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Highlights 

 The mechanical environment around a self-contractile cell is theoretical studied. 

 The contractile stress analysis condiers the influence of the stress fibers reorganization in celss; 

 The stress fibers reorganization can cause significant changes in the mechanical environment of 

cells.  
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Abstract: Contractile stress generated by a cell itself is crucial in sensing its surrounding 

microenvironment and regulating cell adhesion, differentiation and cytokinesis. However, the 

precise mechanisms underlying mechanotransduction remain unknown. In this paper, based on 

the Eshelby inclusion problem, we develop a theoretical model to characterize quantitatively 

the mechanical environment around a self-contractile cell experiencing stress fibers 

reorganization. We divide the contractile stress into two parts: the constant contractile stress 

and the perturbed contractile stress due to stress fibers reorganization, for internal stress fibers 

have enough time to reorganize actively during long-term deformation, leading to changes of 

contractile stress in both magnitude and direction. Obtained results suggest that stress fibers 

reorganization may cause significant changes in the mechanical environment of the cell, 

helpful for exploring the mechanisms behind cell mechanotransduction.  

Keywords: self-contractile cell; constant contractile stress; perturbed contractile stress; stress 

fibers reorganization 

1 Introduction 

 Cells like platelets, myoblast and cardiac myocytes have the ability to contract by themselves [1-4]. 

At the molecular level, this self-contractile stress is generated by internal myosin Ⅱ motors which 

continuously convert chemical energy of ATP hydrolysis to mechanical work and pull back the actin 

filaments [5-7]. Through local adhesions, cells transmit stress to the extracellular matrix (ECM) and 
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receive the external feedback. Extensive experiments using soft hydrogel, an array of flexible 

micropillars and microdroplet techniques show that the magnitude of contractile stress is about 1kPa 

[8,9]. The activity of myosin motors controlled by electronic or chemical reagents severely affects 

cellular contractility [5,10,11]. Doss et al. [12] adhered fibroblasts to pillar arrays with different 

stiffness and found that the contractile stresses were significantly reduced with actin networks 

disorganized if cells were treated by high concentration of blebbistatin, while the contractile stress 

moderately decreased and the polarization of cytoskeleton was promoted on soft substrates if cells were 

treated by intermediate concentration of reagents. Moreover, it was reported that the maximum 

contractile stress for chick embryo fibroblasts could reach about 100kPa after treated by thrombin [13].  

Mechanical stress, no matter applied externally or produced internally, can trigger a series of 

physiological responses, including structural changes in cytoskeleton and alterations in cell adhesion, 

differentiation and cytokinesis [14,15]. Li et al. [16] demonstrated that the microfilament network of 

eukaryotic cells experienced both strain hardening and softening during the stretching process. They 

also revealed that F-actin crosslinkers strengthend the bending stiffness and the buckling resistance of 

filopodial protrusion under the transverse and axial deformation, which had significant influences on 

the cell migration [17]. Besides, cell contraction induces mechanical stressing in the ECM, whose main 

microstructure is a network of cross-linked collagen fibers. When internal contractile stress spreads out, 

these fibers are aligned, densified and stretched, causing the stiffening of ECM [18-20]. Especially in 

the vicinity of cell, contractile stress provokes nonlinear response of ECM by buckling collagen 

filaments, causing even permanent plastic deformation [21-23]. As the survival of cell depends on the 

external environment, its behavior is inevitably influenced by the mechanical state of ECM [24-27]. 

For example, a stiffer matrix promotes a greater cell contraction and retards the attenuation of 

contractile stress, thus facilitating long-range interaction between individual cells [18]. 

Within the short time of mechanical action, internal stress fibers have no enough time to 

reorganize. The elasticity of cell and matrix dominates the mechanical response, which means that cell 

just acts as a passive inhomogeneity. But at the long time scale, stress fibers actively adapt to the 

overall mechanical state by changing their locations and orientations [28]. Trichet et al. [29] reported 

that when a cell was cultured on a soft micropillar substrate, the alignment of stress fibers were totally 

disordered, whereas the cell was fully polarized on a stiff substrate. Meanwhile, at every moment, new 

stress fibers are synthesized while old stress fibers are degraded. However, existing works of 3D 

(three-dimensional) mechanical analysis do not take into account the fact that, due to stress fibers 

reorganization, contractile stress changes in both magnitude and direction. Zemel et al. [30] developed 

a theoretical model to investigate the relationship between the alignment of intracellular stress fibers 
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and the stiffness of substrates. Combined with experiments which quantified the average orientation of 

stress fibers, it was demonstrated that the cellular contraction force increased monotonously with the 

increasing substrate stiffness and the alignment of stress fibers was a non-monotonic function of 

substrate stiffness. While the mechanical response of the matrix under the excitation of cell contraction 

was not given yet. 

In the current study, we present a theoretical model to quantify the mechanical microenvironment 

around a single self-contractile cell, which is totally embedded in a 3D stress-free matrix, according the 

alignment of stress fibers after the contraction process is over. For simplicity, the influence of protein 

motors on the contractility of cell is not considered here It is assumed that the size of matrix is much 

larger than that of cell, so the problem can be treated as a self-contractile inhomogeneity contained in 

an infinite elastic matrix. Eshelby obtained the linear elastic field of an inclusion undergoing uniform 

eigenstrain in 1957 [31]. Then, researchers utilized these linear elastic solutions to analyze the 

contraction of human mesenchymal stem cells [30] and the cardiac myocytes [4,32]. Their theoretical 

predictions were in good agreement with experimental results, revealing that the linear elastic model is 

applicable to explore the small deformation of contractile cells. Based on these theoretical works as 

well as existing experimental results that cells exert a greater pulling stress to a stiffer matrix, we 

introduce a perturbed stress to describe the changes of contractile stress. Traditional cell-in-gel 

experiments measure the displacement of embedded micro-beads to characterize the whole 

displacement field. For a given gel stiffness, our model can give the mechanical state of any point in 

the system. To highlight general principles, a parameter study is carried out in the rest of this article. 

2 Theoretical model 

With reference to Fig. 1, the cell is modeled as an ellipsoidal inhomogeneity 0  embedded in an 

infinite matrix  . It is assumed that both the cell and matrix are linearly elastic, isotropic and 

homogeneous, with their interface bonded perfectly to each other. The origin of a Cartesian frame 

 1 2 3, ,x x x  is fixed at the center with the three base vectors parallel with the principle axes of cell. The 

semi-axes of the ellipsoidal cell along the three principal directions is ( 1,2,3)ia i  .  
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Fig. 1 A self-contractile cell 0  is embedded in an infinite elastic medium  .  

First, a reference state is defined, where the cell contracts itself uniformly by an initial stress 0

ij  

but the matrix has not yet been deformed. During the deformation of the cell, stress fibers adjust their 

locations and orientations, and the contractile stress changes accordingly appearing to be dependent on 

the cell deformation. The contractile stress is assumed to be   0con

ij ij ij ijkl kl      , where 

p

ijkl kl    is the perturbed stress due to reorganization of stress fibers and the fourth-rank 

susceptibility tensor 
ijkl  describes the first-order approximation of perturbed stress on cell strain kl  

[28,30]. Here the introduction of the susceptibility tensor can be regarded as a phenomenological model 

to consider the stress change induced by the stress fiber reorganization. The complex relationship 

between the susceptibility tensor and the stress fiber reorganization is similar to the stiffness tensor of 

fiber composite and its fiber arrangement. Components of initial contractile stress 0

ij  and cell strain 

kl  are negative. If components of susceptibility tensor 
ijkl  are also set to be negative, then a smaller 

cell contraction within a stiffer matrix will correspond to a greater contractile stress. This is in 

agreement with related experiments that cell contractility increases as the elastic resistance becomes 

greater [1,2,9]. 

When the cell-matrix system reaches equilibrium, the elastic stress in the cell and matrix are: 

 
   

 

0

1 2 3 0

1 2 3 0

, ,

, ,

c

ij ijkl kl ij ijkl kl

m

ij ijkl kl

C x x x

C x x x

    

 

   

 
 (1) 

where c

ijklC  and m

ijklC  are the stiffness tensor of cell and medium, respectively. Rearranging the 

above equation leads to: 
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   

 

1 2 3 0

1 2 3 0

, ,

, ,

eff eff

ij ijkl kl kl

m

ij ijkl kl

C x x x

C x x x

  

 

  

 
 (2) 

where eff c

ijkl ijkl ijklC C    represents the effective stiffness tensor of cell, and the effective eigenstrain 

of cell eff

mn  is defined by 0eff eff

ijkl kl ijC   . It is seen that the effective stiffness of cell covers both the 

passive elasticity and the active response of cell. The susceptibility tensor is related to the evolution of 

stress state via changing the stiffness of the cell. 

According to the method of equivalent inclusion [31], the inhomogeneity problem can be 

simulated by a homogeneous inclusion problem with a fictitious eigenstrain ij

. The inclusion is 

contained in an infinitely homogeneous material, and the stiffness tensor for both the inclusion and the 

matrix are the same and denoted as m

ijklC . In this case, the elastic stress in the inclusion and matrix are: 

 
   

 

1 2 3 0

1 2 3 0

, ,

, ,

m *

ij ijkl kl kl

m

ij ijkl kl

C x x x

C x x x

  

 

  

 
 (3) 

Stresses and strains in the above inhomogeneity and inclusion problems are equivalent as long as: 

    eff eff m *

ijkl kl kl ijkl kl klC C       (4) 

If the eigenstrain of inclusion is constant, the stress and strain fields are uniform for all internal points 

[31], as: 

 *

ij ijkl klS   (5) 

where 
ijklS  is the Eshelby tensor and its components are given in the Appendix. Substitution of Eq. (5) 

into Eq. (4) leads to: 

    eff * eff m * *

ijkl klmn mn kl ijkl klmn mn klC S C S       (6) 

The equivalent eigenstrain ij

 can thence be derived from: 

   0eff m m

ijkl ijkl klmn ijmn mn ijC C S C     
 

 (7) 

Here in the small deformation case, though internal stress fibers actively reorganize, cell can still 

be assumed to remain isotropic with their mechanical properties almost unchanged during the 

deformation process, which has been proven to be feasible in Zemel et al.’s works [30].Thus, the 

susceptibility tensor 
ijkl  should be a fourth-order isotropic tensor and can be defined as: 

  
2

p v

ijkl v ij kl ik jl il jk

 
       


    (8) 
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Where 
ij  is Kronecker delta, 

p  reflects a parallel response in which the contractile stress in a 

given direction changes with deformation in the corresponding direction, and v  reflects a 

perpendicular response in which a given deformation affects the contractile stress of stress fibers in the 

perpendicular direction [30]. These two parameters describe different mechanisms by which stress 

fibers rearrange during cell deformation. As a phenomenological model, the key coefficients of the 

susceptibility tensor can be tested by experimental measurements [30]. 

For homogeneous materials, the stiffness tensor can be defined as: 

 
 

 

c

ijkl c ij kl c ik jl il jk

m

ijkl m ij kl m ik jl il jk

C = + +

C = + +

       

       
 (9) 

where   and   are Lame’s constants, related to Young’s modulus E and Poisson’s ratio   as: 

 
  

 

1 2 1

2 1

c c
c

c c

c
c

c

E

E




 





 




 (10) 

 
  

 

1 2 1

2 1

m m
m

m m

m
m

m

E

E




 





 




 (11) 

and the corresponding subscripts c and m denoting the cell and the matrix, respectively. 

We designate that cell experiences an isotropic contraction under its initial shape, as: 

0 0 0

11 22 33 p      , where p is the magnitude of contractile stress [30]. Then according to the rule of 

Voigt notation, rearrange Eq. (7) into matrix form, as: 

  
11

1 2 22

33

p

C S C p

p













   
   

     
     

 (12) 

where the coefficient matrix 1C , 2C  and S  are given by: 

 
   

   

   
1

2 2

2 2

2 2

c c m m p c m v c m v

c m v c c m m p c m v

c m v c m v c c m m p

C

          

          

          

        
 

         
         

 (13) 

 
2

2

2

2

m m m m

m m m m

m m m m

C

   

   

   

 
 

 
 
  

 (14) 
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1111 1122 1133

1122 2222 2233

1133 2233 3333

S S S

S S S S

S S S

 
 


 
  

 (15) 

The total displacement and elastic stress in the field are written as: 

  

 

*

*

1 2 3 0

1 2 3 0

, ,

, ,

i ijk jk

t c

ij ijkl klmn mn

t m

ij ijkl klmn mn

u B

C S x x x

C D x x x



 

  



 

 

 (16) 

where klmnD  and 
ijkB  are presented in the Appendix. Cell volume change and stored deformation 

energy are: 

 
2

ii

t

ij ij

V V

U V



 

 


 (17) 

where 1 2 34 3V a a a  is the volume of cell. 

3 Results and discussion 

The microscopic structure, composition, and mechanics properties of ECM provide biomechanical 

cues to mediate cell behavior. Extensive experimental evidence has indicated that ECM stiffness, 

besides cell self-contraction, is another factor influencing cell adhesion, migration and cytokinesis [24]. 

Thus, in the following mechanical analysis, we mainly analyze the influence of matrix stiffness on the 

whole mechanical field of a self-contractile cell. The susceptibility coefficients 
p  and v , related to 

stress fibers reorganization, can be deduced from the statistical deviation angle of stress fiber alignment 

[28,30]. According to previous works, the values of susceptibility coefficients can be taken as 

0.5p cE    and 0.1v cE   . As a comparison, the case that the cell exerts a constant contractile 

stress (i.e., 0p   and 0v  ) is also studied. Although great differences exist between cells, we 

typically set the three axial dimensions of cell as: 1a a , 2 3 0.4a a a  , where a is the largest length 

of cell principal semi-axes. The Poisson ratios of cell and matrix are 0.4. For simplification, from here 

on it is convenient to denote the spatial coordinates as    1 2 3, , , ,x x x x y z . 

Cells apply a contractile stress to the ECM by pulling back actin filaments. Thus, the density 

distribution and the orientations of actin filaments completely determine the magnitude and direction of 

the contractile stress. During the contraction process of cells within matrix of different stiffness, the 

internal stress fibers undergo corresponding reorganization, resulting in changes in the magnitude and 

direction of the contraction stress. Experiments have reported that when cell reaches the boundary 
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between the soft and stiff micropillar substrate, the cell is polarized with the reorganization of stress 

fibers and the contractile force increases rapidly, promoting the cell movement [29]. Mitrossilis et al. [2] 

measured the contraction of single myoblasts using two parallel fibrinogen-coated glass plates. One 

plate was fixed, the other was flexible. Single myoblast cells were placed between two plates, and once 

the cell began to contract, the flexible plate would be deflected. Based on the principle of elasticity, the 

contraction force could be derived according to the displacement of flexible plate. The results showed 

that myoblasts reached their maximum contraction in about 10 minutes. The contraction force was 

proportional to the stiffness of flexible plate when the stiffness did not exceed 60nN μm . If the 

stiffness was higher, the contraction force reached the maximum value of about 300 nN.  

In this work, the self-contractile cell is modeled as a three-dimensional (3D) inhomogeneous 

ellipsoid, and all the theoretical predictions are related to the 3D elastic field. While, the existing 

experiment is unidirectional measurement of contraction force [2], which cannot be directly compared 

with the present theoretical results. Figure 2 shows the contractile stress and internal total stress of cell 

when the cell and matrix finally reach equilibrium. Our theoretical results indicate that the cell exerts 

greater contraction stress on the stiffer matrix, which is consistent with the conclusion of the above 

experiment. The ability of cells to exert greater contractile stress on the stiffer matrix is crucial to the 

physiological behaviors of cells. For example, Jen and Mclntire [33] experimentally demonstrated that 

the contractile stress of platelets stiffened the fibrin polymers and enhanced the stiffness of clot. In turn, 

a stiffer matrix induced greater contractile stress of cell, as reported by Lam et al. [1]. This interaction 

between platelets and the fibrin polymers is helpful for the rapid formation of clot to stop bleeding. In 

contrast, the internal total stress decreases if the contractile cell is cultured within a stiffer matrix, for 

the elastic resistance exerted by the stiffer matrix gradually counteracts the self-contractile stress of cell. 

Moreover, after the influence of stress fiber reorganization is considered, both internal contractile stress 

and internal total stress become smaller. This indicates that the active regulation is an essential factor in 

characterising the overall mechanical environment of cell. 
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Fig. 2 Normalized contractile stress (a) and internal total stress (b) of cell vary with the increase of 

matrix modulus. 

In Fig.3, the theoretical predictions of cell displacement in the xy plane are plotted. The ratio 

between the Young’s modulus of the matrix to that of the cell is 0.2 in Fig. 3(a) and 3(b), increases to 1 

in Fig. 3(c) and 3(d), and finally reaches 5 in Fig. 3(e) and 3(f). In all these cases, the ratio p/Ec is set to 

0.3. When the matrix is sufficiently soft, the maximum deformation of a contractile cell occurs at its 

apex. With the increase of matrix stiffness, the position of maximum deformation is gradually shifted 

to cell waist. Reorganization of stress fibers significantly affects cell deformation. Especially when the 

matrix modulus is close to cell modulus, stress fibers reorganization enables the deformation of each 

point on cell surface to be equivalent. Compared to the original morphology, cell still remains 

ellipsoidal but the size in all three principle axes decreases. 
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Fig. 3 Distribution of normalized displacement in xy plane for three selected values of matrix stiffness.  

The cell volume change is of great importance to the behavior of living cells. For cardiac 

myocytes, Chiou et al. [4] proposed that the regulation mechanism of early embryonic heart beat is 

mechanical signal rather than electrical signal. When the volumetric strain of cardiomyocytes exceeds a 

threshold, they begin to contract and produce a mechanically propagated signal in the matrix to activate 

neighboring cells. In addition, physiological activities of cells convert the chemical energy to other 

forms of energy. When cardiomyocytes contract, part of the chemical energy consumed is stored as 

deformation energy. During the elongation period, deformation energy is released to promote 

ventricular relaxation. If the ability of myocardial cells to store deformation energy is impaired, it will 

inevitably affect the efficiency of cardiac congestion [34]. Figure 4 plots the normalized volume 

change  3 1

cV pa E  and the normalized deformation energy  2 3 1

cU p a E
 of cell as functions of 

matrix stiffness. As the matrix stiffness is increased, it is difficult for cell to contract itself because it 

needs to overcome larger resistance. Consequently, both the cell deformation and the deformation 
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energy stored in the cell decrease. The reorganization of stress fibers results in less cell strain energy at 

each level of matrix stiffness. 

 

Fig. 4 Normalized volume change (a) and deformation energy (b) of cell plotted as functions of matrix 

stiffness.  

4 Conclusions 

Mechanical microenvironment has important influence on the physiological role of cells. Besides 

the stress or strain applied externally, the stimuli may also come from within the cell itself, such as 

self-contraction considered in the current study. During long-term deformation, internal stress fibers 

actively reorganize and thus alter the self-contractile force, which will significantly change the whole 

3D mechanical field around a contractile cell. Built upon the classical Eshelby model of inclusion, we 

establish a theoretical model to quantitatively analyze the internal and external mechanical environment 

of a contractile cell cultured in matrix having varying stiffness. The contractile stress is divided into 

two parts: the constant contractile stress and the perturbed contractile stress due to reorganization of 

stress fibers. Obtained results imply that the reorganization of stress fibers may cause significant 

changes in cell mechanical environment, which are helpful for exploring the physical mechanisms 

underlying cell mechanotransduction. 
Equation Secti on (Next )  

Appendix A 

Given an ellipsoid with principle axes 1a , 2a  and 3a , the component of tensor 
ijkB , 

ijklS and 

ijklD  are expressed as: 
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where the integrals  iI   and  ijI   are defined as: 
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and the derivatives of   iI   and  ijI   are: 
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For all internal points,   is equal to zero. When the point  1 2 3, ,x x x  is located at the outside of 

the ellipsoid,   is the largest positive root of the equation: 
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The corresponding derivatives 
,i  and 

,ij  can be deduced from Eq.(22), as: 
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where the intermediate parameters H and G are:  
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