
International Communications in Heat and Mass Transfer 126 (2021) 105473

Available online 15 July 2021
0735-1933/© 2021 Elsevier Ltd. All rights reserved.

An analytical fractal model for permeability in isotropic open-cell metal 
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A B S T R A C T   

This paper develops analytically a fractal model for estimating flow permeability of open-cell foam with rough 
surfaces. Fractal theory is employed for better characterize the randomness of pore distribution in the porous 
media and for describing particularly the micro roughness on the metallic ligaments. This provides a closer look 
at the actual situation of pore distribution of open-cell foams. The permeability can mainly be expressed with 
porosity, average tortuosity, and micro-rods geometric parameters, without any empirical or fitting parameters. 
The analytical model is verified through comparison to existing experimental data. To further explain the in
fluence of micro-rods on the permeability, a tetradecahedral unit cell is used for pore-scale simulation. It is found 
that the reduced permeability is caused mainly by the increased flow tortuosity and the surface friction between 
fluid transport and the micro roughness.   

1. Introduction 

Open-cell metal foam enjoys the superiorities of high porosity, light 
weight, large specific area, and fluid mixing capability, and it has been 
widely involved in a broad range of engineering applications such as 
thermal management of electronics devices [1], chemical catalyst [2,3], 
fuel cells [4,5], thermal energy storage [6,7] and biomedical applica
tions [8,9]. Fluid flow and convective heat transfer are the key processes 
in these applications. The large surface area and strong flow mixing 
capability for metal foam are the predominated contributors to heat 
transfer enhancement. To characterize metal foam for thermal engi
neering applications, except for heat transfer coefficient, flow resistance 
(pressure drop) should also be given considerable attentions. Micro
scopically, it is essential to understand the transport phenomena in 
porous media at pore scale; Macroscopically, the characterization of 
permeability serves the physical basis for utilizing open-cell metal foams 
since permeability quantitatively justifies the fluid transport in porous 
media. 

Fluid flow phenomena and permeability depend on the intrinsic 

microstructure of individual porous medium [10–12]. To determine 
permeability, characterization of porous microstructure paves the 
foundation for transport physics. Since open-cell metal foam consists of 
randomly-distributed metallic ligaments, forming inter-connected pore 
space, directly solving Navier-Stokes equations seems impossible. To 
this end, the complicated porous structure is assumed to be periodically 
distributed and unit cell (UC) or part of UC is formed to represent both 
the topology and morphology for the bulk porous medium, under which 
condition the macroscopic flow problem is solved by performing the 
volume-averaged manipulation on the pore-scale Navier-Stokes equa
tions [13,14]. 

Via modifying Kozeny-Carmen model, spherically-packed bed UC 
was employed to predict the permeability of metal foam. Good agree
ment can be obtained with fitting empirical constants [15–18]. How
ever, packed spheres seemed inappropriate for representing porous 
matrix for metal foam and the fluid flow characteristics between packed 
beds and foam were significantly different. To account for the effect of 
metal foam microstructure, a cubic lattice truss structure seemed more 
suitable. Based on this microstructure, continuous studies were con
ducted on determining permeability. Du Plessis et al. [19] proposed an 
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analytical model that can give a quite good prediction for permeability 
in a very high porosity range (0.973 – 0.978).Bhattacharya et al. [20] 
then extended their model with a fitting correlation of determining node 
size for cubic UC. With their extension, the modified model worked well 
in a wider porosity range (0.90 – 0.98). However, Ahmed et al. [21] later 
found a physically impossible increment in flow tortuosity with porosity 
in Bhattacharya et al.'s model. They attempted to further correct and 
modify the cubic UC model by introducing a non-constant node size, 
which successfully predicted permeability and flow tortuosity as a 
function of porosity. Based on the cubic UC with spherical nodes, Yang 
et al. [22] analytically proposed a prediction model for foam perme
ability and the results demonstrated a good agreement with experi
mental data. 

The structure of the metal foam is spatially disordered, but it 
essentially follows the fractal theory. Fractal analysis on the micro
structure of metal foam may provide a better solution to characterize the 
complex inner-connected porous matrix, favoring determining perme
ability and understanding the flow processes at the pore scale. Particu
larly, the fractal theory is good at characterizing the surface micro- 
roughness at the pore scale [23–26]. This seems coincidental to be a 
distinct solution to analyze fluid flow in surface roughed metal foam that 
was fabricated by Ren et al. [27,28] very recently. The fractal theory 
assumes that the pore distribution, pore size and pore shape follow the 
fractal scaling law and the pore-scale flow paths are also treated as a 
bundle of tortuous capillaries. Permeability can be analytically deter
mined with the help of fractal dimensions for size distributions of cap
illaries and flow tortuosity. 

Yu and Cheng [29] introduced the fractal distribution of capillaries 
into the capillary bundle model, and they developed an analytical 
expression for permeability for bi-dispersed porous medium. Their 
model was demonstrated to have non-empirical constants. This work 
laid the physical basis for the continuous explorations on permeable 
transport flow in fractal porous media. Yu et al. [30] characterized the 
pore shapes inside four different glass fiber preforms and proposed an 
analytical expression for fractal in-plane permeability. The fractal model 
was able to consider the influence of compression on the porosity 
changes of fiber preforms. Shou et al. [31] accounted for the discrete and 
discontinuous nature of fractal porous media and developed a 
difference-fractal model for estimating permeability of fibrous porous 
media. Difference approach was used to develop the fractal model. Be
sides, Shen et al. [32] tried another way to improve the fractal model for 
permeability via the pore-filling method. Their model was shown to 

estimate the fractal porosity and pore volume distribution and this 
favored the probability of density function for pore size without con
ventional restrictions. Xiao et al. [33] characterized the porous layer of 
gas diffusion by porosity, tortuosity fractal dimension, pore area fractal 
dimensions, and etc. Based on these fractal characteristics, an analytical 
expression of predicted dimensionless permeability was developed and 
was shown to agree well with experimental results. Cai and Yu [34] 
justified the contribution of the maximum pore size in fractal porous 
media and two analytical models were developed. It was demonstrated 
that permeability was significantly reduced as a decrease in the 
maximum pore size. Previous scholars continuously contributed to the 
development of transport flow in fractal porous media. More details can 
be referred to the recent review work of Cai et al. [35] and Xu et al. [36] 

It needs to be mentioned here that all of the aforementioned models 
deal with porous media with smooth surface. As for the roughed sur
faces, Majumdar and Bhushan [37] employed fractal theory to charac
terize the size distribution of contact areas on the roughness surface and 
this size distribution (W-M function) was widely used in the determi
nation of the micro fractal roughness morphology in the continuous 
studies [38,39]. Yang et al. [40] developed an analytical fractal model to 
predict the pressure gradients, friction factors, and Poiseuille numbers in 
roughed channels. Geometric characterization of cone-like rough ele
ments was performed by fractal theory and an analytical expression for 
relative roughness was derived. Later, Yang et al. [41] continued to 
establish a fractal attempt to estimate permeability of porous media with 
cone-like rough elements on the surface. Their model indicated that the 
permeability followed a quadruplicate power law of the relative 
roughness. Recently, a fractal model for modeling flow resistance of 
laminar flow through tree-like branching networks with cone-like rough 
elements was developed [41]. It demonstrated that the total pressure 
drop across a tree-like branching network with roughened channels was 
increased by a quadruplicate power law of relative roughness but 
permeability was decreased by a square one. Besides the aforementioned 
progress in fractal theory for modeling transport in porous media, nu
merical simulations such as Molecular Dynamic Method [42], Lattice 
Boltzmann Method [43], Monte Carlo Simulation [44] have been 
recently applied to solve 3D Navier-Stokes equations at the pore scale. 

To be conclusive, previous investigations contributed to the devel
opment of fractal theory on understanding transport phenomena in 
porous medium and predicting its permeability. The effect of surface 
roughness on flow characteristics and permeability has been intensively 
studied. At present, however, little attention has been paid to 

Nomenclature 

Symbols  
A Cross - sectional area (m2) 
c Micro - rods surface distance (m) 
d Pore size(m) 
dE Euclidean dimension 
Df Fractal dimension of the pore size distribution 
DT Fractal dimension of average tortuosity 
h Height of micro-rods (m) 
hλ Equivalent height of micro-rods (m) 
K Permeability (m2) 
L Measurement scale (m) 
L0 Characteristic length (m) 
N Number of pores 
P Pressure (Pa) 
q Volume Flowrate (m3/s) 
QR Total volume Flowrate (m3/s) 
r Radius of micro-rods (m) 
S Surface area (m2) 

t Center distance of micro-rods(m) 
ts Ligament thickness(m) 
V Volume (m3) 
Vtotal Total volume (m3) 
Vpore Pore volume (m3) 
Greek symbols 
β Dimensionless roughness 
ω Distribution density of micro-rods 
μ Dynamic viscosity (Pa ⋅ s) 
λ Pore diameter (m) 
ε Porosity 
τ Tortuosity 
Subscript 
av Average 
max Maximum 
min Minimum 
R Rough surface 
RS Representative structure 
t Total  
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analytically predict the permeability of open - cell metal foam with 
rough surfaces using fractal theory. Besides, the justification of the 
contribution of surface roughness to flow features inside open-cell metal 
foam or the development of predicting model for permeability using 
fractal theory remain elusive. To this end, this paper aims to employ 
fractal theory to squarely address this issue, trying to provide physical 
insights into the transport phenomena in open-cell metal foam. Pore- 
scale geometric characterization is performed and fractal model for 
metal foam permeability is determined. Experimental results and pore- 
scale numerical simulations on the permeability of metal foam 
(smooth and rough surface) are employed for validating the fractal 
model. The effects of length and radius of micro-rods on permeability 
are explored, as well. 

2. Theoretical model 

2.1. Theory for fractal porous media 

It has been shown that the shape, size and distribution of pores 
satisfy the fractal law in porous media [45]. When the size of pores is 
greater than λ, the fractal relationship between the number of pores N 
and the pore size λ is as follows [29]: 

N(L ≥ λ) = (λmax/λ)Df (1)  

where Df is the fractal dimension of fractal porous media, λmax is the 
maximum pore size of the porous medium, L is the measurement scale, 
and N(L ≥ λ) is the total number of pores that their pore sizes are not less 
than λ. When the pore size λ is replaced by minimum pore diameter λmin, 
the total number of pores Nt can be expressed as [29]: 

Nt = (λmax/λmin)
Df (2)  

where λmin denotes the minimum pore size of the porous medium. 
The pore size distribution of porous media is discontinuous in 

practice. In general, there are a lot of pores in a unit volume for porous 
media. Therefore, the fractal scale law (Eq. (1)) between the number of 
pores and the size of pores is approximately continuous and differen
tiable. The number of pores in the infinitesimal range of λ to λ + dλ can 
be obtained by differentiating λ in Eq. (1) [29,30,46]. 

− dN = Df λDf
maxλ− (Df +1)dλ (3) 

Dividing Eq. (3) by Eq. (2) gives: 

−
dN

Ntotal
= Df λ

Df
minλ− (Df +1)dλ = f (λ)dλ (4)  

where f(λ) = Dfλmin
Df λ− (Df+1) is the probability density function for pores 

in fractal porous media [29,47]. According to probability theory, the 
integral of the probability density function has the following relation
ship [29,47]. 
∫ +∞

− ∞
f (λ)dλ =

∫ λmax

λmin

f (λ)dλ = 1 −
(

λmin

λmax

)Df

≡ 1 (5) 

If and only if 
(

λmin

λmax

)Df

≅ 0 (6) 

For Eq. (6), Yu and Li [47] thought the relationship is a key basis for 
using fractal geometry theory to deal with porous media. And based on 
the Sierpinski carpet and Sierpinski sponge model, the fractal dimension 
of fractal porous media is obtained as [47]: 

Df = dE −
lnε

ln(λmin/λmax)
(7)  

where dE is Euclidean dimension (dE = 2 denotes the two-dimensional 
space and dE = 3 represents the three-dimensional space), ε is the 
porosity of porous media. In the two-dimensional space, 0 < Df < 2; and 
in the three-dimensional space, 0 < Df < 3. 

Eqs. (1)–(7) are the theoretical basis of fractal geometry for porous 
media. 

2.2. The permeability model of foam with rough surfaces 

Thanks to the method of fabrication, the surface of the ligament is 
not smooth. Ren et al. [27] prepared ZnO micro-rods on the wall of 
open-cell aluminum foam cells by the hydrothermal method (as shown 
in Fig. 1). These micro-rods increase the roughness and surface area for 

Fig. 1. (a) SEM image of the original metal foam ligament [27]; (b) SEM image of a ligament with micro-rods [27].  

Fig. 2. Open-cell foam with smooth surface and node.  
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the open-cell metal foam. Under this situation, the original smooth cubic 
unit cell is no longer applicable (as shown in Fig. 2). To describe the 
influence of micro-rods on fluid transport characteristics, the original 
cubic unit cell model needs to be modified accordingly. Therefore, a new 
cubic UC model with periodic cylindrical micro-rods covering the sur
faces is developed (as shown in Fig. 3). In the following model devel
opment sections, the modified cubic UC with micro-rods on the 
ligaments is employed and analyzed. 

2.2.1. Fractal model for permeability 
The volumetric flow of fluid q(λ) through a single tortuous circular 

tube satisfies the modified Hagen-Poiseulle formula [48]. 

q(λ) =
π

128
λ4ΔP
μLt(λ)

(8)  

where μ denotes the dynamic viscosity of fluid, ΔP denotes the pressure 
drop, Lt(λ) represents the actual length of the tortuous tube. Compared 
to open-cell metal foams with smooth surfaces, the hydraulic diameter 
of a cubic UC covered with micro-rods is relatively reduced. Therefore, 
Eq. (8) needs to be modified to make it suitable for open-cell metal foams 
with rough surfaces. It is necessary to modify the size of channel through 
replacing the size λ with the size λ − 2hλ. 

qR

(

λ-2hλ

)

=
π

128

(

λ-2hλ

)4

ΔP

μLt

(

λ − 2hλ

) =
π

128
λ4ΔP

μLt

(

λ − 2hλ

)(1 − β)4 (9) 

And 

Lt

(

λ − 2hλ

)

=

(

λ − 2hλ

)1− DT

LDT
0 = λ1− DT

(

1 − 2hλ

/

λ
)1− DT

LDT
0 (10)  

where hλ is the equivalent height of micro-rods, qR

(

λ-2hλ

)

presents the 

flow through a single tortuous circular tube with rough surface, and β =

2hλ/λ denotes the roughness. The total volumetric flow QR through the 
unit cross-section can be calculated by summing the flow rates of all 
tortuous tubes. 

QR = −

∫ λmax

λmin

qR

(

λ − 2hλ

)

dN

=
π

128
(1 − β)3+DT 1

μLo
DT

ΔPDf ,3λ3+DT
max

3 − Df ,3 + DT

⎡

⎣1 −

⎛

⎝λmin

λmax

⎞

⎠

3− Df ,3+DT ⎤

⎦ (11)  

where 1 < DT < 3 and 1 < Df, 3 < 3. Therefore, this formula of 3 − Df, 3 +

DT > 1 is satisfied. According to Eq. (6), it is obtain that 

(

λmin/λmax

)3− Df+DT

≈ 0. Then Eq. (11) is simplified to be: 

QR =
π

128
1

μLo
DT

ΔPDf ,3

3 − Df ,3 + DT
λ3+DT

max (1 − β)3+DT (12)  

where L0 depicts the length of the straight channel, DT represents the 
fractal dimension of the average tortuosity, and λmax denotes the 
maximum pore size of porous media with rough surface. Combining Eq. 
(12) with Darcy law (QR = KRΔPA

μL0
), the expression of the permeability of 

porous media with rough surface can be obtained as: 

KR =
π

128
L0

1− DT

A
Df ,3

3 − Df ,3 + DT
λ3+DT

max (1 − β)3+DT (13) 

Similarly, the maximum pore size λmax for the rough models will 
change correspondingly to the maximum pore size λmax for the smooth 
model. 

λmax = λmax − 2hλmax (14) 

And according to the assumption of self-similarity for all pores in 
open-cell metal foam, β = 2hλ/λ is the same in different pore sizes. 
Therefore, the roughness of each pore is equal. 

2hλ

λ
=

2hλmax

λmax
(15) 

According to Eqs. (13)–(15), permeability of porous media with 
rough surface can be expressed as: 

KR =
π

128
L0

1− DT

A
Df

3 − Df + DT
λ3+DT

max (1 − β)6+2DT (16) 

When the surface of open-cell metal foam is smooth (i.e. β = 0), Eq. 
(16) can be degraded into a calculation expression for the permeability 
of porous media with smooth surface. 

K =
π

128
L0

1− DT

A
Df ,3

3 − Df ,3 + DT
λ3+DT

max (17) 

Under this sense, Eq. (17) has the same expression to that developed 
by Yu and Cheng [29] for porous media with non-rough surfaces. The 
model is shown to predict the permeability of mono-dispersed and bi- 
dispersed porous media. Here, to functionally relate the permeability for 
non-rough porous media with rough ones, an index is introduced as 

κ =
KR

K
= (1 − β)6+2DT (18)  

where KR and K demonstrate the permeability of rough and non-rough 
porous media, in respective. Eq. (18) indicates that the permeability of 
open-cell foam with rough surfaces is sensitive to surface roughness. 
And the permeability of porous media with rough (KR) and smooth 

Fig. 3. A modified cubic model with cylinder micro-rods on the surface: (a) Porous structure with surface roughness; (b) 3D UC model; (c) Top view.  
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surfaces (K) follow a power law. 

2.2.2. Roughness 
Considering that the flow resistance is mainly caused by the fluid- 

solid contact area. Therefore, assuming that the ratio of the equivalent 
average rough particle height to the average pore diameter and the 
actual average rough particle height to the actual average pore diameter 
ratio are related to the fluid-solid contact area, the relationship is 
expressed as: 

hλav

λav
=

h
λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Smooth + Srough

Smooth

√

=
h
λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
Srough

Smooth

√

(19)  

where Ssmooth represents the total superficial area within an RS without 
micro-roughness, Sroughness denotes the increased surface area by micro- 
rods. The increased surface area can be determined by 

Srough = 2πhrϖSsmooth (20)  

where ω is the number of micro-rods per unit area, h represents the 
height of micro-rods and r indicates the radius of micro-rods. According 
to Eqs. (19) and (20), the ratio of the equivalent average rough particle 
height to the average pore diameter can be expressed as: 

hλav

λav
=

h
λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 2πhrω

√
(21) 

In the current study, two micro-rods distributions on the surface of 
the representative structure are considered (as shown in Fig. 4). As seen, 
the number of micro-rods per unit area can be obtained by: 

ω =
1
t2 =

1
(2r + c)2 (22)  

where t represents the distance between micro-rods and c is the surface 
distance between the two micro-rods in Fig. 4. Combining Eqs. (21) and 
(22), the relationship between roughness and micro-rods can be ob
tained as: 

hλav

λav
=

h
λ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 2π h
r(2 + ξ)2

√

(23)  

where ξ = c/r. 

2.2.3. Characteristic length L0 
The characteristic length L0 characterizes a size scale in which all the 

fractal pores are contained from smallest to the largest size. Within the 
length scale, the porosity of the foam with length L0 can be calculated as: 

ε =
Vpore

L3
0

(24)  

where Vpore is the volume of all the pores in the foam. For a high porosity 
open-cell metallic foam, the shape of pores actually exhibits a close 
nature to tetradecahedral [49,50]. To simplify the current calculation, 
the pores are idealized as spherical ones. In a RS with side length L0, the 
total pore volume may thence be calculated as [51,52]: 

Vpore =
πDf ,3λ3

max

6
(
3 − Df ,3

) (1 − ε) (25)  

where Df ,3 = 3 − lnε
ln(λmin/λmax)

. According to Eqs. (14), (24), and (25), the 
characteristic length L0 can be obtained as: 

L0 = λmax(1 − β)

[
πDf ,3

6
(
3 − Df ,3

)
1 − ε

ε

]1
3

(26)  

2.2.4. Fractal dimension of the average tortuosity, DT 
The tortuosity is a key parameter in fractal dimension of the average 

tortuosity. The tortuosity of porous media is usually defined as [53]: 

τ = Lt/L0 (27) 

The hydraulic diameter of open-cell metal foam with rough surface 
has changed thanks mainly to the existence of micro roughness. 
Therefore, the tortuosity of porous media with rough surface can be 
obtained as: 

τ =

Lt

(

λ − 2hλ

)

L0
=

λ1− DT

(

1 − 2hλ

/

λ
)1− DT

LDT
0

L0
=

⎡

⎣ λ
L0

⎛

⎝1 −
2hλ

λ

⎞

⎠

⎤

⎦

1− DT

(28) 

Taking the natural logarithm for both sides of Eq. (28), the tortuous 
fractal dimension can be expressed as: 

Fig. 4. Schematic diagram of micro-rods distribution.  

Fig. 5. Distribution of streamlines: (a) square ligaments in a dislocated and 
equidistant arrangement; (b) side view of streamlines flowing around square 
ligaments in a dislocated and equidistant arrangement; (c) square ligament in a 
square arrangement; (d) side view of streamlines flowing around square liga
ments in a square arrangement. 
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DT = 1+
lnτ

ln

⎡

⎢
⎢
⎣

L0

λ

(
1− 2hλ

/
λ

)

⎤

⎥
⎥
⎦

(29) 

Through the manipulation on the replacement of the tortuosity τ and 
the pore diameter λ in Eq. (29) by the average tortuosity τav and the 
average pore diameter λav, the analytical expression for the average 
tortuosity fractal dimension of porous media within rough surface is 
therefore: 

Fig. 6. Tetradecahedral unit cell: (a) smooth surface; (b) rough surface.  

Fig. 7. Representative mesh: (a) smooth surface; (b) rough surface.  

Fig. 8. Schematic diagram of boundary conditions.  

Table 1 
Mesh independence verification.  

Foam sample Mesh 1 Mesh 2 Mesh 3 
277060 1650528 2666312 

ΔP (Pa) 
Smooth-Foam1 3.00 × 10− 3 3.08 × 10− 3 3.09 × 10− 3  
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DT = 1+
lnτav

ln

⎡

⎢
⎢
⎣

L0

λav

(
1− 2hλav

/
λav

)

⎤

⎥
⎥
⎦

(30) 

Due to the similarity of porous fractal pores, the equation of hλ/λ =

hλav/λav is satisfied. With hλav/λav = 0, the average tortuosity of porous 
media with smooth surface can be expressed as: 

DT = 1+
lnτav

ln(L0/λav)
(31)  

where λav and τav are the average pore diameter and the average tortu
osity, respectively. Here, DT = 1 represents a straight channel/tube, and 
DT = 3 represents a tortuous channel/tube filling a three-dimensional 
space. For a three-dimensional porous medium, 1 < DT < 3. 

Using fractal theory, the average pore diameter of the foam is given 
as [54]: 

λav =
Df ,3λmin

Df ,3 − 1
(32) 

When Df, 3 and L0 are determined, the only key parameter that needs 
to be characterized is the average tortuosity τav. The tortuosity of a 
porous medium is defined as the ratio of the length for a real tortuous 
flow path to that of a straight (minimal) one [53,55], accounting for the 
elongation extent of the flow path. Since there are numerous streamlines 
in porous medium, it had been demonstrated that the average of 
representative streamlines could be used to estimate the average tortu
osity [56]. The distribution of streamlines in the cubic RS is depicted in 
Fig. 5. Since the pore sizes and distributions of open-cell metal foams are 
random, it is impossible to consider every streamline distribution by 
theoretical calculations. To address this issue and find solution to the 
calculation on average tortuosity, two representative structures of lig
aments distribution are selected, as shown in Fig. 5(a) and (c). One 
distribution of ligaments is the dislocated and equidistant arrangement 
in Fig. 5(a), and the other is the square arrangement in Fig. 5(c). To 
further simplify the calculation, the irregular pore structures are 
simplified into cubic representative structures. 

For open-cell metal foams with idealized pore structures, the average 

Table 2 
Validation of fractal analytical model of open-cell metal foam with rough surface [27,28].  

Foam sample ε λ (mm) r (μm) h (μm) r (mm) K (exp) (m2) K (pre) (m2) RD (%) 

ZnO micro-rods 0.92 1 2.5 30 0.12 7.98 7.99 0.13 
Co3O4 (2 h) 0.92 2.5 2.5 30 0.11 8.71 8.82 1.25 
Co3O4 (6 h) 0.92 2.5 2.5 40 0.12 7.00 6.61 5.90 
Co3O4 (10h) 0.92 2.5 2.5 50 0.13 5.52 5.83 5.32  

Fig. 9. The height of micro-rods on the surface of open-cell metal foam liga
ment varies under different growth times [28]: (a) 2 h; (b) 6 h; (c) 10 h. 

Table 3 
Tetradecahedral geometric parameters and simulation results.  

Foam 
sample 

ε λ 
(mm) 

ts 
(mm) 

R 
(mm) 

h 
(mm) 

rs 

(mm) 
K/ts2 

(Sim) 

Smooth- 
Foam1 

0.814 2.5 0.22 0.33 N/A N/A 0.243 

Smooth- 
Foam2 

0.845 2.5 0.2 0.3 N/A N/A 0.350 

Smooth- 
Foam3 

0.873 2.5 0.18 0.27 N/A N/A 0.509 

Smooth- 
Foam4 

0.899 2.5 0.16 0.24 N/A N/A 0.759 

Smooth- 
Foam5 

0.922 2.5 0.14 0.21 N/A N/A 1.161 

Smooth- 
Foam6 

0.942 2.5 0.12 0.18 N/A N/A 1.856 

Smooth- 
Foam7 

0.960 2.5 0.1 0.15 N/A N/A 3.116 

Smooth- 
Foam8 

0.974 2.5 0.08 0.12 N/A N/A 5.754 

Smooth- 
Foam9 

0.979 2.5 0.072 0.108 N/A N/A 7.572 

Rough- 
Foam1 

0.809 2.5 0.22 0.33 0.05 0.03 0.211 

Rough- 
Foam2 

0.839 2.5 0.2 0.3 0.05 0.03 0.295 

Rough- 
Foam3 

0.867 2.5 0.18 0.27 0.05 0.03 0.427 

Rough- 
Foam4 

0.891 2.5 0.16 0.24 0.05 0.03 0.619 

Rough- 
Foam5 

0.914 2.5 0.14 0.21 0.05 0.03 0.933 

Rough- 
Foam6 

0.935 2.5 0.12 0.18 0.05 0.03 1.471 

Rough- 
Foam7 

0.952 2.5 0.1 0.15 0.05 0.03 2.448 

Rough- 
Foam8 

0.967 2.5 0.08 0.12 0.05 0.03 4.413 

Rough- 
Foam9 

0.971 2.5 0.072 0.108 0.05 0.03 5.784  
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tortuosity is determined by using a weighted average over all possible 
streamlines around two representative ligament arrangements in Fig. 5 
(b) and (d), as: 

τav =
∑n

i=1
aiτi (33)  

where n is the total number of possible streamlines, a represents the 
weight value (

∑n
i=1ai = 1), and τi denotes the tortuosity of the i-th flow 

streamline. When a1 = a2 = ⋯ = an, Eq. (33) is reduced to a simple 
statistical average [56]. Considering that there are countless flow paths 
exist in a RS, it seems impossible to directly calculate all path lines of 
fluid flow to determine the average tortuosity. It was suggested that the 
average tortuosity is related to the averaged tortuosity for two repre
sentative flow paths: the longest and the shortest paths [56]. The length, 
width and height for the representative structure (RS) are denoted by λ 
in Fig. 5(a) and (c). The total pore volume in the RS can be calculated by: 

VRS− pore = λ3 − λ⋅d2
s (34)  

where ds is the side length of the square ligament. Then, for the struc
tures of Fig. 5(a) and (c), the porosity can be calculated by: 

ε =
VRS− pore

VRS− total
= 1 −

(
ds

λ

)2

(35)  

where the total volume of the cubic representative structure is VRS− total 
= λ3. It follows that: 

ds

λ
=

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
(36) 

For streamline 1 in Fig. 5(b), lAB = lCD = λ/2 and lBC = ds/2. The 
tortuosity can thence be calculated as: 

τ1− 1 =
lAB + lBC + lCD

lAB + lCD
= 1+

1
2

ds

λ
= 1+

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√

2
(37) 

Similarly, for streamline 2 in Fig. 5(b), as lEF = lGH = lIJ = lGI = ds/2, 

lFI = λ − ds and lFG =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

l2GI + l2FI

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ds
2

)2

+ (λ − ds)
2

√

, the tortuosity is 

determined by: 

τ1− 2 =
lEF + lFG + lGH

lEF + lFI + lIJ
=

ds +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ds
2

)2

+ (λ − ds)
2

√

d

=
̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
+

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

9 − 5ε − 8
̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
√

(38) 

For the distribution of ligaments depicted in Fig. 5(b), the 

Fig. 10. Comparison of theoretical prediction and numerical simulation: (a) 
smooth surface; (b) rough surface. 

Fig. 11. Velocity distribution with different porosities: (a) Smooth-Foam2; (b) 
Rough-Foam2; (c) Smooth-Foam4; (d) Rough-Foam4; (e) Smooth-Foam6; (f) 
Rough-Foam6; (g) Smooth-Foam8; (h) Rough-Foam8. 
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distribution proportion of streamlines 1 and 2 is not affected by the 
porosity. Therefore, streamlines 1 and 2 in Fig. 5(b) have identical 
weight, e.g., a1− 1 = a1− 2 and a1− 1 + a1− 2 = 1. The tortuosity is then 
calculated by a simple weighted average, as: 

τ1 = a1− 1τ1− 1 + a1− 2τ1− 2 =
1
2
τ1− 1 +

1
2

τ1− 2

=
2 + 3

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9 − 5ε − 8

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√√

4
(39)  

where a1− 1 and a1− 2 are separately the weight values of streamline 1 and 
2 in Fig. 5(b). 

For streamline 1 in Fig. 5(d), its actual length lGH and the straight 
length of flow lGH are equal in the cell, yielding: 

τ2− 1 =
lGH

lGH
= 1 (40) 

For streamline 2 in Fig. 5(d), the streamline of the ligament boundary 
layer is considered to fit the ligament surface because of the thin 
boundary thickness of the ligament surface. Since lMN = lQR = λ

2, lNO =

lPQ = ds
2 and lOP = ds, the tortuosity can be calculated, as: 

τ2− 2 =
lMN + lNO + lOP + lPQ + lQR

lMN + lOP + lQR
=

λ + ds

λ
= 1+

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
(41) 

As the volume of the ligament increases, the proportion of straight 
streamline decreases while the proportion of tortuous streamline in
creases. Therefore, the streamlines 1 and 2 in Fig. 5(d) are related to the 
volume of the ligaments in the unit. The two weights of streamlines in 
Fig. 5(d) are a2− 1 =

λ3 − λd2
s

λ3 and a2− 2 = λds
2

λ3 , yielding: 

τ2 = a2− 1τ2− 1 + a2− 2τ2− 2 =

(
λ3 − λd2

s

λ3

)

τ2− 1 +
λds

2

λ3 τ2− 2 = 1+(1 − ε)
̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√

(42) 

Generally, the pores are randomly distributed and the pore sizes are 
different in high-porosity open-cell metal foams. Consequently, pro
portions of the two ligament distributions in Fig. 5(a) and (c) cannot be 
directly measured. In the current study, it is assumed that the two dis
tributions have the same probability, i.e., a1 = a2 = 1

2. Here, a1 and a2 
are the weight values for the dislocated and equidistant arrangement of 
Fig. 5(a) and the weight value for the square arrangement of Fig. 5(c), in 
respective. According to Eqs. (39) and (42), the average tortuosity can 
be finalized as: 

τav = a1τ1 + a2τ2 =
1
2
τ1 +

1
2
τ2 =

6 + (7 − 4ε)
̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9 − 5ε − 8

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√√

8
(43) 

Finally, the fractal dimension of average tortuosity is obtained by 
Eqs. (26), (30), (32), and (43). 

DT = 1+
ln
{

1
8

[
6 + (7 − 4ε)

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9 − 5ε − 8

̅̅̅̅̅̅̅̅̅̅̅
1 − ε

√√ ]}

ln

{

λmax
λmin

Df ,3 − 1
Df ,3

[

πDf ,3

6(3− Df ,3)
1− ε

ε

]1
3
} (44)  

2.2.5. Maximum pore diameter 
In the current fractal model development, since the self-similarity of 

pores, the maximum pore corresponds to the maximum size of a pore. In 
the RS shown in Fig. 2, the maximum pore diameter can be calculated 
from the maximum pore volume Vmax− pore as: 

λmax =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Vmax− pore

3
√

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Vtotal− pore − Vsolid− pore

3
√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Vsolid− poreε
/
(1 − ε)3

√

(45)  

where Vsolid− pore and Vtotal− pore are the volume of solid ligaments and the 
total volume of pores within the RS, in respective. The analytical 
expression that is used to calculate the total solid volume of the RS in 
Fig. 2 is 

Vsolid = t3
s

[
3π
γ
−

8
3

πk3 + 4π
(
k2 − 1

) ̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 − 1

√
]

(46)  

where k = R/ts, γ = ts/d, R is the radius of the connected nodes, 
d demonstrates the pore size and ts represents the thickness of ligament. 
According to the definition of porosity, the porosity of the cubic unit cell 
with nodes in Fig. 2 can be obtained as: 

ε =
Vtotal− pore − Vsolid− pore

Vtotal− pore
= 1 − γ3

[
3π
γ
−

8
3

πk3 + 4π
(
k2 − 1

) ̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 − 1

√
]

(47)  

where Vtotal− pore = d3 is the total volume for a RS. 

2.2.6. Permeability formula 
Eventually, by determining all the above key parameters, the 

analytical formulas for the permeability of open-cell metallic foam with 
rough surfaces can be obtained as: 

Fig. 12. Schematic diagram of the streamline: (a) Smooth-Foam6; (b) Rough-Foam6.  
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KR

t2
s
=

π
128

Df ,3

3 − Df ,3 + DT

[
πDf ,3

6
(
3 − Df ,3

)
1 − ε

ε

]−
1+DT

3

{[
3
γ
−

8
3
k3 + 4

(
k2 − 1

) ̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 − 1

√
]

πε
1 − ε

}2
3

(1 − β)5+DT

(48)  

where the fractal dimension of pore size distribution Df, 3 is calculated by 
Eq. (7), the roughness β is obtained by Eq. (21), and the fractal dimen
sion DT is predicted by Eq. (44). It is important to note that, unlike 
previous permeability models, the current permeability model (Eq. (49)) 
does not contain any empirical or curve-fitting parameters. 

3. Pore-scale numerical simulation 

In addition to the development of analytical models, it is of critical 
importance to learn the transport phenomena in open-cell metal foam at 
pore scale. Only through this can the effects of the local ligaments and its 
surface roughness on the flow behavior be understood. Fig. 6 illustrates 
the tetradecahedral unit cell that is used to directly simulate the 
permeable flow in open-cell metal foam: (a) denotes the metal foam 
structure without surface roughness and (b) indicates the structure with 
surface micro roughness. There are two main reasons why the cubic unit 
cell that is the same as the representative structure (RS) is not selected as 
the geometric model for direct numerical simulation. One of the reasons 
is that there are different size pores in the tetradecahedral unit, while six 
faces of cubic unit cell have the same pores (see Fig. 2). In the current 
study, the fractal structure of open-cell metal foam assumes that pore 
shapes are similar, but the size and distribution of pores are random. 
Therefore, a cubic unit cell cannot be selected for direct simulation of 
open-cell metal foam permeability. The pores of different sizes in the 
tetradecahedral unit could reflect the situation of different pore sizes. 
Another reason is that the existing literature [57] demonstrates that the 
real pore structure of open-cell metal foam is closer to tetradecahedron. 
Therefore, the tetradecahedral unit cell is selected to simulate the 
permeability of open-cell metal foam at pore scale. In this way, a more 
accurate numerical simulation results of the permeability of open-cell 
metal foam can be obtained. 

The ANSYS ICEM CFD software is used for meshing and the un
structured tetrahedral meshes with the fluid-solid contact surface 
appropriately densified are generated, as shown in Fig. 7. The boundary 
conditions are set in Fig. 8: the inlet and outlet are set to periodic 
translation boundary conditions with a mass flow rate of 2.37 ×
10− 8 kg ⋅ s− 1; the remaining four faces are symmetrical boundary 
conditions. The Reynolds number is always less than 1, so that the in
fluence of fluid inertial force can be ignored. The fluid is air whose 
density is 1.185 kg ⋅ m− 3 and the viscosity coefficient is 1.82 × 10− 5 kg ⋅ 
m− 1 ⋅ s− 1. The commercial software ANSYS-CFX 19.1 is used for direct 
numerical simulations to explore the transport properties of open-cell 
metal foam with rough surfaces. The convergence residuals for conti
nuity and momentum equations in the each iteration are set to be 10− 7, 
to ensure the accuracy of the calculation. 

Three different numbers of meshes are generated to verify the mesh 
independence, and the results are shown in Table 1. It can be found that 
the calculation results of pressure drop remain unchanged when the 
number of mesh elements is larger than 1.65 million. Therefore, 
1,650,528 tetrahedron elements are selected for numerical simulation. 

4. Results and discussion 

4.1. Model verification 

To verify the validity of the fractal analytical permeability model for 
open-cell metal foam with rough surfaces, the analytical prediction and 
experimental results are compared (as shown in Table 2). Table 2 
summarizes the detailed sample geometric parameters, the comparison 

Fig. 13. Relationship between porosity and open-cell metal foam with the 
rough surfaces: (a) effect of micro-rods height; (b) effect of micro-rods interval; 
(c) effect of micro-rods radius. 

Fig. 14. Permeability dependence on the micro-rod height-to-radius ratio.  
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between the model prediction and experimental results, and the analysis 
of the relative deviations. For quantitative comparison, relative devia
tion (RD) is applied to evaluate different permeability models, which is 
defined by: 

RD =

⃒
⃒
⃒
⃒
Kpre − Kexp

Kexp

⃒
⃒
⃒
⃒ (49)  

where the subscripts “exp” and “pre” denote separately the experimental 
measurement and model prediction. 

The porosity of all four samples is 0.92 in Table 2, with pore sizes of 
1.0 mm and 2.5 mm before the ligament surfaces of open-cell metal foam 
are covered with rough micro-rods. The micro-rods can be divided into 
two types: one is ZnO micro-rods and the other is Co3O4 micro-rods. The 
radius and height of ZnO micro-rods are 2.5 μm and 30 μm [27], 
respectively. The radius of Co3O4 micro-rods is 2.5 μm, and the height of 
Co3O4 micro-rods changes with the processing time [28]. When the 
processing time ranges from 2 to 10 h, the height of micro-rods varies 
from 30 to 50 μm [28], as shown in Fig. 9. 

As noticed in Table 2, the fractal analytical model can predict the 
permeability of open-cell metal foam with rough surface well, and the 
relative deviation (RD) between theoretical predictions and experi
mental results is within 6%. Besides, the permeability in the Co3O4 
samples decreases significantly with the increase in the height of the 
micro-rods. This indicates that the micro-rods height plays a vital role in 
affecting the permeability of open-cell foam. 

4.2. Numerical simulation results 

To further verify the applicability of the theory and learn the trans
port physics at pore scale, theoretical predictions are compared with 
direct numerical simulation of the tetradecahedral unit. 

Table 3 shows the geometric parameters of the tetradecahedral unit 
and the corresponding simulation results. There are totally eighteen 
geometric models with and without micro-rods as surface roughness. As 
seen in Table 3, the appearance of micro-rods notably reduces the 
porosity and permeability of the original smooth tetradecahedral unit 
cell. To show the relationship between theoretical predictions and 
simulation results, Fig. 10 illustrates the comparison between theoret
ical predictions and simulation results for smooth and rough surfaces in 
Fig. 10 (a) and (b), respectively. It can be noticed that there is a good 
agreement between the two approaches, further indicating the appli
cability of the established analytical model. 

Fig. 11 depicts the velocity distribution in the tetradecahedral unit 
cell with smooth and rough surfaces under different porosities. Fig. 11 
(a), (c), (e) and (g) demonstrate the velocity distribution in the cells with 
smooth surfaces, and Fig. 11(b), (d), (f) and (h) show the one in the 
roughed cells, denoting Foam 2, 4, 6, and 8, in respective. With the 
numbers for Foam in Fig. 11 increases, i.e. Foam 2, Foam 4, and Foam 6, 
their ligament thickness and node radius gradually decrease, and thus 
their porosity gradually increases. The flow velocity in the pore center 
area decreases with the increase in porosity, as depicted the red spots in 
Fig. 11. The inlet and outlet of the tetradecahedral unit cell are set to the 
periodic translational boundary with constant mass flow. The higher the 
porosity is, the larger the window area is resulted in, and the smaller the 
velocity will be (the smaller red spots in Fig. 11). Therefore, the flow 
velocity in the center of pore decreases as the porosity increases. 

For the same ligament thickness and node radius, such as Fig. 11(a) 
and (b), (or other group of (c) and (d), (e) and (f), (g) and (h)), it can be 
found that the velocity at pore center area with rough surface is higher 
than that with smooth surface. Macroscopically, micro-rods reduces the 
porosity of the original smooth tetradecahedral unit cell. The flow ve
locity in the center of pore therefore increases under the constant mass 
flow rate. To reveal the specific microscopic mechanism that micro-rods 
affect the permeability of tetradecahedral unit cell, the streamlines of 
sample Foam6 is analyzed in Fig. 12 separately for (a) of smooth surfaces 

and (b) of rough surfaces. As seen, the two tetradecahedral unit cell have 
the same ligament thickness and node radius. It is found that the tor
tuosity of streamlines near the micro-rods increases significantly, and 
the flow velocity of streamlines near the rods decreases by comparing 
the areas A and B in Fig. 12(a) and (b). In Fig. 12(a), the main factors 
impeding fluid motion are the ligaments and nodes of the unit cell. 
However, the micro-rods further impede the fluid motion in Fig. 12(b). 
This is reflected in Fig. 11 where the micro-rods increase the slow- 
flowing area near the ligaments and nodes. For the central region C in 
Fig. 12, the micro-rods have almost influence upon the streamlines. Due 
to the constant mass flow, the micro-rods cause the slow flow region to 
increase near the ligaments and nodes, and the relative increase in the 
velocity of the pore center area when the ligament thickness and node 
radius of the two unit cells are the same. In addition to increasing the 
tortuosity of the fluid passing through the ligaments and nodes, the 
micro-rods also increase the contact surface area between the fluid and 
the solid in the tetradecahedral unit cell. The viscous flow resistance is 
therefore increased. Via these factors is the permeability of the unit cell 
with micro-rods reduced, under the conditions of the same ligament 
thickness and node radius as the original foam cell. 

4.3. Dependence of permeability on porosity 

Fig. 13 illustrates the relationship between the dimensionless 
permeability of open-cell metal foam K/ts2 and the foam porosity ε under 
different microstructure parameters (height, interval, radius) of the 
micro-rods. In Fig. 13, the dimensionless permeability decreases with 
the increase in porosity. As 0.80 ≤ ε < 0.90, the dimensionless perme
ability increases slowly with porosity; when 0.90 ≤ ε < 1.0, a rapid 
increment is found for the permeability as a function of porosity. This 
can be understood as follows: the porosity increases and the proportion 
of solid phase of open-cell metal foam decreases. As porosity 
approaching to unit, the permeability is close to the limit (infinity). The 
flow resistance decreases and the permeability increases. 

In Fig. 13, it can be seen that open-cell metal foam with smooth 
surface has the largest permeability under the same porosity than the 
other foams with rough surfaces. Micro-rods on the surface of metal 
foam ligament increase the flow resistance and cause the permeability to 
decrease. The radius of micro-rods is 2.5 mm and the interval of micro- 
rods is 12.5 mm in Fig. 13(a). In Fig. 13(a), as the height of micro-rods 
increases from 20 μm to 60 μm, the permeability gradually decreases. 
This is due mainly to the increment in the height of micro-rods which 
leads to an enlarged surface area of open-cell metal foam (i.e., the more 
contact and interactions between in fluid and solid ligaments). Conse
quently, the flow resistance of the fluid through the metal foam in
creases and thus the permeability decreases. In Fig. 13(b), the radius and 
height of the micro-rod are 2.5 μm and 40 μm, and the interval of micro- 
rods increases from 7.5 μm to 17.5 μm. The increase in the distance 
between micro-rods is equivalent to the decrease in the number of 
micro-rods per unit area, and the roughness of the ligament surface 
decreases. The flow resistance of the fluid through the metal foam de
creases, and the permeability increases. In Fig. 13(c), the height and 
interval of the micro-rods are 40 μm and 12.5 μm, respectively. And the 
radius of micro-rods varies from 1 μm to 4 μm. With the porosity fixed, 
the larger the radius of micro-rods, the lower the permeability is resulted 
in. This is thanks mainly to the fact that under the same interval, the 
number of micro-rods per unit area remains unchanged. The total sur
face area of micro-rods changes to a larger value as a bigger radius of 
micro-rods. Therefore, the flow resistance increases (larger surface area) 
and the permeability decreases. 

4.4. Effect of micro-rod height-to-radius ratio 

Fig. 14 depicts the relationship between the dimensionless perme
ability and the height-to-radius ratio. The porosity for metal foam is 0.91 
and a pore size is 2.5 mm. For the rough elements, the interval between 
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micro-rods is 12.5 μm. To discuss the effect of the micro-rods high-to- 
radius ratio on the foam permeability, it is assumed that the volume of 
the micro-rods remains constant. In this way, the number of micro-rods 
per unit area and the total volume also remain unchanged. When the 
volume of the micro-rods keeps constant, the different height-to-radius 
ratios will change the shape of the micro-rods. As increasing the 
height-to-radius ratio, the micro-rod varies to be a long and thin cylin
der. When the height-to-radius decreases, the micro-rod thus looks like a 
short and thick one. It can be obtained in Fig. 14 that the dimensionless 
permeability decreases with the increase in the height-to-radius ratio. As 
the height-to-radius increases, the surface of ligaments becomes 
rougher, which leads to decrement in permeability. When the height-to- 
radius ratio is reduced, the surfaces of ligaments becomes more 
smoother, causing to improvement in permeability. 

5. Conclusion 

Based on the fractal theory for describing metal foam with surface 
roughness, a permeability model for metal foam with rough surfaces is 
developed. Permeability varies functionally with pore parameters 
(porosity ε, pore size λ), micro-rods geometry, and a series of fractal 
dimensions. The model predictions are in good agreement with experi
mental results, which verifies the analytical model. The tetradecahedral 
unit cell is used to simulate the permeable flow in open-cell metal foam. 
The following concluding remarks can be reached: 

(1) The micro roughness on the metal foam porous surface signifi
cantly reduce the foam permeability;  

(2) Non-dimensional permeability decreases as an increase in micro- 
rod height and radius, but increases with micro-rod interval; 

(3) The pore-scale simulation confirms the fact the reduced perme
ability is caused mainly by the increased flow tortuosity and the 
surface friction between fluid transport and the micro roughness. 
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