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We develop an acousto-thermo-mechanical theory
for nonlinear (large) deformation of temperature-
sensitive hydrogels subjected to temperature and
ultrasonic inputs, with diffusion mass transport
driven by osmotic pressure accounted for. On the
basis of the strain energy due to network stretching,
the mixing energy of polymers and small molecules,
the Cauchy stress of the deformed hydrogel can be
obtained. The acoustic radiation stress generated
by the ultrasonic inputs is incorporated into the
Cauchy stress to give the constitutive equations of the
acousto-thermal-mechanical hydrogel. The mixing
energy contains an interaction parameter as a function
of temperature and polymer concentration so that
hydrogel deformation is temperature dependent.
By employing the incompressible condition of
polymers and molecules, both the temperature
and acoustic radiation stress contribute to osmotic
pressure, inducing hydrogel swelling (or shrinking).
Specifically, for a temperature-sensitive hydrogel
layer immersed in solvent, its acoustic-triggered large
deformation is comprehensively analysed under
different boundary conditions (e.g. free swelling,
uniaxial constraint and biaxial constraint).

1. Introduction
Polymer gels consisted of cross-linked polymer networks
in three-dimensional (3D) configurations can undergo
large reversible shape transformation in response to
various stimuli, such as mechanical force, temperature,
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pH values, acoustic, light and electric field [1–9]. Under such external stimuli, the change of
osmotic pressure can drive solvent molecules to move in or out of the gel, resulting in swelling
or shrinking deformation, attractive for applications in biomedical devices, optical devices,
microfluidic devices, soft robotics and so like [10–13]. To facilitate more applications of gels in
these fields, an acousto-thermo-mechanical theory for the reversible deformation of temperature-
sensitive hydrogels coupled with chemical diffusion is developed in this study. The theory is then
used to analyse specified deformation behaviours of gel under different conditions such as free
swelling, uniaxial constraint and biaxial constraint.

Great efforts have been devoted to establishing theories for the large reversible deformation
behaviour of stimuli-responsive polymer gels under various external loads. As a pioneer,
Gibbs [14] developed a theory for the large deformation of elastic solids coupled with fluid
transport. Coupled with Darcy’s law for creeping fluid flow and assuming small deformation,
Biot established a linear poroelasticity theory for soil consolidation to account for the effect
of fluid transport on solid deformation [15,16]. By introducing a friction coefficient, Tanaka &
Fillmore formulated a linear diffusion equation to consider fluid–structure interaction [17]. With
pore pressure taken as a variable, Scherer [18] treated the gel as a continuum solid to develop a
homogenization theory. On the basis of polymer gel thermodynamics, a number of field theories
were developed to model the large deformation of gel coupled with mass transport. For instance,
based on the balance of a continuum with mass diffusion, Baek & Srinivasa [19] developed a
model for a swelling solid undergoing large deformation coupled with slow diffusion of a fluid.
In the framework of thermodynamics, Hong et al. [20] established a field theory for the large
deformation of polymer gels coupled with mass transport. Marcombe et al. [21] presented a
theory of constrained swelling of a pH-sensitive hydrogel. Adopting the Flory–Rehner model,
Cai & Suo [22] theoretically investigated the phase transition of temperature-sensitive hydrogels
under mechanical and temperature loads. Recently, we proposed an acoustomechanical theory
of polymer gels by combining the acoustic radiation stress theory and the nonlinear elasticity
theory, with strong interaction between deformed configuration and wave propagation accounted
for [9].

The large deformation behaviour of temperature-responsive hydrogels has been extensively
studied and harnessed to design thermal driven actuators [2,3,23]. Moreover, it has been
experimentally demonstrated that acoustic radiation stress can be sufficiently large to induce
large deformation in soft materials [24–30]. (Here, completely different from acoustic pressure,
the acoustic radiation stress is induced by the nonlinearity and interface mismatch of acoustic
wave and scales as the second-order of acoustic field.) To accurately describe the acoustic-
triggered deformation, the acoustomechanical constitutive theory [31] for soft materials was first
proposed, upon which the deformation [32–34] and stability [35] behaviours of soft materials were
then analysed in details. Further considering the diffusion effect, a nonlinear acoustomechanical
field theory [9] was developed to study the acoustomechanical deformation of polymeric gels.
However, at present, for temperature-responsive hydrogels, the reversible deformation of the
hydrogels under combined acoustic inputs and thermal load remains elusive. This urgently needs
an acousto-thermo-mechanically coupled theory for the reversible deformation of the hydrogels.
Given that the ultrasonic inputs can trigger gel deformation in a fast and non-contact manner,
such a theory can provide a useful guideline for designing acousto-thermally driven actuators
made of temperature-sensitive hydrogels.

This article is organized as follows. The acousto-thermo-mechanically coupled theory for
temperature-sensitive hydrogels is developed in §2 by using the combined free energy of polymer
gel, which contains the strain energy of the network, the mixing energy of the polymer and
solvent, as well as the negative work done by acoustic radiation stress. The theory is validated
against existing experimental measurements in §3. In §4, the variation of gel-free energy with
acoustic inputs and temperature is analysed. In §5, a comprehensive calculation and discussion
of acoustic-actuated large deformation are performed under three different boundary conditions
(i.e. free swelling, uniaxial constraint and biaxial constraint). Concluding remarks are presented
in §6.
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2. Acousto-thermo-mechanics of hydrogels
We now formulate the theoretical framework of acousto-thermo-mechanics of temperature-
sensitive hydrogels. The dry network with initial dimensions (L1, L2 and L3) is taken as reference
configuration. When the dry network is immersed in water, it imbibes water and freely swells
to reach an equilibrium state with dimensions (λ0L1, λ0L2 and λ0L3), λ0 being the free swelling
ratio. In such cases, three displacement boundary conditions can be used to design actuators
for different applications. As shown in figure 1a–c, the hydrogel can be designed to be free
swelling, subjected to uniaxial constraint and biaxial constraint, respectively. When the hydrogel
is subjected further to ultrasonic inputs and temperature environment, material particle X in
reference configuration moves to x in current configuration. The deformation gradient F =
∂x/∂X describes the deformation kinematics of the polymer network from reference to current
configuration. The Cauchy stress is related to the first Piola-Kirchhoff stress as σ = s · FT/det(F).

For the free swelling and uniaxial constraint cases, we exert two counterpropagating ultrasonic
inputs having identical amplitude, frequency and phase position. The propagation of ultrasonic
waves in the medium generates acoustic radiation stress. The two counterpropagating acoustic
fields are symmetric with respect to the midplane of the hydrogel layer and thereby the hydrogel
undergoes large deformation but does not move. By contrast, for the biaxial constraint case, only
one ultrasonic input is applied from the water side because the hydrogel is bonded to a rigid
substrate on the other side. As the ultrasonic wave penetrates through the hydrogel and totally
reflects at the interface between the hydrogel and the rigid substrate, it will still give rise to two
counterpropagating acoustic fields. In addition, it is assumed that the in-plane dimensions of the
hydrogel layer are much larger than its thickness so that it can be regarded as only undergoing
homogeneous deformation with principal stretches (λ1, λ2 and λ3).

To establish a comprehensive theory of hydrogel acousto-thermo-mechanics, we consider a
temperature-sensitive hydrogel subjected to combined acoustic radiation force and temperature
load. To this end, we first recall the nonlinear elastic theory of hydrogel thermo-mechanics. The
free energy of hydrogel thermo-mechanics contains contributions from stretching the network,
mixing the polymer and solvent, as:

W(F, C) = We(F) + Wm(C), (2.1)

where F = ∂x/∂X is the deformation gradient and C is the nominal solvent concentration (i.e.
number of solvent molecules per unit volume of hydrogel). Following the Flory–Rehner model,
the free energy related to network stretching is:

We(F) = 1
2

NkT(I1 − 3 − 2 ln J), (2.2)

where I1 = tr(FTF), J = det(F), N is the effective number of polymer chains per unit volume of
polymer, k is the Boltzmann constant and T is the absolute temperature. With the effect of cross-
links on solution ignored as an approximation, the free energy of mixing the polymers and solvent
may be given as:

Wm(C) = kT
Ω

[
ΩC ln

(
ΩC

1 + ΩC

)
+ χΩC

1 + ΩC

]
, (2.3)

where Ω is the volume per solvent molecule and χ is the Flory interaction parameter.
Traditionally, the Flory interaction parameter in the Flory–Rehner model is often taken as a
temperature-independent constant. In practice, however, the Flory interaction parameter may
have non-trivial dependence on polymer fraction and temperature, especially for temperature-
sensitive hydrogels [36]. In such cases, the Flory interaction parameter can be written as the
first-order Taylor expansion of the volume fraction ϕ of polymer in the hydrogel:

χ = χ0 + χ1ϕ, (2.4)

with
χ0 = A0 + B0T, χ1 = A1 + B1T, ϕ = 1

1 + ΩC
. (2.5)
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Figure 1. A temperature-sensitive hydrogel layer with different boundary conditions is immersed in water, which deforms
in response to acoustic inputs and temperature environment: (a) free swelling with two counterpropagating acoustic inputs;
(b) uniaxial constraint with two counterpropagating acoustic inputs and (c) biaxial constraint with one acoustic input.

For PNIPAM hydrogel, the values of A0, B0, A1 and B1 have been experimentally determined
[37] as A0 = −12.947, B0 = 0.04496, A1 = 17.92 and B1 = −0.0569, which will be adopted in this
study to perform numerical calculations.

The molecule incompressible condition dictates that:

1 + ΩC = det(F) = J. (2.6)

Upon substituting equations (2.4)–(2.6) into equation (2.3), the mixing free energy can be re-
written as:

Wm(F) = kT
Ω

[
(J − 1) ln

(
1 − 1

J

)
+

(
χ0 + χ1

J

) (
1 − 1

J

)]
. (2.7)
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Combining the two contributions yields the total free energy of the thermo-mechanical
hydrogel at given temperature T. The total free energy can thence be expressed as a function
of deformation gradient, as:

W(F) = 1
2

NkT(I1 − 3 − 2 ln J) + kT
Ω

[
(J − 1) ln

(
1 − 1

J

)
+

(
χ0 + χ1

J

) (
1 − 1

J

)]
. (2.8)

With molecule incompressible condition, chemical diffusion can be introduced into the first
Piola-Kirchhoff stress, as

s = ∂W(F)
∂F

− μ

Ω
JF−T

= NkT(FT − F−T) + kT
Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
JF−T − μ

Ω
JF−T, (2.9)

where μ is the chemical potential of solvent, Ω is the volume per solvent molecule and μ/Ω

actually denotes the osmotic pressure, which increases the chemical potential when the solvent
diffuses into the gel. The corresponding Cauchy stress is:

σ = F
J

∂W(F)
∂F

− μ

Ω
I

= NkT
J

(FFT − I) + kT
Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
I − μ

Ω
I.

(2.10)

Upon the above-mentioned hydrogel thermo-mechanics, we further consider the acoustic
momentum contribution to the Cauchy stress. As is known, ultrasonic wave propagation in
media is accompanied by changes in energy density and momentum density flux, which
produces a steady time-averaged stress called as acoustic radiation stress in the path of wave
propagation. Note that, arising from acoustic momentum transfer at nonlinear acoustic levels
or at discontinuous interfaces, the acoustic radiation stress is not acoustic pressure. Given the
acoustic input p(x, t) = p0e−j(k·x−ωt) (here p0 acoustic amplitude, k acoustic wavenumber and ω

angular frequency), the velocity potential φ(x, t) (i.e. particle velocity u = −∇φ) of the acoustic
field can be obtained on the basis of the Helmholtz equation and boundary conditions. (For more
details, see electronic supplementary material, appendix A). Once the velocity potential is known,
the acoustic radiation stress can be expressed as a function of velocity potential [9,31,33]:

〈Tij〉 =
[

ρa

2c2
a

〈(
∂φ

∂t

)2
〉

− ρa〈(∇φ)2〉
2

]
δij + ρa

〈
∂φ

∂xi

∂φ

∂xj

〉
, (2.11)

or as a function of acoustic pressure and particle velocity

〈Tij〉 =
[

〈p2〉
2ρac2

a
− ρa〈ukuk〉

2

]
δij + ρa〈uiuj〉, (2.12)

where Tij is the acoustic momentum flux tensor, whose time-average 〈Tij〉 is the second-rank
acoustic radiation stress tensor (expressed now in Eulerian coordinates) with 〈·〉 being the time-
average over an oscillation cycle. ρa is the density of medium, ca is the acoustic phase velocity
and δij is the Kronecker delta.

To consider the contribution of acoustic momentum on the acousto-thermo-mechanical
coupling hydrogel, the acoustic radiation stress can be added to the Cauchy stress

σ = F
J

∂W(F)
∂F

− μ

Ω
I − 〈T〉

= NkT
J

(FFT − I) + kT
Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
I − μ

Ω
I − 〈T〉. (2.13)

For the considered thin film case, its deformation occurs along the three principal directions.
To simplify the following analysis, the acoustic radiation stress in principal directions can be
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approximately homogenized as the equivalent acoustic radiation stress (because the film is
considered thin), as below

t1 = 1
l3

∫ l3

0
〈Tinside

11 (z)〉dz,

t2 = 1
l3

∫ l3

0
〈Tinside

22 (z)〉dz

and t3 = 〈Tinside
33 (l3)〉 − 〈Toutside

33 (l3)〉,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

where Tinside
11 , Tinside

22 and Tinside
33 is the acoustic radiation stress inside the hydrogel in the x-, y-

and z-directions, respectively, while Toutside
33 is the acoustic radiation stress outside the hydrogel

in the z-direction. An explicit relation between these equivalent acoustic radiation stresses and the
acoustic input can be found in the electronic supplementary material, appendix A. Applying the
equivalent acoustic radiation stress, the principal components of Cauchy stress for the specified
thin film are written as:

σ1 = NkT
J

(λ2
1 − 1) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
− μ

Ω
− t1, (2.15)

σ2 = NkT
J

(λ2
2 − 1) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
− μ

Ω
− t2 (2.16)

and σ3 = NkT
J

(λ2
3 − 1) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
− μ

Ω
− t3. (2.17)

As a counterpart of Cauchy stress, the first Piola-Kirchhoff stress in Lagrangian coordinates is
expressed as follows:

s = ∂W(F)
∂F

− μ

Ω
JF−T − 〈T〉JF−T

= NkT(FT − F−T) + kT
Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
JF−T − μ

Ω
JF−T − 〈T〉JF−T. (2.18)

In the three principal stretch directions, applying the equivalent acoustic radiation stress, the
first Piola-Kirchhoff stress for the specified thin film can be written as follows:

s1 = NkT(λ1 − λ−1
1 ) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
Jλ−1

1 − Jλ−1
1

μ

Ω
− Jλ−1

1 t1, (2.19)

s2 = NkT(λ2 − λ−1
2 ) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
Jλ−1

2 − Jλ−1
2

μ

Ω
− Jλ−1

2 t2 (2.20)

and s3 = NkT(λ3 − λ−1
3 ) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
Jλ−1

3 − Jλ−1
3

μ

Ω
− Jλ−1

3 t3. (2.21)

Apart from the above constitutive equations, the deformation of hydrogel must satisfy
mechanical equilibrium at all time during the transient process, namely:

∂σ(x, t)
∂x

+ fb(x, t) = ρ
∂2u(x, t)

∂t2 in V(x, t) (2.22)

and

σ(x, t) · n(x, t) = fs(x, t) in A(x, t), (2.23)

where V(x, t) and A(x, t) are the volume and surface area of hydrogel, fb(x, t) and fs(x, t) are
the body force and surface force, n(x, t) is the unit vector normal to the interface between two
materials (positive when pointing outside) and u(x, t) is the displacement field.
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The gradient of chemical potential drives the solvent flux in or out of the hydrogel, which can
be characterized using the chemical diffusion equation, as [15]

j(x, t) = − cD
kT

∂µ(x, t)
∂x

, (2.24)

where j(x, t) is the number flux of solvent molecule crossing a unit area in current configuration,
µ(x, t) is the chemical potential of solvent, c is the concentration of small molecules in current
configuration, D is the coefficient of diffusion for solvent molecules, k is the Boltzmann constant
and T is the absolute temperature.

In the meantime, mass conservation dictates the following continuity equation:

∂c(x, t)
∂t

+ ∂j(x, t)
∂x

= r(x, t) in V(x, t) (2.25)

and
j(x, t) · n(x, t) = i(x, t) on A(x, t), (2.26)

where c(x, t) is the true solvent concentration, and r(x, t) and i(x, t) are separately the inside
source and surface source generating solvent molecules, which are generally taken as zero (i.e.
no source).

The above-formulated constitutive equations together with boundary condition, diffusion
equation and continuity equation describe the nonlinear deformation behaviour of acousto-
thermo-mechanical hydrogels at given temperature, chemical potential and acoustic inputs.
Specifically, equations (2.18)–(2.21) give the constitutive relation between the first Piola-Kirchhoff
stress and the stretches, while equations (2.13)–(2.17) give the constitutive relation between the
Cauchy stress and the stretches. When steady deformation of hydrogel is of concern, the diffusion
equation and continuity equation are spontaneously satisfied for given sufficient time. When
displacement or force boundary condition is applied, the equilibrium state of hydrogel can be
obtained by solving the corresponding constitutive equations. Since the hydrogel immersed in
pure water is considered in this study, as illustrated in figure 1, its chemical potential will be zero
in a series of equilibrium states.

3. Validation of a theoretical model
To validate the theoretical formulations, we compare our theoretical predictions with existing
experimental results [38,39]. As shown in figure 2a,b, the two cases of free swelling and uniaxial
constraint are considered. For either case, the temperature is plotted as a function of hydrogel
volume ratio. Since the cross-link density of the hydrogel was unknown in the experiments,
we adopt the cross-link density-related parameter NΩ as an adjustable parameter to fit the
experimental results. For free swelling, the selection of NΩ = 0.0035, 0.01 and 0.02 matches
well with experimental results. For uniaxial constraint, the hydrogel is first free swelling in
water to an equilibrium swelling ratio λp at T = 303 K before displacement constraints are
exerted. The hydrogel is then stretched along x-direction to a prescribed stretch ratio λ1, which
is subsequently held unchanged in this direction. The theoretical predictions with a fitting
parameter of NΩ = 0.0014 agree well with the experimental results for the prescribed stretches
of λ1 = λp, 2λp and 3λp. For both cases in figure 2, with the increase of the temperature, the
solvent moves out of the hydrogel associated with the decrease of the volume of the hydrogel.
When the temperature continues to increase and all solvents move out of the hydrogel, our
theoretical predictions give the asymptotic boundary line for the hydrogel volume ratio. This
asymptotic boundary line just demonstrates the phase transition for the volume of the hydrogel.
As a matter of fact, the experiments used here are just for the equilibrium swelling of gels
in the absence of acoustic contribution, such results mainly verify the degraded model of the
present acousto-thermo-mechanical model. As there are no experimental results available for the
complete acousto-thermo-mechanical coupling deformation, the present validation might be a
preferred choice in the current condition.
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Figure 2. Comparison between theoretical predictions and experimental measurements [38,39] for temperature–volume
curves of hydrogel: (a) free swelling and (b) uniaxial constraint.

4. Free energy variations
The developed acousto-thermo-mechanical theory relies on the free energy to describe the
nonlinear deformation behaviour of hydrogels, which is consisted of network elastic energy,
mixing energy of polymer and solvent as well as acoustical free energy (work done by acoustic
radiation force). We consider next a specified case of two counterpropagating acoustic waves
p = p0ejωt imping onto a freestanding hydrogel layer along its thickness direction. The two
acoustic waves have the same amplitude p0 and frequency ω. Figure 3 presents the effects of
temperature and acoustic inputs on hydrogel-free energy.

With zero acoustic input ((p2
0/ρ0c2

0)(Ω/kT) = 0, here ρ0 and c0 are the density and acoustic
speed of the surrounding medium), figure 3a plots the free energy of hydrogel as a function of
volume ratio for selected temperatures. At relatively large volume ratio, the temperature plays
a significant role in the free energy. However, as a stable system requires minimization of its
free energy, only the globally minimized free energy is related to the equilibrium state for each
temperature curve. With a constant acoustic input of (p2

0/ρ0c2
0)(Ω/kT) = 0.015, the variation of

free energy as a function of volume ratio is shown in figure 3b at different temperatures. Since the
acoustic radiation force is dependent upon the thickness of the hydrogel layer, the corresponding
free energy exhibits a reciprocating knot at each temperature curve. Under a constant temperature
of T = 310 K, the effect of acoustic input on free energy is displayed in figure 3c. The larger
the acoustic input, the larger the reciprocating knot in each curve. Whatever, only the global
minimization of free energy corresponds to the stable state of hydrogel: other regimes are either
in the metastable or unstable states.

5. Acoustic-actuated large deformations of hydrogels
With reference to figure 1, the two counterpropagating acoustic waves along the thickness of
hydrogel layer generate acoustic radiation stresses in the hydrogel and the surrounding medium
(water). The difference of acoustic radiation stress across the hydrogel–water interface needs to
be balanced with the network deformation stress and osmotic pressure, which can thus cause
the hydrogel to undergo large deformation, either in a swollen phase or a shrunken phase.
In the following sections, we consider three kinds of isotropic and homogeneous deformations
of the hydrogel under different temperatures and acoustic inputs, as shown in figure 1.
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(a) Free swelling
Consider a freestanding network immersed in an aqueous environment without any
displacement or mechanical force constraint, which freely absorbs water and swells till reaching
an equilibrium state (figure 1a). Subjected to the acoustic field of two counterpropagating waves
input and the temperature environment, the following relations are obtained in the case of free
swelling:

λ1 = λ2 �= λ3, J = λ1λ2λ3 = λ2
1λ3, t1 = t2 �= t3, (5.1)

σ1 = NkT
J

(λ2
1 − 1) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
− t1 = 0, (5.2)

σ2 = NkT
J

(λ2
2 − 1) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
− t2 = 0 (5.3)

and σ3 = NkT
J

(λ2
3 − 1) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
− t3 = 0. (5.4)
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From equations (5.2) and (5.4), the normalized acoustic input at a given temperature T can be
expressed as:

p2
0

ρ0c2
0

Ω

kT
= 1

t1

p2
0

ρ0c2
0

{
NΩ

J
(λ2

1 − 1) + ln
(

1 − 1
J

)
+ 1

J
+ 1

J2 (A0 − A1) + 2
J3 A1

+
[

1
J2 (B0 − B1) + 2

J3 B1

]
T
}

(5.5)

and

p2
0

ρ0c2
0

Ω

kT
= 1

t3

p2
0

ρ0c2
0

{
NΩ

J
(λ2

3 − 1) + ln
(

1 − 1
J

)
+ 1

J
+ 1

J2 (A0 − A1) + 2
J3 A1

+
[

1
J2 (B0 − B1) + 2

J3 B1

]
T
}

, (5.6)

where p0 is the amplitude of acoustic input, ρ0 and c0 are the density and acoustic speed of the
surrounding medium. Note that the term p2

0/(ρ0c2
0) is kept on both sides of the above equations,

the term on the left side represents the acoustic radiation stress and also contains the original
information of the acoustic input, while the term on the right side is to normalize t1. As a matter
of fact, all the details for acoustic wave propagation and the acoustic radiation stress are included
in the calculation of t1 (or t3) (see details in electronic supplementary material, appendix A). Or in
other words, the term p2

0/(ρ0c2
0) that contains the information of the acoustic radiation stress and

the original acoustic input is extracted from t1 (or t3) and moved to the left side of the equation.
The residual term p2

0/(t1ρ0c2
0) (or p2

0/(t3ρ0c2
0)) on the right side of the equation only contains the

influence of the dimensions or deformation of the film on the acoustic wave propagation and
the generation of the acoustic radiation stress. The stretch λ1 can be expressed in terms of stretch
λ3 as:

λ1 = λ3

/√
1 − (t1 − t3)

NkT
λ3. (5.7)

Equations (5.5) and (5.6) give the normalized acoustic input under a given temperature.
Alternatively, the temperature can be expressed as a function of hydrogel volume ratio at a given
acoustic input, as:

T =
{

t3Ω

kT
−

[
NΩ

J
(λ2

3 − 1) + ln
(

1 − 1
J

)
+ 1

J
+ 1

J2 (A0 − A1) + 2
J3 A1

]} [
1
J2 (B0 − B1) + 2

J3 B1

]−1
.

(5.8)

Figure 4a,b plots separately the normalized acoustic input as a function of stretch and
volume ratio at different temperature environments, showing a series of equilibrium state for
the hydrogel. In the absence of acoustic input, the hydrogel starts to deform from the free
swelling ratio point, i.e. the interaction point of the curve with the zero acoustic input line. As
the deformation is increased, the acoustic input first increases and then decreases after reaching
a peak. Such variation trend represents snap-through instability and phase transition, that is,
the hydrogel undergoes a discontinuous jumping deformation from one metastable state to
another metastable state having much larger deformation. As the high temperature tends to
shrink the hydrogel, larger acoustic input is needed to maintain the same stretch level when the
hydrogel is immersed in a relatively high-temperature aqueous environment, as demonstrated
in figure 4a,b.

The variation of temperature as a function of hydrogel stretch and volume ratio for
selected acoustic inputs is plotted in figure 5a,b, respectively. At zero acoustic input, the
variation of temperature with deformation is completely in agreement with existing experimental
and theoretical results (figure 2), that is, the hydrogel response to temperature undergoes a
discontinuous deformation jumping over the unstable region. In the presence of acoustic input,
the variation of the curves in figure 5 exhibits more complex trends, because the acoustic radiation
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Figure 4. Nonlinear acousto-thermo-mechanical deformation of a freestanding hydrogel layer under different temperatures:
(a) acoustic input plotted as a function of out-of-plane stretchλ3 and (b) acoustic input plotted as a function of volume ratio.
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Figure 5. Nonlinear thermo-acousto-mechanical deformation of a freestanding hydrogel layer at prescribed acoustic inputs:
(a) temperature plotted as a function of out-of-plane stretch and (b) temperature plotted as a function of volume ratio.

force is a quasi-periodic function of hydrogel thickness, thus sensitive to hydrogel geometry. The
acoustic radiation force plays a role by superposing its quasi-periodic variation on the curve
related to zero acoustic input. Relative to the wavy variation of the curves in figure 5a, the
temperature variation with hydrogel volume exhibits a series of reciprocating knots, because
the volume ratio is a nonlinear function of the stretch. As the acoustic input is increased,
the reciprocating knots tend to appear at smaller volume ratios, demonstrating the increasing
influence of acoustic radiation force.

(b) Uniaxial constraint
We further consider a temperature-sensitive hydrogel with uniaxial constraint, as shown in
figure 1b. The hydrogel layer is first put into water at T = 303 K, freely swells to reach an
equilibrium state with a swelling ratio λp and is then attached to two rigid substrates to constrain
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its stretch as λ1 = λp in the x-direction. Subsequently, the hydrogel is able to deform in response
to acoustic input and temperature variation, obeying the following force balance condition:

σ1 = NkT
J

(λ2
1 − 1) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
− t1, (5.9)

0 = NkT
J

(λ2
2 − 1) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
− t2 (5.10)

and 0 = NkT
J

(λ2
3 − 1) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
− t3. (5.11)

From equations (5.10) and (5.11), stretch λ2 can be expressed in terms of stretch λ3, as:

λ2 = 1
2

λ1λ3

NkT
(t2 − t3) + 1

2

√[
λ1λ3

NkT
(t2 − t3)

]2
+ 4λ2

3, (5.12)

so that the volume ratio J = λ1λ2λ3 can be expressed as a function of λ3. Correspondingly, the
normalized acoustic input at a given temperature T can be expressed as:

p2
0

ρ0c2
0

Ω

kT
= 1

t3

p2
0

ρ0c2
0

[
NΩ

J
(λ2

3 − 1) + ln
(

1 − 1
J

)
+ 1

J
+ 1

J2 (A0 − A1) + 2
J3 A1

+
[

1
J2 (B0 − B1) + 2

J3 B1

]
T
]

. (5.13)

Also, the temperature at a given acoustic input takes the form:

T =
{

Ωt3

kT
−

[
NΩ

J
(λ2

3 − 1) + ln
(

1 − 1
J

)
+ 1

J
+ 1

J2 (A0 − A1) + 2
J3 A1

]} [
1
J2 (B0 − B1) + 2

J3 B1

]−1
.

(5.14)

Figure 6a,b plots the normalized acoustic input as a function of hydrogel stretch and volume
ratio at selected temperatures. A succession of equilibrium states of the hydrogel layer is
observed. A fixed temperature sets a value of initial stretch, which can be obtained from the
interaction between the corresponding curve and the zero acoustic input line. As previously
mentioned, the hydrogel has freely swollen to a homogeneous and isotropic state with a free
swelling ratio (e.g. λp = 202 at T = 303 K). However, as the temperature is increased, the hydrogel
shrinks to smaller stretches and volumes, as shown in figure 6. Owing to the nonlinear nature
of acousto-thermo-mechanical deformation, the acoustic input versus deformation curves show
wavy variation trends. In other words, for given acoustic input and temperature, the hydrogel
can be in one or multiple equilibrium states.

Figure 7a,b plots the variation of temperature as a function of stretch and volume ratio at
selected acoustic inputs, respectively, displays a series of equilibrium states of the hydrogel.
At zero acoustic input, the temperature versus deformation curve presents a typical thermo-
mechanical response of temperature-sensitive hydrogels. Interaction of this zero acoustic input
curve with any constant temperature line gives the initial stretch of acoustic actuation at this
temperature. The influence of acoustic radiation force can thence be characterized by supposing
its quasi-periodic variation on this zero acoustic input curve. Furthermore, as a result of the
nonlinear relation between volume ratio J and stretch λ3, a series of reciprocating knots appear on
the temperature versus volume ratio curves of figure 7b. The larger the acoustic input, the more
and larger the reciprocating knots.

(c) Biaxial constraint
The hydrogel layer can be bi-axially stretched to a prescribed prestretch of λ1 = λ2 = λpre and
then attached to a rigid substrate. When this hydrogel layer is submerged in water, its in-plane
dimensions cannot change because it has been constrained bi-axially, as shown in figure 1c.
When subjected to acoustic input and temperature variation, this hydrogel layer undergoes a
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Figure 6. Nonlinear thermo-acousto-mechanical deformation of a uniaxial constrained hydrogel layer under different
temperatures: (a) acoustic input plotted as a function of out-of-plane stretch and (b) acoustic input plotted as a function of
volume ratio.
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Figure 7. Nonlinear thermo-acousto-mechanical deformation of a uniaxial constrained hydrogel layer at selected acoustic
inputs: (a) temperature plotted as a function of out-of-plane stretch and (b) temperature plotted as a function of volume ratio.

homogeneous and anisotropic deformation along the z-direction and its volume ratio varies as
J = λ2

preλ3. Note that the incident acoustic wave penetrating across the hydrogel is totally reflected
at the hydrogel–substrate interface. The reflected wave interacts with the incoming wave to
generate a standing wave field in the hydrogel layer. Based on this standing wave field, acoustic
radiation forces can be calculated. Incorporating these acoustic radiation forces, we write the force
balance condition as:

σ1 = NkT
J

(λ2
1 − 1) + kT

Ω

[
ln

(
1 − 1

J

)
+ 1

J
+ χ0 − χ1

J2 + 2χ1

J3

]
− t1, (5.15)
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and 0 = NkT
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3 − 1) + kT
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)
+ 1

J
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J2 + 2χ1
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]
− t3. (5.17)
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from which we can express the normalized acoustic input as a function of volume ratio at given
temperature, as:
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. (5.18)

Alternatively, we can express the temperature as a function of volume ratio at given acoustic
input, as:

T =
{

Ωt3

kT
−

[
NΩ

J
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(

1 − 1
J
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(5.19)

With the prestretch set at λpre = 1.2, the normalized acoustic input is plotted in figure 8a,b as a
function of stretch and volume ratio for selected temperatures, respectively. As each point on these
curves corresponds to an equilibrium state, thus each curve gives a series of equilibrium states of
the hydrogel. As only its thickness is allowed to swell under acoustic input and temperature
variation, the hydrogel exhibits a relatively regular relationship between normalized acoustic
input and stretch/volume ratio. The acoustic input periodically varies with either the stretch or
the volume ratio. The larger the temperature, the larger the acoustic input required to maintain
the same deformation.

Figure 9a,b plots separately the temperature as a function of hydrogel stretch and volume ratio
at selected acoustic inputs. Again, the role of acoustic radiation force manifests itself when its
periodical variation is superposed onto the zero acoustic input curve (as reference). Also, higher
temperature corresponds to larger acoustic input. Owing to the nonlinear nature of the present
problem, there exist one or multiple stretches related to one given temperature. This phenomenon
provides the possibility for multiple phase transitions. Relative to the previous two cases, the
temperature versus stretch/volume ratio curves do not exhibit complex reciprocating knots. This
is because the strong biaxial constraint leaves only one variable (i.e. λ3), drastically simplifying the
intrinsic nonlinear relation. As the acoustic inputs are increased, the variation of the temperature
versus stretch/volume ratio curve becomes larger.
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Figure 9. Nonlinear thermo-acousto-mechanical deformation of a bi-axially constrained hydrogel layer at selected acoustic
inputs: (a) temperature plotted as a function of out-of-plane stretch and (b) temperature plotted as a function of volume ratio.

6. Concluding remarks
A nonlinear theory is presented to characterize the large acousto-thermo-mechanical deformation
of temperature-sensitive hydrogels immersed in aqueous environment, in which acoustic
radiation stress and temperature both contribute to osmotic pressure to cause hydrogel shrinking
or swelling. In this theory, the acoustic radiation stress generated by acoustic inputs is a field
force and occupies the space both inside and outside the hydrogel, which can thus be regarded
as part of material law to response to external mechanical forces. Adopting the Flory–Rehner
theory and the acoustic radiation stress theory, we develop the acousto-thermo-mechanical theory
by combining the contributions of network stretching, polymers/solvent mixing and acoustic
radiation force. Temperature-sensitive behaviour of the hydrogel is accounted for by introducing
the temperature-dependent Flory interaction parameter. Theoretical predictions are compared
with experimental measurements at zero acoustic input, with good agreement achieved. Using
the validated theory, we demonstrate the significant influence of temperature and acoustic input
on the variation of hydrogel-free energy. Hydrogel responses to acoustic input and temperature
are systematically analysed under free swelling, uniaxial constraint and biaxial constraint,
which comprehensively characterize the acoustic-triggered nonlinear deformation behaviour of
temperature-sensitive hydrogels with chemical diffusion. Results presented in this study may
inspire the design of novel devices, sensors and actuators by manipulating the acoustic-triggered
large deformation of temperature-sensitive hydrogels.
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