

6 

(
3 − D f, 3 

) ( 1 − ε ) (11) 

here D f, 3 = 3 − ln ε 
ln ( λmin / λmax ) 

. According to Eqs. (10) and (11) , the 

haracteristic length L 0 can be obtained as: 

 0 = λmax 

[ 

πD f, 3 

6 

(
3 − D f, 3 

) 1 − ε 

ε 

] 

1 
3 

(12) 

The pores in the cubic structure of Fig. 1 (c) may be considered 

s squares with varying size ( λ), such that the total pore area A p 

ay be calculated as: 

 p = −
λmax ∫ 

λmin 

λ2 dN = 

D f, 2 λ
2 
max (

2 − D f, 2 

) ( 1 − ε ) (13) 

here D f, 2 = 2 − ln ε 
ln ( λmin / λmax ) 

. It follows that the total cross- 

ectional area of the foam is given by: 

 = 

A p 

ε 
= 

D f, 2 λ
2 
max ( 1 − ε ) (

2 − D f, 2 

)
ε 

(14) 

.2.2. Fractal dimension of average tortuosity, D T 

With the tortuous path of fluid through a porous medium (e.g., 

ellular foam) approximately viewed as a bundle of tortuous capil- 

ary tubes, an analytical method for determining the fractal dimen- 

ion of average tortuosity D T had been proposed [27] , yielding: 

 T = 1 + 

ln τa v 

ln ( L 0 / λa v ) 
(15) 
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Fig. 2. Distribution of streamlines as seen from different angles of view: (a) three- 

dimensional configuration for square ligaments in a dislocated and equidistant ar- 

rangement and the corresponding unit cell; (b) side view of streamlines flowing 

around square ligaments in a dislocated and equidistant arrangement; (c) three- 

dimensional configuration for square ligament in a square arrangement and the cor- 

responding unit cell; (d) side view of streamlines flowing around square ligaments 

in a square arrangement 
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here λa v and τa v are the average pore diameter and the av- 

rage tortuosity, respectively. While D T = 1 represents a straight 

hannel/tube, D T = 3 represents a tortuous channel/tube filling a 

hree-dimensional space. For a three-dimensional porous medium, 

 < D T < 3 . 

With fractal theory, the average pore diameter of the foam is 

alculated as [27] : 

a v = 

D f, 3 λmin 

D f, 3 − 1 

(16) 

Once D f ,3 and L 0 are determined, the only key parameter yet 

o characterize is the average tortuosity τ av . The tortuosity of a 

orous medium is defined as the ratio of the length for a real 

ortuous flow path to the that of a straight (minimal) one [28] , 

hus accounting for the elongation extent of flow path. As numer- 

us streamlines are present within a porous medium like cellular 

etallic foam, it had been demonstrated that the average tortu- 

sity could be estimated as the average of representative stream- 

ines [29] . Fig. 2 depicts the distribution of streamlines in the 

ubic RS. Two representative structures of ligaments distribution 

re selected, as shown in Fig. 2 (a) and (c). Since the open-cell 

oam is composed of random-sized pores, some ligaments are dis- 

ocated. Accordingly, both the dislocated and equidistant ligaments 

re used to calculate the tortuosity, as illustrated in Fig. 2 (a). 

o further simplify the calculation, the irregular pore structures 

re simplified into cubic representative structures: correspondingly, 

he ligaments distributed in a square arrangement are used to cal- 

ulate the tortuosity, as depicted in Fig. 2 (c). 

For open-cell metal foams with idealized pore structures, the 

verage tortuosity is obtained using a weighted average over all 

ossible streamlines around two representative ligament arrange- 

ents, as shown in Fig. 2 (b) and (d), as: 

a v = 

n ∑ 

i =1 

a i τi (17) 
4 
here n is the total number of possible streamlines, a is the weight 

alue ( 
n ∑ 

i =1 

a i = 1 ), and τi is the tortuosity of the i -th flow stream-

ine. When a 1 = a 2 = · · · = a n , Eq. (17) is reduced to a simple sta- 

istical average [29] . Given that numerous flow paths exist in a RS, 

t seems not possible to find and calculate all path lines of fluid 

ow to finalize the average tortuosity. It was suggested [29] that 

he average tortuosity is related to the averaged tortuosity for 

wo representative flow paths: the longest and the shortest. The 

ength, width and height of the representative structure as shown 

n Fig. 2 (a) and (c) are d . Therefore, the total pore volume in the

epresentative structure can be calculated by: 

 RS−pore = λ3 − λ · d 2 s (18) 

here d s is the side length of the square ligament, and the total 

olume of the cubic representative structure is: 

 RS−total = λ3 (19) 

Therefore, for the structures of Fig. 2 (a) and (c), the porosity is: 

 = 

V RS−pore 

V RS−total 

= 1 −
(

d s 

λ

)2 

(20) 

It follows that: 

d s 

λ
= 

√ 

1 − ε (21) 

For streamline 1 in Fig. 2 (b), l AB = l CD = 

λ
2 and l BC = 

d s 
2 . The tor-

uosity can thence be obtained as: 

1 −1 = 

l AB + l BC + l CD 

l AB + l CD 

= 1 + 

1 

2 

d s 

λ
= 1 + 

√ 

1 − ε 

2 

(22) 

Similarly, for streamline 2 in Fig. 2 (b), as l EF = l GH = l IJ = l GI = 

d s 
2 , l F I = λ − d s and l FG = 

√ 

l 2 
GI 

+ l 2 
FI 

, the tortuosity is calculated as: 

1 −2 = 

l EF + l F G + l GH 

l EF + l F I + l IJ 
= 

d s + 

√ (
d s 
2 

)2 + ( λ − d s ) 
2 

d 

= 

√ 

1 − ε + 

1 

2 

√ 

9 − 5 ε − 8 

√ 

1 − ε (23) 

For the distribution of ligaments depicted in Fig. 2 (b), the pro- 

ortion of streamlines 1 and 2 is not affected by the porosity. No 

atter how the porosity changes in Fig. 2 (b), the possibility of 

treamlines 1 and 2 is the same. Therefore, streamlines 1 and 2 in 

ig. 2 (b) have identical weight, e.g., a 1 −1 = a 1 −2 and a 1 −1 + a 1 −2 = 

 , so that the tortuosity can be obtained using a simple weighted 

verage, as: 

1 = a 1 −1 τ1 −1 + a 1 −2 τ1 −2 = 

1 

2 

τ1 −1 + 

1 

2 

τ1 −2 

= 

2 + 3 

√ 

1 − ε + 

√ 

9 − 5 ε − 8 

√ 

1 − ε 

4 

(24) 

here a 1 −1 is the weight value of streamline 1 and a 1 −2 is the 

eight value of streamline 2. 

For streamline 1 in Fig. 2 (d), its actual length l GH is equal to the

traight length of flow l GH in the cell, yielding: 

2 −1 = 

l GH 

l GH 

= 1 (25) 

For streamline 2 in Fig. 2 (d), since the boundary thickness is 

hin on ligament surface, the streamline of ligament boundary 

ayer is thought to fit the ligament surface. Since l MN = l QR = 

λ
2 , 

 NO = l PQ = 

d s 
2 and l OP = d s , the tortuosity can be calculated, as: 

2 −2 = 

l MN + l NO + l OP + l PQ + l QR 

l MN + l OP + l QR 

= 

λ + d s 

λ
= 1 + 

√ 

1 − ε (26) 
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Fig. 3. Idealized pore structure model of open-cell metal foam: (a) representative 

structure (RS); (b) front view of the first layer of RS 

c

[  

s

s

t

r

c

s

G

w

t

c

t

K

2

a

c

w

c

t

o

W

d

2

2

o

t

s

r

t

l

d

c

r

c

t

In Fig. 2 (d), the streamline is tortuous near the ligament but 

lmost straight away from it. As the porosity increases, the pro- 

ortion of straight streamline increases while the proportion of 

ortuous streamline decreases. The two weights of streamlines in 

ig. 2 (d) are a 2 −1 = 

λ3 −λd 2 s 

λ3 and a 2 −2 = 

λd s 
2 

λ3 , yielding: 

2 = a 2 −1 τ2 −1 + a 2 −2 τ2 −2 = 

(
λ3 − λd 2 s 

λ3 

)
τ2 −1 + 

λd s 
2 

λ3 
τ2 −2 

= 1 + ( 1 − ε ) 
√ 

1 − ε (27) 

Typically, in high porosity open-cell metallic foams, the pores 

re randomly distributed, with varying pore sizes. Consequently, 

roportions of the two ligament distributions in Fig. 2 (a) and (c) 

annot be directly measured. In this study, it is assumed that the 

wo distributions have the same proportion, i.e., a 1 = a 2 = 

1 
2 , a 1 

eing the weight value for the dislocated and equidistant arrange- 

ent of Fig. 2 (a) and a 2 the weight value for the square arrange- 

ent of Fig. 2 (c). According to Eqs. (24) and (27) , the average tor-

uosity can be finalized as: 

a v = a 1 τ1 + a 2 τ2 = 

1 

2 

τ1 + 

1 

2 

τ2 

= 

6 + ( 7 − 4 ε ) 
√ 

1 − ε + 

√ 

9 − 5 ε − 8 

√ 

1 − ε 

8 

(28) 

Finally, from Eqs. (12 , 15-16 ) and (28) , the fractal dimension of

verage tortuosity is obtained: 

 T = 1 + 

ln 

{ 

1 
8 

[ 
6 + ( 7 − 4 ε ) 

√ 

1 − ε + 

√ 

9 − 5 ε − 8 

√ 

1 − ε 
] } 

ln 

{
λmax 

λmin 

D f, 3 −1 

D f, 3 

[ 
πD f, 3 

6 ( 3 −D f, 3 ) 
1 −ε 
ε 

] 1 
3 

}
(29) 

For validating the tortuosity prediction, some classical models 

re referred to for comparison. When the porosity approaches 1, 

he average tortuosity also approaches 1, which is consistent with 

he actual physical meaning of tortuosity. As ε = 0 . 95 , the cur-

ent prediction is τa v = 1 . 035 , which agrees well with the classi-

al tortuosity predictions of 1.01~1.105 [30] . This confirms the fact 

hat Eq. (28) can accurately predict the average tortuosity of metal 

oams at high porosity. 

.2.3. Maximum pore diameter 

In the present model development, since the pores of varying 

izes exhibit similar pore shapes, the maximum volume of a pore 

orresponds to the maximum size of a pore. In the RS shown in 

ig. 1 (d), the maximum pore diameter can be calculated from the 

aximum pore volume V max −pore as: 

max = 

3 
√ 

V max −pore = 

3 
√ 

V total−pore − V solid−pore = 

3 
√ 

V solid−pore ε/ (1 − ε) 

(30) 

here V total−pore and V solid−pore are separately the total volume of 

ores and the volume of solid ligaments within the RS. The latter 

s given by: 

 solid−pore = 12 · ( λ − 2 d s ) d 
2 
s + 8 d 3 s = 12 λd 2 s − 16 d 3 s (31) 

.2.4. Shape factor G 

In a previous fractal model [17] , the cross-sectional shape of 

apillary tube is taken as circular. As for the current cubic RS pro- 

osed for open-cell metal foams, the capillary tube is assumed to 

ave a square cross-section. Therefore, a dimensionless parame- 

er – “shape factor” – is introduced to account for the influence 

f cross-sectional shape. Inspired by the models for accounting for 

he variation of metallic struts of metal foams, a shape factor for 
5 
onsidering the change of pore shape for metal foam is developed 

 8 , 13 , 31 , 32 ]. With the cross-sectional area of capillary tube as-

umed to remain fixed along its length, the perimeter of its cross- 

ection is an important parameter relating closely to its flow fea- 

ures. In the current study, with a circular capillary tube taken as 

eference, the square of the ratio of the perimeter of a circular 

ross-section to the perimeter of a cross-section having arbitrary 

hape is defined as the shape factor: 

 = 

(
P ref 

P 

)2 

(32) 

here P is perimeter of arbitrary cross section and P ref represents 

he perimeter of a circle. When the cross-section is a square as 

onsidered in the present study, the shape factor is G = 

π
4 so that 

he original model of Eq. (8) is modified as: 

 = G 

π

128 

L 0 
−1 −D T D f 

3 + D T − D f 

λ3+ D T 
max (33) 

.2.5. Permeability formula 

Finally, upon determining all the key parameters as detailed 

bove, the permeability of open-cell metallic foam can be analyti- 

ally obtained as: 

K 

d 2 s 

= G 

π

128 

D f, 3 

3 + D T − D f, 3 

[ 

πD f, 3 ( 1 − ε ) 

6 
(
3 − D f, 3 

)
ε 

] 

−( 1+ D T ) 
3 [

ε 

1 − ε 

(
12 √ 

1 − ε 
− 16 

)] 2 
3 

(34) 

here the fractal dimension of pore size distribution D f, 3 is cal- 

ulated by Eq. (9) and the fractal dimension D T by Eq. (29) . Note 

hat, contrary to previous permeability models, the current model 

f (24) does not contain any empirical or curve-fitting parameter. 

e turn next to establish a fractal model for effective thermal con- 

uctivity. 

.3. Fractal model of effective thermal conductivity 

.3.1. Thermal resistance of representative structure (RS) 

In addition to permeability, the effective thermal conductivity 

f open-cell metallic foams is developed below using the fractal 

heory as well as the thermal-electrical analogy technique. Con- 

ider again the idealized cubic topology of Fig. 1 (c) and its rep- 

esentative structure (RS) illustrated in Fig. 3 (a). Let d denote the 

otal length of the RS and let d s represent the thickness of each 

igament. With heat flow imposed on the top of the RS, heat con- 

uction occurs mainly along the z -axis such that lateral thermal 

ontact resistance can be safely neglected [33] . Therefore, thermal 

esistance along the direction of heat flow ( z axis) needs only be 

onsidered. For conduction analysis, the effects of thermal radia- 

ion and convection in the RS are neglected. 



T. Xiao, X. Yang, K. Hooman et al. International Journal of Heat and Mass Transfer 177 (2021) 121509 

t  

v

a

o

R

R

a

w

s

m

t

c

w

2

p

s

w

c

t

c

m

F

s

l

m

s

f

L

t

R

n

Fig. 4. Schematic of heat conduction path in a porous medium: (a) particle chain 

in packed spherical particle bed [19] ; (b) solid ligament chain in open-cell metallic 

foam 

p

a

o

s

t  

c

c

k

w

p

c

ε

p

fi

3

3

v

a  

3  

a

o  

t

a

i  

t

e

0  

i

d  
In Fig. 3 (a), the representative structure (RS) is divided into 

hree parts A, B, and C from top to bottom. For part A, it is subdi-

ided into three parts A1, A2 and A3 from left to right, where A1 

nd A3 have the same thermal resistance. The thermal resistance 

f A1 and A3 can be expressed as: 

 A 1 = R A 3 = 

d 

k s d 2 s 

(35) 

Similarly, A2 thermal resistance can be obtained: 

 A 2 = 

2 d s 

k s d s ( d − 2 d s ) 
+ 

d − 2 d s 

k f d s ( d − 2 d s ) 
(36) 

The thermal resistance A1, A2 and A3 can be connected in par- 

llel to obtain the thermal resistance A, as expressed in Eq. (37) . 

1 

R A 

= 

1 

R A 1 

+ 

1 

R A 2 

+ 

1 

R A 3 

= 

2 k s d 
2 
s 

d 
+ 

k s k f d s ( d − 2 d s ) 

2 k f d s + k s ( d − 2 d s ) 
(37) 

here k f and k s are the thermal conductivity of the liquid and 

olid phase, in respective. In a similar manner, the equivalent ther- 

al resistance of the second layer and the third layer can be ob- 

ained, as: 

1 

R B 

= 

1 

R B 1 

+ 

1 

R B 2 

+ 

1 

R B 3 

= 

k f ( d − 2 d s ) 
2 

d 
+ 

2 k s k f ( d − 2 d s ) d s 

2 d s k f + ( d − 2 d s ) k s 

(38) 

1 

R C 

= 

1 

R C1 

+ 

1 

R C2 

+ 

1 

R C3 

= 

2 k s d 
2 
s 

d 
+ 

k s k f ( d − 2 d s ) λs 

2 λs k f + ( d − 2 d s ) k s 
(39) 

The total thermal resistance of the cubic RS shown in Fig. 3 (a) 

an thence be obtained as: 

1 

R RS 

= 

1 

R A 

+ 

1 

R B 

+ 

1 

R C 

= d 

[
4 k s γ

2 + k f ( 1 − 2 γ ) 
2 + 

4 k s k f γ ( 1 − 2 γ ) 

2 k f γ + k s ( 1 − 2 γ ) 

]
(40) 

here d = λ + 2 d s and γ = d s /d . 

.3.2. RS Chain model 

Previously, when developing a thermal conductivity model for 

acked spherical particle beds, the heat conduction paths were de- 

cribed as multiple curved heat chains in parallel [19] . Each chain 

as composed of particles in close contact, as depicted schemati- 

ally in Fig. 4 (a). Built upon this concept, for the present idealized 

opological construction of open-cell metallic foams ( Fig. 3 ), the 

onduction of heat along randomly-distributed RSs in close contact 

ay be treated as heat flow along multiple RS chains in parallel; 

ig. 4 (b). We first derive the effective thermal conductivity of a 

ingle chain of RSs using the series model, and then use the paral- 

el model to derive the effective conductivity of idealized open-cell 

etallic foam consisted of multiple RS chains having different pore 

izes. 

To begin with, we assume that the curved RS chains obey the 

ractal distribution law. As a curved chain of length L t (λ) contains 

 t (λ) /λ cubic RSs, according to the Fourier’s law, its thermal resis- 

ance is: 

 chain = 

L t ( λ) 

λ
R RS 

= 

λ−1 −D T L D T 
0 

( 1 + 2 γ ) 

[
4 k s γ

2 + k f ( 1 − 2 γ ) 
2 + 

4 k s k f γ ( 1 − 2 γ ) 

2 k f γ + k s ( 1 − 2 γ ) 

]−1 

(41) 

Within the infinitesimal range of λ to λ + dλ for pore sizes, the 

umber of curved chains is −dN. These chains are connected in 
6 
arallel so that their total thermal resistance R t can be obtained 

s: 

1 

R t 
= 

∫ λmax 

λmin 

D f, 2 λ
D f, 2 
max λ

−( D f, 2 +1 ) dλ

R chain 

(42) 

Fig. 1 (c) depicts the minimal characteristic cubic cell for the 

pen-cell metallic foam, which contains all the fractal pores, from 

mallest to largest size. The effective conductivity of the cube has 

he form of k e = 

L 0 
A R t 

. From Eqs. (12) , (14) and (42) , the effective

onductivity of the metallic foam consisted of multiple cubic RS 

hains can finally be obtained as: 

 e = 

( 1 + 2 γ ) 
(
2 − D f, 2 

)
ε (

D T − D f, 2 + 1 

)
( 1 − ε ) 

[ 

πD f, 3 ( 1 − ε ) 

6 

(
3 − D f, 3 

)
ε 

] 

1 −D T 
3 (

1 − ε 
D T −D f, 2 + 1 

2 −D f, 2 

)

×
[

4 k s γ
2 + k f ( 1 − 2 γ ) 

2 + 

4 k s k f γ ( 1 − 2 γ ) 

2 k f γ + k s ( 1 − 2 γ ) 

]
(43) 

here the fractal dimension D T is determined by Eq. (29) . With the 

orosity given by ε = 1 − ( V s / V RS ) , its relationship with γ = d s /d 

an be obtained as: 

 = 1 − 12 γ 2 + 16 γ 3 (44) 

Again, note that, different from most existing models, the 

resent model of Eq. (43) does not contain any empirical or curve- 

tting parameter. 

. Results and discussion 

.1. Permeability 

To validate the analytical fractal models developed in the pre- 

ious sections for open-cell metallic foams, the model predictions 

re compared with not only existing experimental data [ 8 , 25 , 34-

9 ] and simulated data [ 40 , 41 ] (as summarized in Table 1 ), but

lso predictions obtained using alternative models proposed by 

ther studies [ 6 , 42-44 ]. Fig. 5 compares the present model predic-

ions and the experimental data, which demonstrates satisfactory 

greement between the two. By comparing with other permeabil- 

ty models for open-cell metallic foams [ 6 , 42-44 ], it is indicated

hat the present fractal model exhibits a better agreement with 

xperimental data. For instance, the validated porosity range is 

 . 61 < ε < 1 . 00 for the Jackson-James model [43] : when the poros-

ty drops below 0.61, the dimensionless permeability ( K/ d 2 s ) is pre- 

icted to be negative; for the porosity range of 0 . 70 < ε < 1 . 00 , the
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Table 1 

Existing experimental and pore-scale simulation data of open-cell metal foams collected for comparison with the present analytical model. 

References PPI (Pores per inch −1 ) Porosity, ε Permeability K × 10 7 (m 

2 ) d s (mm) d p (mm) K/ d 2 p K/ d 2 s 

Bhattacharya et al. [8] 

(Exp) 

5 0.9726 2.7 0.5 4.02 0.017 1.080 

5 0.9118 1.8 0.55 3.8 0.012 0.595 

10 0.9486 1.2 0.4 3.13 0.012 0.750 

10 0.9138 1.1 0.45 3.28 0.010 0.543 

10 0.8991 0.94 0.43 3.2 0.009 0.508 

20 0.9546 1.3 0.3 2.7 0.018 1.444 

20 0.9245 1.1 0.35 2.9 0.013 0.898 

20 0.9005 0.9 0.35 2.58 0.014 0.735 

40 0.9659 0.55 0.2 1.9 0.015 1.375 

40 0.9272 0.61 0.25 2.02 0.015 0.976 

40 0.9132 0.53 0.2 1.8 0.016 1.325 

5 0.971 2.52 0.51 4 0.016 0.969 

5 0.946 2.17 0.47 3.9 0.014 0.982 

5 0.905 1.74 0.49 3.8 0.012 0.725 

10 0.949 1.49 0.37 3.1 0.016 1.088 

10 0.909 1.11 0.38 2.96 0.013 0.769 

20 0.978 1.42 0.38 2.8 0.018 0.983 

20 0.949 1.185 0.32 2.7 0.016 1.157 

20 0.906 0.854 0.34 2.6 0.013 0.739 

40 0.972 0.52 0.23 1.8 0.016 0.983 

40 0.952 0.562 0.24 1.98 0.014 0.976 

40 0.937 0.568 0.24 2 0.014 0.986 

Phanikumar and Mahajan 

[25] (Exp) 

5 0.899 1.989 0.5605 4.221 0.017 0.633 

5 0.93 2.069 0.5350 4.347 0.012 0.723 

10 0.9085 1.075 0.4428 3.422 0.012 0.548 

10 0.9386 1.171 0.4144 3.413 0.010 0.682 

20 0.92 1.063 0.3500 2.784 0.009 0.868 

20 0.9353 1.172 0.3321 2.723 0.018 1.063 

40 0.9091 0.5066 0.2500 1.935 0.013 0.811 

40 0.9586 0.5987 0.2094 1.727 0.014 1.365 

Du Plessis et al. [34] (Exp) N/A 0.973 0.0177 a 0.047 0.1265 0.015 0.801 

N/A 0.975 0.080 a 0.054 0.2609 0.015 2.743 

N/A 0.978 0.1603 a 0.054 0.3568 0.016 5.497 

Mancin et al. [35] (Exp) 5 0.921 2.36 0.540 5.08 0.016 0.809 

10 0.903 1.90 0.529 2.54 0.014 0.679 

10 0.934 1.87 0.450 2.54 0.012 0.923 

10 0.956 1.82 0.445 2.54 0.016 0.919 

20 0.932 0.824 0.367 1.27 0.013 0.612 

40 0.930 0.634 0.324 0.635 0.018 0.604 

Garrido et al. [36] (Exp) 10 0.818 0.2859 0.835 1.933 0.008 0.041 

20 0.804 0.0917 0.418 1.192 0.006 0.052 

30 0.816 0.0723 0.319 0.871 0.010 0.071 

45 0.813 0.0623 0.201 0.666 0.014 0.154 

10 0.852 0.395 0.88 2.252 0.008 0.051 

20 0.858 0.1466 0.451 1.131 0.011 0.072 

30 0.852 0.1107 0.33 0.861 0.015 0.102 

45 0.848 0.0995 0.206 0.687 0.021 0.234 

20 0.777 0.0674 0.46 1.069 0.006 0.032 

Mancin et al. [37] (Exp) 20 0.930 0.535 0.315 1.175 0.014 0.539 

20 0.932 0.824 0.367 1.218 0.016 0.612 

Hwang et al. [38] (Exp) 10 0.70 0.088 0.36 1.84 0.014 0.068 

10 0.80 0.2 0.36 1.92 0.020 0.154 

10 0.95 0.75 0.36 2.03 0.111 0.579 

Wu et al. [39] (Exp) N/A 0.55 0.0312 0.348 b 1.35 0.118 0.026 b 

N/A 0.7 0.0552 0.326 b 1.55 0.126 0.052 b 

N/A 0.85 0.103 0.203 b 1.35 0.009 0.250 b 

N/A 0.7 0.217 0.708 b 3.36 0.029 0.043 b 

N/A 0.7 0.303 0.946 b 4.49 0.029 0.034 b 

Zafari et al. [40] (Sim) N/A 0.96 0.94 0.243 2 0.024 2.514 b 

N/A 0.96 4.71 0.486 4 0.029 3.149 b 

N/A 0.96 5.39 0.730 6 0.015 1.602 b 

Krishman et al. [41] (Sim) N/A 0.945 N/A N/A N/A 0.014 1.242 b 

N/A 0.953 N/A N/A N/A 0.014 1.419 b 

Note: “Exp” and “Sim”represent experimental data and simulated data, respectively. 
a Permeability is calculated by [34] : K = 

d 2 ε 2 

36 τ ( τ−1 ) 

b Calculated based on empirical correlation [ 8 , 45 ]: d s 
d p 

= 1 . 18 
√ 

1 −ε 
3 π ( 1 

1 −e −( 1 −ε ) / 0 . 04 ) 

7 
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Fig. 5. Comparison between model predictions and experimental data for open-cell 

metallic foams [ 6 , 8 , 25 , 34-44 ] 

Fig. 6. Comparison of average RD s among various permeability models for open- 

cell metallic foams 
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Table 2 

Relative deviations ( RD s) between permeability models and experimental 

data. 

Models RD ranges MAPE s (averaged RD s) 

Present study 0.08-712.84% 62.06% 

Hooman and Dukhan [6] 0.35-1975.88% 148.27% 

Khayargoli et al. [42] 0.35-1865.40% 254.93% 

Jackson and James [43] 96.60-3197.21% 611.30% 

Tamayol and Bahrami [44] 2.55-993.36% 117.53% 
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odel significantly overestimates the permeability. Similarly, for 

he porosity range of 0 . 50 < ε < 0 . 85 , the Hooman-Dukhan model

verestimates the permeability. As can be seen from Fig. 5 , the 

roposed fractal model predicts the variation trend of permeability 

ore accurately over the entire porosity range considered. 

For quantitative comparison, relative deviation ( RD ) is applied 

o evaluate different permeability models, which is defined by: 

D = 

∣∣∣∣∣∣∣
(

K 
d 2 s 

)
pre 

−
(

K 
d 2 s 

)
exp (

K 
d 2 s 

)
exp 

∣∣∣∣∣∣∣ (45) 

here the subscripts “exp” and “pre” denote separately experimen- 

al measurement and model prediction. 

Fig. 6 compares the values of RD calculated using differ- 

nt permeability models. Among the existing models considered, 

he Jackson-James model has the largest RD (611.30%), while the 

ooman-Dukhan model has the smallest RD (148.27%). In contrast, 

chieving a RD of only 62.06%, the present fractal permeability 

odel improves the RD by 58.14% relative to the Hooman-Dukhan 

odel. This not only indicates the applicability and feasibility of 

ur model, but also demonstrates that fractal theory can be em- 

loyed to study transport properties of open-cell metallic foams. 

he main reason for the superior prediction accuracy of the pro- 

osed fractal model is that traditional geometric analysis methods 

se a periodic unit cell (UC) to characterize the random pore struc- 

ure of open-cell metal foam, thus ignoring the typically random- 

ess of its pore distribution. In contrast, with the effect of pore 

istribution randomness duly considered, the present fractal model 

s capable of predicting the variation trend of foam permeability 

ith porosity in a wide range (0.55 < ε < 0.98). It needs to be

mphasized here that the proposed analytical model, i.e., Eq. (34) , 
8 
oes not contain any empirical or fitting parameter, except that as- 

uming a fixed ratio of minimum pore diameter to maximum pore 

iameter (i.e., λmin / λmax = 0 . 001 ). Further, each parameter of the 

odel, including D f , D T , ε and τ av , has a clear physical meaning. 

t should be noted here that the experimental data for metal foam 

ermeability have strong diversity and divergence, since they are 

easured based on different kinds of metal foams with various 

ore shapes and diameter distributions. Therefore, the permeabil- 

ty predicted by the models will bring huge deviation due to indi- 

idual data points. It is inadequate to judge a model only according 

o the relative deviation ( RD ) and the Mean Absolute Percentage 

rror ( MAPE ) [ 21 , 22 ] (see Table 2 ). The MAPE is defined by: 

AP E = 

1 

m 

m ∑ 

n =1 

∣∣∣∣∣∣∣
(

K 
d 2 s 

)
pre , n 

−
(

K 
d 2 s 

)
exp ,n (

K 
d 2 s 

)
exp ,n 

∣∣∣∣∣∣∣ (46) 

here m is the number of experimental data. One should select a 

roper model according to the specific porosity range when pre- 

icting permeability. 

Permeability is a property that describes the easiness of fluid 

hrough open porous media. For Darcy flow, the pressure drop can 

e determined by 

dp 

dl 
= 

μu 

K 

(47) 

here dp / dl is the pressure drop along the nominal flow direc- 

ion, μ is the dynamic viscosity, and u is the mean velocity along 

he flow direction. If permeability of a porous medium is given, 

he corresponding pressure drop within Darcy flow regime can 

e readily calculated by Eq. (47) . For other conditions of non- 

ewtonian fluids or fluids in high velocity regime, Darcy’s law 

s not satisfied. However, for Newtonian fluids in a high velocity 

egime, if permeability K and inertia coefficient f are determined, 

ts pressure drop can be also calculated by 

�p 

�l 
= 

μu 

K 

+ 

ρ f √ 

K 

u 

2 (48) 

here f is the inertia coefficient and ρ is the density, and the K in 

q. (48) is the permeability for porous media in Darcy flow regime. 

.2. Effective thermal conductivity 

For the effective thermal conductivity of open-cell metallic 

oams saturated with air, water or paraffin, Fig. 7 compares pre- 

ictions obtained using the present model and existing models 

 11-13 , 15 , 46-48 ] and existing experimental data (details sum- 

arized in Table 3 ), respectively. The model predictions are car- 

ied out using materials properties shown in Table 4 . As seen, 

he effective conductivity decreases, nearly linearly, with increas- 

ng porosity. Regardless of the type of saturating fluid (air, water 

r paraffin) or material make (aluminum, copper or nickel), pre- 

ictions of the present model agree quite well with experimen- 

al data, the Boomsma-Poulikakos model overestimates, while the 

odel of Yang et al. [46] underestimates. Interestingly, relative to 
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Table 3 

Experimental and pore-scale simulation data of effective thermal conductivity for open-cell aluminum (Al), copper (Cu) and 

Nickel (Ni) foams saturated with air, water or paraffin. 

References PPI (Pores per inch −1 ) Porosity, ε k e , air [W/(m-K)] Remarks 

Yao et al. [13] 10 0.925 11.16 Cu-air (Exp) 

10 0.935 9.71 

10 0.941 8.12 

20 0.895 17.68 

20 0.906 16.52 

20 0.912 12.61 

20 0.914 13.62 

20 0.918 12.61 

20 0.926 12.61 

20 0.932 10.43 

20 0.937 8.70 

20 0.942 9.13 

20 0.968 4.64 

20 0.973 3.91 

20 0.975 3.62 

20 0.975 3.48 

20 0.978 3.04 

40 0.926 12.32 

40 0.935 9.57 

40 0.945 8.41 

Yao et al. [13] 20 0.914 14.10 Cu-water (Exp) 

20 0.937 9.33 

20 0.975 4.03 

Yao et al. [13] 20 0.914 13.78 Cu-paraffin (Exp) 

20 0.937 8.80 

20 0.975 3.71 

Yang et al. [14] 5 0.913 6.63 Al-air (Exp) 

6 0.953 3.34 

7 0.912 6.72 

8 0.957 3.57 

10 0.917 6.63 

10 0.928 5.63 

13 0.963 2.88 

20 0.923 5.81 

Yang et al. [14] 5 0.913 7.91 Al-water (Exp) 

6 0.953 4.94 

7 0.912 8.01 

8 0.957 4.71 

10 0.917 7.91 

10 0.928 6.95 

13 0.963 4.12 

20 0.923 7.04 

Phanikumar and Mahajan 

[25] 

N/A 0.899 7.733 Al-air (Exp) 

N/A 0.93 5.357 

N/A 0.9085 7.008 

N/A 0.9386 4.711 

N/A 0.92 6.13 

N/A 0.9353 4.963 

N/A 0.9091 6.963 

N/A 0.9586 3.185 

Calmidi and Mahajan [48] 5 0.971 2.7 Al-air (Exp) 

5 0.946 4.6 

5 0.905 6.7 

10 0.949 4 

10 0.909 6.7 

20 0.978 2.2 

20 0.949 3.9 

20 0.906 6.9 

40 0.972 2.5 

40 0.952 3.9 

40 0.937 4.5 

Calmidi and Mahajan [48] 5 0.971 3.7 Al-water (Exp) 

5 0.946 5.4 

5 0.905 7.65 

10 0.949 4.95 

10 0.909 7.6 

20 0.978 3.05 

20 0.949 4.8 

20 0.906 7.65 

40 0.972 3.3 

40 0.952 4.75 

40 0.937 5.35 

Dyga and Witczak [49] 40 0.929 5.48 Al-air (Exp) 

( continued on next page ) 
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Table 3 ( continued ) 

40 0.929 5.64 

Dyga and Witczak [49] 40 0.929 6.36 Al-water (Exp) 

40 0.929 6.82 

Sadeghi et al. [50] 10 0.903 7.36 Al-air (Exp) 

10 0.945 4.54 

20 0.906 6.86 

20 0.953 3.79 

Bianchi et al. [51] 10 0.897 7.7 Al-air (Sim) 

40 0.890 7.2 

40 0.950 3.9 

Schmierer et al. [52] 20 0.95 3.5 Al-air (Exp) 

Schmierer et al. [52] 20 0.95 4.873 Al-water (Exp) 

Schmierer and Razani [53] 5 0.92 6.3 Al-water (Exp) 

10 0.886 10.2 

10 0.962 3.12 

20 0.915 7.32 

30 0.913 7.4 

Xiao et al. [54] N/A 0.9717 1.31 Ni-paraffin (Exp) 

N/A 0.9728 1.23 

N/A 0.9765 0.98 

Note: The abbreviations of “Exp” and “Sim” represent experiment and simulation data in 

this Table. 

e

d  

e  

[

d

d

c

B

t

t

F

(

C

xperimental data, the Zenner-Edouard model predicts lower con- 

uctivities at ε < 0 . 96 but higher ones at ε > 0 . 96 . The other mod-

ls proposed by Dai et al. [12] , Yao et al. [13] , and Wu and Huang

15] can correctly predict the variation trend effective thermal con- 

uctivity with porosity for open-cell metallic foams saturated with 
ig. 7. Comparisons between predictions obtained with effective conductivity models and 

b) water-saturated Al foam [ 11-15 , 46-49 , 52 , 53 ]; (c) air-saturated Cu (copper) foam [ 11-1

u foam [ 11-13 , 15 , 46-48 ]; and (f) paraffin-saturated Ni (nickel) foam [ 11-13 , 15 , 46-48 , 5

10 
ifferent fluids. Note that, Dai et al. [12] made modifications to in- 

lined ligaments in the tetrakaidecahedron geometry proposed by 

oomsma and Polulikakos [ 11-13 , 15 , 46-48 ] for metal foams. Al- 

hough the prediction accuracy of Dai et al.’s model is much higher 

han the Boomsma-Polulikakos model, it still slightly overestimates 
existing experimental data: (a) air-saturated Al (aluminum) foam [ 11-15 , 25 , 46-52 ]; 

3 , 15 , 46-48 ]; (d) water-saturated Cu foam [ 11-13 , 15 , 46-48 ]; (e) paraffin-saturated 

4 ] 
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Table 4 

Material thermal conductivities used for analytical model 

prediction. 

Materials k (W/(m-K)) Materials k (W/(m-K)) 

Aluminum 203 Air 0.026 

Copper 398 Water 0.598 

Nickle 91.4 Paraffin 0.305 

Fig. 8. Comparison of RDs for different metal foams at high porosities 

Fig. 9. Comparison of average RDs calculated with different effective conductivity 

models at high porosities 
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Table 5 

Relative deviations ( RD s) between effective conductivity models and experimental 

data. 

Samples Models RD ranges Average RDs 

Al- 

air 

Present study 0.43-24.10% 6.62% 

Boomsma and Poulikakos [11] 42.83-94.01% 60.09% 

Dai et al. [12] 0.86-20.17% 6.66% 

Yao et al. [13] 0.44-28.23% 6.99% 

Wu and Huang [15] 0.22-26.40% 6.80% 

Yang et al. [46] 3.33-32.33% 12.96% 

Zenner and Edouard [47] 0.30-20.68% 12.38% 

Calmidi and Mahajan [48] 1.16-13.77% 7.33% 

Al- 

water 

Present study 0.25-24.19% 9.06% 

Boomsma and Poulikakos [11] 25.83-97.92% 60.44% 

Dai et al. [12] 0.09-30.91% 6.79% 

Yao et al. [13] 0.30-27.18% 11.24% 

Wu and Huang [15] 0.071-26.39% 9.64% 

Yang et al. [46] 14.07-51.19% 28.56% 

Zenner and Edouard [47] 6.10-23.26% 15.65% 

Calmidi and Mahajan [48] 0.29-23.25% 11.62% 

Cu- 

air 

Present study 0.04-12.26% 5.98% 

Boomsma and Poulikakos [11] 35.72-114.01% 64.29% 

Dai et al. [12] 0.27%-31.71% 11.48% 

Yao et al. [13] 0.07-16.54% 6.31% 

Wu and Huang [15] 0.32-10.69% 5.54% 

Yang et al. [46] 0.74-24.18% 11.17% 

Zenner and Edouard [47] 3.96-45.15% 19.04% 

Calmidi and Mahajan [48] 1.80-33.13% 12.78% 

Cu- 

water 

Present study 1.07-11.06% 6.40% 

Boomsma and Poulikakos [11] 64.70-88.65% 77.27% 

Dai et al. [12] 2.76-21.56% 13.65% 

Yao et al. [13] 3.21-4.91% 4.22% 

Wu and Huang [15] 0.96-9.42% 5.13% 

Yang et al. [46] 10.41-18.14% 15.40% 

Zenner and Edouard [47] 4.35-23.93% 15.33% 

Calmidi and Mahajan [48] 3.09-21.09% 11.93% 

Cu- 

paraffin 

Present study 1.15-14.21% 7.76% 

Boomsma and Poulikakos [11] 58.77-100.98% 79.74% 

Dai et al. [12] 1.41-28.03% 16.18% 

Yao et al. [13] 5.51-6.87% 6.33% 

Wu and Huang [15] 0.75-12.11% 7.39% 

Yang et al. [46] 5.01-16.25% 9.43% 

Zenner and Edouard [47] 3.19-30.02% 17.35% 

Calmidi and Mahajan [48] 5.09-26.20% 14.57% 

Ni- 

paraffin 

Present study 0.54-11.46% 4.24% 

Boomsma and Poulikakos [11] 65.94-86.21% 73.49% 

Dai et al. [12] 10.76-24.72% 15.96% 

Yao et al. [13] 2.11-9.04% 4.90% 

Wu and Huang [15] 0.79-10.23% 4.40% 

Yang et al. [46] 28.74-33.72% 31.92% 

Zenner and Edouard [47] 8.63-27.31% 15.67% 

Calmidi and Mahajan [48] 9.03-26.49% 15.59% 

v

d

b

t

i

m

fi

a

p

f

T

a

m

4

d

he effective conductivity of copper and nickel foams for porosities 

igher than 0.91, as shown in Fig. 7 (c)-(f). Overall, for the porosity 

ange of 0.88 to 1.0, the predictions obtained using the models of 

ao et al. [13] and Wu and Huang [15] exhibit reasonable agree- 

ent with experimental data. 

Similar to the case of permeability, Fig. 8 compares the val- 

es of RD calculated by comparing with experimental data in each 

ource. It is seen that our model gives better predictions com- 

ared with other models. For air- and water-saturated Al foams, 

he RD s of our model are lower than those of the Wu-Huang 

odel, the latter being the best among existing models consid- 

red. For paraffin-saturated Ni foams, our model presents lower 

D s than other models as well. More detailed values for RD are 

ummarized in Table 5 . 

Upon averaging all the RD values for each model, Fig. 9 com- 

ares the average RDs calculated with different models. As seen, 

ith an average deviation of 7.15%, our model presents the smallest 

D among all the models considered, followed by the Wu-Huang 

odel (7.26%), the Yao et al. model (7.92%), the Dai et al. model 

8.53%), the Calmidi-Mahajan model (10.37%), the Zenner-Edouard 

odel (15.08%), the Yang et al. model (17.75%), and the Boomsma- 

oulikako model (62.70%). It should be noted here that although 

he Calmidi-Mahajan model exhibits a relatively low RD , it is de- 
11 
eloped by assuming that the open-cell metallic foam has a two- 

imensional cellular morphology. 

The effective thermal conductivity model developed herein 

ased on fractal theory is in good agreement with experimen- 

al data, demonstrating again the applicability of fractal theory 

n heat transfer studies of open-cell metallic foams. Further, the 

odel built upon fractal theory contains no empirical or curve- 

tting parameter, and each parameter appearing in the model has 

 specific physical meaning. Compared with existing models, the 

resent model more clearly reveals key factors that affect the ef- 

ective thermal conductivity and the related physical mechanisms. 

he developed fractal model considers the randomness of pore size 

nd distribution, consistent with such randomness observed in real 

etallic foams. 

. Conclusion 

The fractal theory has been employed to characterize the ran- 

omly distributed pores in open-cell metallic foams and then to 
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stablish analytical models for predicting both the permeability 

nd effective thermal conductivity. The following conclusions can 

e drawn. 

(1) For modelling permeability: with the cellular foam morphol- 

ogy characterized using fractal dimensions, the permeability 

is analytically expressed as a function of porosity, average 

tortuosity, and pore size distribution, with no empirical or 

fitting parameter needed in contrast to previous permeabil- 

ity models. 

(2) The permeability model predictions compare well with ex- 

isting experimental data for foam porosities varying over a 

wide range (from 0.55 to 0.98). Relative to existing analyti- 

cal models, the current model exhibits the smallest relative 

deviations (62.06%) from experimental data; while the rela- 

tive deviations for the previous models range from 117.53%- 

611.30% for the wide porosity range. 

(3) For modelling conductivity: the effective thermal conductiv- 

ity is analytically expressed as a function of porosity, ther- 

mal conductivity of the material makes of the foam and that 

of the filling medium, average tortuosity, and pore size dis- 

tribution, with no empirical or fitting parameter needed in 

contrast to previous effective thermal conductivity models. 

(4) Compared with existing effective conductivity models, the 

present model exhibits good accuracy (relative deviation 

7.15% from experimental data) for high-porosity (0.88-0.99) 

aluminum, copper and nickel foams saturated with air, wa- 

ter or paraffin. In our model, the RDs of Al-air, Al-water, Cu- 

air, Cu-water, Cu-paraffin and Ni-paraffin are 6.62%, 9.06%, 

11.24%, 5.98%, 6.40%, 7.76% and 4.24%, in respectively. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Tian Xiao: Software, Formal analysis, Writing – original draft. 

iaohu Yang: Conceptualization, Methodology, Writing – original 

raft, Supervision. Kamel Hooman: Supervision, Writing – review 

 editing. Tian Jian Lu: Supervision, Writing – review & editing. 

cknowledgements 

This work was supported by the National Natural Science Foun- 

ation of China ( 51976155 , 12032010 ), the Fundamental Research 

unds for Central Universities ( xtr042019019 ), and the Open Fund 

f the State Key Laboratory of Mechanics and Control of Mechani- 

al Structures ( MCMS-E0219K02 , MCMS-I-0219K01 ). One of the au- 

hors (Xiaohu Yang) gratefully acknowledged the support of K. C. 

ong Education Foundation. 

eference 

[1] N Bianco , M Iasiello , GM Mauro , L. Pagano , Multi-objective optimization of

finned metal foam heat sinks: Tradeoff between heat transfer and pressure 
drop, Appl. Therm. Eng. 182 (2021) 116058 . 

[2] M Iasiello , M Mameli , S Filippeschi , N. Bianco , Metal foam/PCM melting evo-
lution analysis: Orientation and morphology effects, Appl. Therm. Eng. 187 

(2021) 116572 . 
[3] S Mancin , A Diani , L Doretti , K Hooman , L. Rossetto , Experimental analysis of

phase change phenomenon of paraffin waxes embedded in copper foams, Int. 
J. Therm. Sci. 90 (2015) 79–89 . 

[4] XH Yang , JF Guo , B Yang , HN Cheng , P Wei , YL. He , Design of non-uniformly

distributed annular fins for a shell-and-tube thermal energy storage unit, Appl. 
Energy 279 (2020) 15772 . 

[5] G Junfei , L Zhan , D Zhao , Y Jiabang , Y Xiaohu , Y. Jinyue , Effect of fin-metal
foam structure on thermal energy storage: an experimental study, Renewable 

Energy 172 (2021) 57–72 . 
12 
[6] K Hooman , N. Dukhan , A theoretical model with experimental verification to 
predict hydrodynamics of foams, Transp. Porous Media 100 (2013) 393–406 . 

[7] Z Hashin , S. Shtrikman , A variational approach to the theory of the effec-
tive magnetic permeability of multiphase materials, J. Appl. Phys. 33 (1962) 

3125–3131 . 
[8] A Bhattacharya , VV Calmidi , RL. Mahajan , Thermophysical properties of high 

porosity metal foams, Int. J. Heat Mass Transfer 45 (2002) 1017–1031 . 
[9] TT Huu , M Lacroix , CP Huu , D Schweich , D Edouard , Towards a more realistic

modeling of solid foam: Use of the pentagonal dodecahedron geometry, Chem. 

Eng. Sci. 64 (2009) 5131–5142 . 
[10] V Calmidi , R. Mahajan , Forced convection in high porosity metal foams, J. Heat

Transfer 122 (20 0 0) 557–565 . 
[11] K Boomsma , D Poulikakos , Corrigendum for the paper: K. Boomsma, D. 

Poulikakos, "On the effective thermal conductivity of a three-dimensionally 
structured fluid-saturated metal foam" [International Journal of Heat and 

Mass Transfer, 44 (2001) 827–836], Int. J. Heat Mass Transfer 54 (2011) 746–

748 . 
[12] Z Dai , K Nawaz , YG Park , J Bock , AM. Jacobi , Correcting and extending the

Boomsma–Poulikakos effective thermal conductivity model for three-dimen- 
sional, fluid-saturated metal foams, Int. Commun. Heat Mass Transfer 37 

(2010) 575–580 . 
[13] Y Yao , H Wu , Z. Liu , A new prediction model for the effective thermal con-

ductivity of high porosity open-cell metal foams, Int. J. Therm. Sci. 97 (2015) 

56–67 . 
[14] X Yang , J Bai , H Yan , J Kuang , T. Kim , An Analytical Unit Cell Model for the Ef-

fective Thermal Conductivity of High Porosity Open-Cell Metal Foams, Transp. 
Porous Media 102 (2014) 403–426 . 

[15] D Wu , C. Huang , Thermal conductivity model of open-cell foam suitable for 
wide span of porosities, Int. J. Heat Mass Transfer 130 (2019) 1075–1086 . 

[16] B Yu , J. Li , Some fractal characters of porous media, Fractals 9 (2001) 365–372 .

[17] B Yu , P. Cheng , A fractal permeability model for bi-dispersed porous media,
Int. J. Heat Mass Transfer 45 (2002) 2983–2993 . 

[18] J Cai , L Luo , RAN Ye , X Zeng , X. Hu , Recent advances on fractal modeling of
permeability for fibrous porous media, Fractals 23 (2015) 1540 0 06 . 

[19] B Yu , P. Cheng , Fractal Models for the Effective Thermal Conductivity of Bidis-
persed Porous Media, J. Thermophys. Heat Transfer 16 (2002) 22–29 . 

20] X Yang , TJ Lu , T. Kim , An analytical model for permeability of isotropic porous

media, Phys. Lett. A 378 (2014) 2308–2311 . 
[21] M Iasiello , N Bianco , WKS Chiu , V. Naso , Thermal conduction in open-cell

metal foams: anisotropy and representative volume element, Int. J. Therm. Sci. 
137 (2019) 399–409 . 

22] M Iasiello , N Bianco , WKS Chiu , V. Naso , Anisotropic convective heat transfer in
open-cell metal foams: assessment and correlations, Int. J. Heat Mass Transfer 

154 (2020) 119682 . 

23] Benoit B Mandelbrot , The Fractal Geometry of Nature, WH freeman, New York, 
1982 . 

24] A Majumdar , B. Bhushan , Role of Fractal Geometry in Roughness Characteriza- 
tion and Contact Mechanics of Surfaces, J. Tribol. (1990) . 

25] MS Phanikumar , RL. Mahajan , Non-Darcy natural convection in high porosity 
metal foams, Int. J. Heat Mass Transfer 45 (2002) 3781–3793 . 

26] B. Yu , Analysis of flow in fractal porous media, Appl. Mech. Rev. 61 (2008)
050801 . 

27] B. Yu , Fractal character for tortuous streamtubes in porous media, Chin. Phys. 

Lett. 22 (2005) 158 . 
28] FA. Dullien , Porous media: fluid transport and pore structure, Academic press, 

2012 . 
29] M Yun , B Yu , P Xu , J. Wu , Geometrical Models for Tortuosity of Streamlines in

Three-Dimensional Porous Media, Can. J. Chem. Eng. 84 (2006) 301–309 . 
30] L Shen , ZX. Chen , Critical review of the impact of tortuosity on diffusion,

Chem. Eng. Sci. 62 (2007) 3748–3755 . 

[31] G Ambrosio , N Bianco , WKS Chiu , M Iasiello , V Naso , M. Oliviero , The effect
of open-cell metal foams strut shape on convection heat transfer and pressure 

drop, Appl. Therm. Eng. 103 (2016) 333–343 . 
32] P De Jaeger , C T’Joen , H Huisseune , B Arneel , M De Paepe , An experimen-

tally validated and parameterized periodic unit-cell reconstruction of open-cell 
foams, J. Appl. Phys. 109 (2011) 103519 . 

33] Y Ma , B Yu , D Zhang , M. Zou , A self-similarity model for effective thermal

conductivity of porous media, J. Phys. D Appl. Phys. 36 (2003) 2157 . 
34] P Du Plessis , A Montillet , J Comiti , J. Legrand , Pressure drop prediction for flow

through high porosity metallic foams, Chem. Eng. Sci. 49 (1994) 3545–3553 . 
35] S Mancin , C Zilio , A Cavallini , L. Rossetto , Pressure drop during air flow in alu-

minum foams, Int. J. Heat Mass Transfer 53 (2010) 3121–3130 . 
36] GI Garrido , F Patcas , S Lang , B. Kraushaar-Czarnetzki , Mass transfer and pres-

sure drop in ceramic foams: a description for different pore sizes and porosi- 

ties, Chem. Eng. Sci. 63 (2008) 5202–5217 . 
37] S Mancin , C Zilio , L Rossetto , A. Cavallini , Foam height effects on heat transfer

performance of 20 ppi aluminum foams, Appl. Therm. Eng. 49 (2012) 55–60 . 
38] J-J Hwang , G-J Hwang , R-H Yeh , C-H. Chao , Measurement of interstitial con-

vective heat transfer and frictional drag for flow across metal foams, J. Heat 
Transfer 124 (2002) 120–129 . 

39] Z Wu , C Caliot , F Bai , G Flamant , Z Wang , J Zhang , et al. , Experimental and

numerical studies of the pressure drop in ceramic foams for volumetric solar 
receiver applications, Appl. Energy 87 (2010) 504–513 . 

40] M Zafari , M Panjepour , M Meratian , MD. Emami , CFD simulation of forced con-
vective heat transfer by tetrakaidecahedron model in metal foams, J. Porous 

Media 19 (2016) . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100012226
https://doi.org/10.13039/501100011402
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0001
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0001
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0001
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0001
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0001
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0002
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0002
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0002
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0002
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0002
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0003
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0003
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0003
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0003
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0003
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0003
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0004
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0004
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0004
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0004
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0004
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0004
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0004
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0005
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0005
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0005
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0005
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0005
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0005
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0005
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0006
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0006
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0006
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0007
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0007
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0007
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0008
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0008
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0008
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0008
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0009
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0009
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0009
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0009
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0009
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0009
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0010
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0010
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0010
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0011
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0011
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0011
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0012
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0012
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0012
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0012
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0012
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0012
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0013
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0013
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0013
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0013
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0014
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0014
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0014
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0014
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0014
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0014
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0015
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0015
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0015
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0016
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0016
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0016
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0017
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0017
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0017
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0018
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0018
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0018
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0018
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0018
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0018
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0019
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0019
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0019
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0020
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0020
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0020
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0020
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0021
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0021
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0021
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0021
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0021
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0022
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0022
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0022
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0022
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0022
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0023
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0023
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0024
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0024
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0024
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0025
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0025
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0025
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0026
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0026
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0027
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0027
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0028
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0028
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0029
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0029
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0029
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0029
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0029
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0030
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0030
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0030
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0031
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0031
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0031
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0031
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0031
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0031
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0031
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0032
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0032
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0032
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0032
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0032
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0032
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0033
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0033
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0033
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0033
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0033
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0034
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0034
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0034
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0034
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0034
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0035
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0035
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0035
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0035
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0035
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0036
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0036
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0036
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0036
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0036
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0037
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0037
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0037
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0037
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0037
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0038
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0038
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0038
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0038
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0038
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0039
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0039
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0039
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0039
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0039
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0039
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0039
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0039
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0040
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0040
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0040
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0040
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0040


T. Xiao, X. Yang, K. Hooman et al. International Journal of Heat and Mass Transfer 177 (2021) 121509 

[  

[

[

[

[  

 

[

[

[

 

[  

[

[  
[41] S Krishnan , JY Murthy , SV. Garimella , Direct simulation of transport in open–
cell metal foam, J. Heat Transfer 128 (2006) 793–799 . 

42] P Khayargoli , V Loya , L Lefebvre , M. Medraj , The impact of microstructure on
the permeability of metal foams, CSME Forum 2004 (2004) 220–228 . 

43] GW Jackson , DF. James , The permeability of fibrous porous media, Can. J. 
Chem. Eng. 64 (1986) 364–374 . 

44] A Tamayol , M. Bahrami , Transverse permeability of fibrous porous media, Phys. 
Rev. E Stat. Nonlin Soft Matter Phys. 83 (2011) 046314 . 

45] Calmidi VV. Transport phenomena in high porosity fibrous metal foams. 1999. 

46] X Yang , J Kuang , T Lu , F Han , T. Kim , A simplistic analytical unit cell based
model for the effective thermal conductivity of high porosity open-cell metal 

foams, J. Phys. D Appl. Phys. 46 (2013) 255302 . 
[47] A Zenner , D. Edouard , Revised cubic model for theoretical estimation of ef-

fective thermal conductivity of metal foams, Appl. Therm. Eng. 113 (2017) 
1313–1318 . 

48] V.V Calmidi , R.L. Mahajan , The Effective Thermal Conductivity of High Porosity 

Fibrous Metal Foams, J. Heat Transfer (1999) . 
13 
49] R Dyga , S. Witczak , Investigation of Effective Thermal Conductivity Aluminum 

Foams, Procedia Eng. 42 (2012) 1088–1099 . 

50] E Sadeghi , S Hsieh , M. Bahrami , Thermal conductivity and contact resistance 
of metal foams, J. Phys. D Appl. Phys. 44 (2011) 125406 . 

[51] E Bianchi , T Heidig , CG Visconti , G Groppi , H Freund] , An appraisal of the heat
transfer properties of metallic open-cell foams for strongly exo-/endo-thermic 

catalytic processes in tubular reactors, Chem. Eng. J. 198 (2012) 512–
528 . 

52] EN Schmierer , J Paquette , A Razani , KJ. Kim , Effective thermal conductivity of

fully-saturated high porosity metal foam, ASME Heat Transf./Fluids Eng. Sum- 
mer Conf. 46903 (2004) 229–237 . 

53] EN Schmierer , A. Razani , Self-consistent open-celled metal foam model for 
thermal applications, J. Heat Transfer 128 (2006) 1194–1203 . 

54] X Xiao , P Zhang , M. Li , Effective thermal conductivity of open-cell metal foams
impregnated with pure paraffin for latent heat storage, Int. J. Therm. Sci. 81 

(2014) 94–105 . 

http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0041
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0041
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0041
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0041
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0042
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0042
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0042
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0042
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0042
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0043
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0043
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0043
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0044
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0044
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0044
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0046
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0046
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0046
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0046
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0046
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0046
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0047
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0047
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0047
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0048
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0048
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0048
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0049
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0049
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0049
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0050
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0050
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0050
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0050
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0051
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0051
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0051
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0051
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0051
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0051
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0052
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0052
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0052
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0052
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0052
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0053
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0053
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0053
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0054
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0054
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0054
http://refhub.elsevier.com/S0017-9310(21)00612-8/sbref0054

	Analytical fractal models for permeability and conductivity of open-cell metallic foams
	1 Introduction
	2 Theoretical model
	2.1 Theory for fractal porous media
	2.2 Fractal model of permeability
	2.2.1 Characteristic length L0
	2.2.2 Fractal dimension of average tortuosity, DT
	2.2.3 Maximum pore diameter
	2.2.4 Shape factor G
	2.2.5 Permeability formula

	2.3 Fractal model of effective thermal conductivity
	2.3.1 Thermal resistance of representative structure (RS)
	2.3.2 RS Chain model


	3 Results and discussion
	3.1 Permeability
	3.2 Effective thermal conductivity

	4 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Reference


