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a b s t r a c t

Elastic composites containing liquid inclusions exist widely in rocks, food, tissues and hydrogels. We
investigate a single ellipsoidal compressible liquid inclusion embedded in an infinite elastic matrix, such
as an isolated cell embedded in an extracellular matrix or an oil or gas pocket embeddedwithin shale. We
first derive the displacement and stress fields in the matrix under far field loading. For the special case of
a spherical inclusion, we arrive at simple, explicit expressions for these fields. We next focus on the shape
evolution of the liquid inclusion and the stress concentration in the matrix, fromwhich we identify when
the effect of liquid compressibility is most significant. Finally, we classify common examples of liquid
inclusions in nature and engineering. According to our theoretical results, we estimate the importance of
liquid compressibility in these examples and provide guidelines for further application of the theory of
liquid inclusions in practical situations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Elastic composites [1] with liquid inclusions exist widely in
nature and engineering, including rocks, food, tissues and hydro-
gels. Accumulating evidence has shown that the elastic fields of
such composites (e.g., the deformation and stress state in and
outside the inclusions) are important for their widespread ap-
plication in biology [2], geology [3], materials science [4,5] and
bionic engineering [6]. For instance, the deformation and stress
state of cells in a three-dimensional (3D) matrix under far field
loading could significantly affect their differentiation [7]. Elastic
composites with liquid inclusions have been well studied from the
mechanical perspective, where the inclusions are often simplified
to two limiting cases, i.e., infinite compressibility (e.g., cracks in
rocks [8]) and incompressibility (e.g., droplets in softmaterials [9]).
However, significant differences in elastic fields between cavities
(i.e., infinite compressibility) and incompressible fluid inclusions
have been observed, indicating the importance of fluid compress-
ibility. Therefore, it is necessary to derive elastic fields both inside
and outside a compressible liquid inclusion in an elastic matrix

* Correspondence to: No. 28 Xianning West Road, Xi’an 710049, Shaanxi,
PR China.
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under far field loadings, such as a cell embedded in extracellular
matrix or oil/gas deposit trapped within shale.

The framework for addressing this problem is the seminal work
of Eshelby, who solved for the response of a single ellipsoidal
elastic solid inclusion in an infinite elastic matrix subjected to far
field loadings [10]. As will be described below, we follow Eshelby’s
framework andmakeminor adaptations to enable its application to
compressible, ellipsoidal, liquid inclusions. Although this problem
has been approached using experimental [11–13] and simulation
approaches [14], no complete solution has been published for the
detailed elastic fields both within and outside the inclusion. This
paper addresses that need, and furthermore explores the nature
of these elastic fields, and how they may be used to tailor the
mechanics of a composite material or tissue.

We note that parts of this solution have been published before.
The complete solutions have been published for the two limiting
cases: an ellipsoidal void in an infinite elastic matrix (infinite com-
pressibility), and an incompressible, ellipsoidal fluid pocket within
an infinite elastic matrix. The solution for the ellipsoidal void
follows directly from Eshelby’s solution, and is well known [15].
The solution for an incompressible, ellipsoidal fluid droplet under
uniaxial loadingwas derived by Style et al. [9] using stress potential
functions. The elastic fields within a compressible, ellipsoidal fluid
pocket and the shape change of that ellipsoid were derived by
Shafiro et al. [16] and David et al. [17] using Eshelby’s approach.
These solutions, as one would predict from the Eshelby solution,
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have uniform stress and strain fields. However, explicit expres-
sions for the elastic fields in the matrix have not been published.
Therefore, this paper presents the full solution for the elastic fields
within and outside a compressible, ellipsoidal fluid inclusion; iden-
tifies cases both for which this solution is important and for which
the previously published limiting cases are adequate; and explores
a range of surprising behaviors that are revealed by this solution.

In this paper, we consider an isolated ellipsoidal compressible
liquid inclusion embedded within an infinite elastic matrix. We
first derive the displacement and stress fields in the matrix under
far field loading. We next focus on the shape evolution of the
liquid inclusion and the stress concentration in the matrix. From
these mechanical responses of the inclusion and matrix, we iden-
tify conditions under which the effect of liquid compressibility is
most significant. Finally, we classify common examples of liquid
inclusions in nature and engineering. According to our theoretical
results, we estimate the importance of liquid compressibility in
practical applications by grouping these examples into three broad
categories (i.e., geological, biological and engineering two-phase
composites). Our results provide useful guidelines for further ap-
plication of the theory of liquid inclusions in practice.

2. Statement of the problem

We begin by considering an isolated ellipsoidal liquid inclusion
imbedded within an infinite and linear elastic matrix (Fig. 1a). We
assume the initial pressure of the liquid is zero so that the matrix
is free of stress before far field loading. We further assume that
the liquid inclusion is sufficiently large that surface effects at the
liquid-matrix interface may be neglected. Upon loading, according
to the theory of linear elasticity, the governing equations in the
matrix are

ε =
1
2

(∇u + u∇) ,

σ =
E

1 + ν

[
ν

1 − 2ν
tr (ε) + ε

]
,

∇ · σ = 0.

(1)

where u, ε and σ are the displacement vector, linearized strain
tensor, and engineering stress tensor in the matrix, respectively,
and E (N/m2) and ν are Young’s modulus and Poisson’s ratio of the
matrix material.

Let the liquid be linearly compressible, namely [16]

k
∆V
V

= −p, (2)

where k (N/m2) is the bulkmodulus of the liquid, V and∆V are the
initial volume and change in volume of the inclusion, respectively,
and p is the liquid pressure after loading.

We assume the strain tensor within the matrix at far field in
Cartesian coordinates (Fig. 1) to be given by

ε||x|→∞ = ε∞ (3)

where ε∞ is a constant strain tensor.
At the interface between the inclusion and matrix, the stress

within the matrix is balanced by the liquid pressure, as

σ · n = −pn (4)

where n is the unit outward vector of the interface.

3. Solution of the problem

We solve the problem by the equivalent inclusion method of
Eshelby [10]. The solution for the ellipsoidal inclusion is given by
elliptic functions in Section 3.1. To investigate the effect of liquid
compressibility, we derive the explicit expressions for the problem
of a spherical liquid inclusion in 3.2.

3.1. Elastic fields for ellipsoidal inclusion

In this part, we will solve the problem of the ellipsoidal liquid
inclusion by the equivalent method from Eshelby [10]. We will
follow the language of Eshelby (i.e. eigenstrain and eigenstress) in
this part.

We first note that the stress fields in the liquid inclusion are
uniform (i.e.hydrostatic stress) under far field loading.We consider
an imaginary problem: an infinite linear elastic matrix I contains
an ellipsoidal domain Ω which sustains a uniform eigenstrain ε∗.
We assume that the ellipsoidal domain Ω has the same shape as
the liquid inclusion in our original problem stated in Section 2,
and the matrix has the same far field load Eq. (3). According to
Eshelby, the stress fields in the domain Ω are also uniform. The
equivalent method is that if we choose a proper ε∗ such that the
liquid inclusion in the original problem has the same deformation
and stress fields as the domain Ω in the imaginary problem, then
the two problems will have the same elastic fields in their matrix.

For the imaginary problem, the strain in the domain Ω is ε∞ +

S : ε∗ by the principle of superposition, where S is the Eshelby
tensor for the ellipsoidal domain. The stress in the domain is

σimg
= L0 :

(
S : ε∗ − ε∗ + ε∞

)
(5)

where the fourth-rank tensor L0 is the stiffness tensor of the
matrix, with components:

(L0)ijkl =
Eν

(1 + ν) (1 − 2ν)
δijδkl +

E
1 + ν

δikδjl

in which δij is Kronecker’s delta function. For the original problem
of liquid inclusion, if the deformation of the liquid inclusion is
the same as that of the domain Ω in the imaginary problem, i.e.
ε∞ + S : ε∗, the stress in the liquid inclusion is

σliquid = L1 :
(
S : ε∗ + ε∞

)
(6)

where the fourth-rank tensor L1 is the ‘‘stiffness tensor’’ of the
liquid, i.e.,

(L1)ijkl = kδijδkl.

If we equate the stress in the liquid inclusion with the that of the
domain Ω in the imaginary problem, i.e.,

σimg
= σliquid, (7)

we can determine the eigenstrain ε∗ from Eqs. (5), (6) and (7) as

ε∗ = −
[
(L1 − L0)−1

: L0 + S
]

: ε∞. (8)

Then the volume variation and pressure of the liquid inclusion
(same as the domain Ω) can be expressed by the imaginary prob-
lem as
∆V
V

= tr
(
ε∞ + S : ε∗

)
= tr

{[
I + S : L−1

0 : (L1 − L0)
]−1

: ε∞
}

, (9)

and

p = k · tr
{[

I + S : L−1
0 : (L1 − L0)

]−1
: ε∞

}
, (10)

respectively, where tr (·) is the trace of the second-order tensor.
The displacement fields in the matrix for the two problems are

u (x) = B (x) : ε∗ + ε∞ · x, (11)

where B (x) are third-rank tensors, which can be expressed by
elliptic integrals. Details can be seen in [15,19].

To investigate the physical meaning of the solution, we decom-
pose thematrix deformation into two parts, i.e., the deformation of
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Fig. 1. Schematic diagram of the problem. (a) An ellipsoidal, compressible liquid inclusion embedded within a linear-elastic solid subjected to a far field load. The solution
can be treated as the superposition of solutions to two sub-problems: a void cavity subjected to an inner pressure (b) and a void cavity within a linear-elastic solid subjected
to a far field load (c).

Fig. 2. Deformation analysis of ellipsoidal liquid inclusions with different shape. (a) Effective strain is defined to characterize the sensitivity of the axial deformation of the
inclusion to the far field load in the loading direction. (b) Compressibility affects the effective strain of ellipsoidal inclusions of different shape. The aspect ratios studied are
1 : 1 : 1, 1.5 : 1 : 1 and 2 : 1 : 1. The loading direction is along the longest axis. The shaded area represents the region where sensivity to compressibility is greatest. Green
lines represent the limit of a void (cavity), and orange lines represent the incompressible limit.
Source: Data for the limiting cases are from [9,15,18].

a void cavity induced by far field load (Fig. 1b), and the deformation
induced by inner pressure p (Fig. 1c). Based on this decomposition,
we divide the eigenstrain into two parts:

ε∗ = ε∗c + ε∗p, (12)

where
ε∗c = − [−I + S] : ε∞,

ε∗p =
{
[−I + S] −

[
(L1 − L0)−1

: L0 + S
]}

: ε∞.
(13)

Then the displacement fields in the matrix can be rewritten as

u (x) =
[
ε∞ · x + B (x) : ε∗c

]
+ B (x) : ε∗p, (14)

where the first part is the matrix deformation of the void cavity
induced by far field load and the second part is the matrix defor-
mation induced by inner pressure.

Because the components of S are zero except for Siijj and Sijij
(i, j = 1, 2, 3), we observe from Eq. (13) that ε∗p = 0 when the far
field load ε∞ is simple shear. In other words, the liquid inclusion
behaves like a void cavity (no pressure variation) under simple
shear. This coincides with Biot’s treatment of liquids for porous
material [20]: liquid contributes only to the resistance to normal
stress, and not to the resistance to shear stress. Because of this, we
consider only the far field uni-axial load to investigate the effect
of liquid compressibility in the following. Then thematrix strain at

far field in Cartesian coordinates (Fig. 1) is given by

ε∞ =

(
ε 0 0
0 −νε 0
0 0 −νε

)
, (15)

where ε > 0 represents stretching and ε < 0 represents compres-
sion.

3.2. Explicit expressions for spherical liquid inclusion

For a spherical liquid inclusion, the expressions of (9), (10) and
(11) can be written explicitly. Due to symmetry, we write these
expressions in spherical polar coordinates (Fig. 1a). The volume
variation (9) and pressure (10) of the liquid inclusion reduce to
∆V
V

=
3 (1 − ν)

2 + 3k (1 + ν)
ε,

p = −
3k (1 − ν)

2 + 3k (1 + ν)
Eε,

(16)

where k is the ratio of the liquid bulk modulus to the solid Young’s
modulus:

k =
k
E

.

To avoid a singularity when the matrix is incompressible, we
normalize the liquid bulk modulus k by the solid Young’s modulus
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E rather than by the solid bulk modulus. The displacement fields

(11) in the matrix can be written as

ur = B1r + B2
R3

r2

+
3 cos 2θ + 1

4

[
12νA1

r3

R2

+ 2A2r + 2 (5 − 4ν) A3
R3

r2
− 3A4

R5

r4

]
uθ = −

3 sin 2θ
2

[
(7 − 4ν) A1

r3

R2 + A2r

+ 2 (1 − 2ν) A3
R3

r2
+ A4

R5

r4

]
(17)

where Ai (i = 1, 2, 3, 4) and Bj (j = 1, 2) are

A1 = 0,

A2 =
1 − 2ν

3
ε,

B1 =
1 + ν

3
ε,

A3 =
5(1 + ν)
6 (7 − 5ν)

ε,

A4 =
1 + ν

7 − 5ν
ε,

B2 =
(1 + ν)

[
1 − 3k (1 − 2ν)

]
6 + 9k (1 + ν)

ε,

(18)

We observe that the liquid compressibility k only appears only in

the coefficient B2 for the displacement fields (18). In other words,

liquid compressibility only affects the radial deformation.

Substituting (17) into (1), we arrive at the stress fields in the

matrix

σrr =
E

1 + ν

{
B1

1 + ν

1 − 2ν
− 2B2

R3

r3

+
3 cos 2θ + 1

4

[
−6νA1

r2

R2 + 2A2 − 4 (5 − 4ν)

× A3
R3

r3
+ 12A4

R5

r5

]}
,

σrθ = −
3 sin 2θ

2
E

1 + ν

[
(7 + 2ν) A1

r2

R2 + A2 + 2 (1 + ν)

× A3
R3

r3
− 4A4

R5

r5

]
,

σθθ =
E

4(1 + v)

{[
4(1 + v)
1 − 2v

B1 +
4(1 − v)
1 − 2v

R2

r2
B2

]
− 6 [5v + 7 (2 + v) cos 2θ ] A1

r2

R2

− 2 (−1 + 3 cos 2θ) A2

+ 2 (1 − 2v) (5 + 3 cos 2θ) A3
R3

r3

− (3 + 7 cos 2θ) A4
R5

r5

}
.

(19)

Similar to the decomposition in Section 3.1, we rewrite the
displacement fields by substituting (16) and (18) into (17), as

ur =
1 − 2v

3
εr +

1
6
(1 + ν)

R3

r2
ε +

1
2
p
E
(1 + ν)

R3

r2

+
3 cos 2θ + 1

4

[
2
1 + ν

3
r +

5 (1 + ν) (5 − 4ν)

3 (7 − 5ν)

R3

r2

− 3
1 + ν

7 − 5ν
R5

r4

]
ε,

uθ = −
3 sin 2θ

2

[
1 + ν

3
r +

5 (1 + ν) (1 − 2ν)

3 (7 − 5ν)

R3

r2

+
(1 + ν)

7 − 5ν
R5

r4

]
ε.

(20)

From (20), we can see that the deformation in the matrix can be
decomposed into two parts (Fig. 1b and c), i.e., the deformation
of a void cavity, and the radial deformation induced by liquid
pressure. In other words, this reveals once more that the effect of
liquid compressibility on matrix deformation is to enhance radial
deformation.

4. Results and discussion

We will investigate the effect of liquid compressibility in this
section. We focus on the deformation of ellipsoidal inclusions in
4.1, the shape and pressure of spherical inclusions in 4.2, and the
stress concentration outside of spherical inclusions in 4.3.

4.1. Effective strain of ellipsoidal inclusion

To verify our solution, we first compare it with two limiting
cases, i.e., the incompressible limit and the void cavity limit. Fol-
lowing Style et al. [9], to characterize the sensitivity of the axial
deformation of the inclusion to far field load, we consider the
‘‘effective strain’’ εeff (Fig. 2a) as defined by

εeff =
u
a

=
[
ε∞ + S : ε∗

]
11, (21)

where a is the half length of the inclusion in the load direction, u is
the displacement magnitude of the tips of the inclusion in the load
direction, and [ε∞ + S : ε∗]11 means the (1, 1) component of the
tensor ε∞ + S : ε∗.

To assess the transition between the two well-known limits,
we plot the dimensionless effective strain εeff

ε
as a function of

liquid compressibility k
E in Fig. 2b. This quantity is central to dipole

treatments of composite materials [21,22], and is referred to as
a ‘‘strain factor’’ in biophysical theories of tissues [23,24]. We
consider different shapes of ellipsoidal inclusions (aspect ratios of
1 : 1 : 1, 1.5 : 1 : 1 and 2 : 1 : 1), and uniaxial far field
loading along the direction of longest axis. For the case of low
bulk modulus, the effective strain decreases with k

E for all aspect
ratios, dropping from an asymptote for the case of a void to that for
the case of an incompressible fluid; these asymptotes match those
reported in the literature [9,15,18]. Consistent with study of strain
factors for solid inclusions, the effective strain of the spherical
inclusion is greater than those for general ellipsoidal inclusions
[25,26]. Considering the qualitative similarity of trends observed
for spheres and ellipsoids, we focus on the spherical inclusion to
investigate the effect of liquid compressibility in the following for
convenience.
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4.2. Deformation and pressure of the spherical liquid inclusion

The relationship between volume and pressure is an impor-
tant mechanical property of the liquid inclusion. For instance, the
pressure influences the effective Young’s modulus of composites
with liquid inclusions [27,28]. Fig. 3a and b show how liquid
compressibility affects the volume variation and pressure of liquid
inclusions as induced by far field loading. We observe that if the
liquid is nearly incompressible, the change of inclusion volume
is negligible but the pressure (absolute value) is maximized. As
the liquid compressibility increases, the change of liquid volume
∆V/V increases and the pressure p (absolute value) decreases. The
compressibility effect is greatest when the bulk modulus of the
liquid and the Young’s modulus of the solid are on the same order
of magnitude. When approaching the two limiting cases (a cavity
and an incompressible liquid), the compressibility of the inclusion
has no significant influence on either the volume change or the
pressure of the liquid inclusion.

The solutions we present in Fig. 3a, integrated with advanced
imaging, enable estimation of the bulk modulus if the mechanical
properties of the matrix are known [29]. Such measurements have
been made for isolated cells [30] and chondrocyte cells in com-
pressed articular cartilage [31] using confocal microscopy. A range
of systems exist for making these measurements for tissues and
engineeredmicroenvironments that load cells in tension [32]. Note
that cells typically undergo a transition from solid-like to fluid-
like at strains sufficient to depolymerize their actin cytoskeletons
[33], and are in general compressible in both cases [31]. From
the perspective of engineering materials, in a material system of
water inclusions in polydimethylsiloxane, the size and volume of
inclusions can be determined by ultra-deep microscopy [11].

Following loading, we observe from (17) that liquid inclusions
becomes ellipsoidal. The aspect ratio of the ellipsoidal inclusion
can be derived from Eq. (17) as given by Eq. (22) in Box I.

Over the range of small strains, the effect of liquid compress-
ibility on λI is only a few percent (Fig. 3c, plotted for ε = 0.1).
However, the effect of the Poisson ratio of the matrix is far greater.

To explain this weak dependence of aspect ratio on the com-
pressibility of the inclusion, we use the decomposition described
above. That is, we decomposed the deformation of the liquid in-
clusion into the deformation of a void cavity superimposed upon
the radial deformation induced by liquid pressure. According to
Eq. (16), we can estimate the liquid pressure after the uniaxial load
is applied as:⏐⏐⏐ p
Eε

⏐⏐⏐ =

⏐⏐⏐⏐⏐ 3k (1 − ν)

2 + 3k (1 + ν)

⏐⏐⏐⏐⏐ ≤ 1, k ∈ [0, ∞) , ν ∈ [0, 0.5] , (23)

which can be proved by direct calculations. Then we can estimate
the radial displacement of the inclusion boundary induced by
liquid pressure, as:⏐⏐⏐⏐12 p

E
(1 + ν)

R3

r2

⏐⏐⏐⏐
r=R

≤
1 + ν

2
R
⏐⏐⏐ p
Eε

⏐⏐⏐ ε ≤ 0.75εR. (24)

In this estimation, we use the inequalities 0 ≤ ν ≤ 0.5 and⏐⏐ p
Eε

⏐⏐ ≤ 1. For ε = 0.1, the radial displacement of the inclusion
boundary is less than 0.075R, and the length of the long and short
axis of the deformed inclusion is 1.40R and 0.90R, respectively. The
radial displacement of the inclusion boundary induced by liquid
pressure is too small to influence the inclusion aspect ratio.

4.3. Stress concentration near the liquid inclusion

Themacroscopic strength of a two-phase composite is strongly
dependent on stress concentration by inclusions. According to the
Tresca yield criterion, the solidwill yieldwhen themaximumshear

Fig. 3. The effect of liquid compressibility on themechanical behavior of a spherical
inclusion. Both (a) the normalized volume change of and (b) the pressure within
a liquid inclusion are strong functions of the normalized compressibility of the
inclusion. However, the post-loading aspect ratio (c) of the inclusion is not. Different
lines represent different Poisson ratios of thematrix. The shaded area represents the
region of highest sensitivity, which is the decade above and below that at which the
moduli of the inclusion and matrix match.

stress exceeds a critical value. According to the explicit expression
of stress fields (18), we calculate themaximum shear stress τmax in
the matrix (details are presented in the Supplementary material).
We show the normalized maximum shear stress τmax/τ

∞
max near
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λI =
(7 − 5ν)

[
2 + 3k (1 + ν)

]
+ 3

[
2ν(1 + 5ν) + k

(
7 − 2ν + 11ν2

+ 20ν3
)]

ε

(7 − 5ν)
[
2 + 3k (1 + ν)

]
− 3

[
8ν + k

(
−7 + 17ν + 19ν2 − 5ν3

)]
ε

. (22)

Box I.

Fig. 4. The maximum shear stress in the matrix is dependent on liquid compressibility. Different lines represent different Poisson ratios of the matrix. The shaded area
represents the region of highest sensitivity. Panels I, II and III represent separately the normalized maximum shear stress τmax/τ

∞
max near the inclusion with three different

values of liquid compressibility. The location of the maximum shear stress (red arrows) changes from I to III as the liquid compressibility increases. Along the transition line,
the maximum shear stress is minimized. This reduction in stress can enable strengthening of a composite material.

Fig. 5. The maximum shear stress as a function of the ratio of liquid bulk modulus to the solid elastic modulus and Poisson ratio. In the region of sensitivity between the two
dashed lines (k/E ∼ 1), the maximum shear stress is sensitive to the ratio of the liquid bulk modulus to the solid elastic modulus. There is a minimum τmax/Eε as k/E ∼ 1.
This attenuation of stress increases substantially when the solid Poisson ratio is small (<0.2).

the inclusion as a function of liquid compressibility in Fig. 4, where
τ∞
max =

Eε
2 is the far field maximum shear stress. We observe that,

on one hand, if the solid is compressible (i.e., ν < 0.5), there is a
transition point atwhich themaximumshear stress isminimum. In
other words, there is an optimal liquid compressibility forminimal
stress concentration outside the inclusion. This transition occurs
when the liquid bulk modulus and the Young’s modulus of solid
are on the same order of magnitude. On the other hand, if the
solid is incompressible (i.e., ν = 0.5), the maximum shear stress
monolithically decreases as the liquid incompressibility increases.

This suggests that tailoring the compressibility of liquid inclusions
can increase the macroscopic strength of a composite.

To understand the transition phenomenon, with the Poisson
ratio of the matrix fixed at ν = 0.3, we plot in Fig. 4 the maximum
shear stress near the inclusion for selected values of liquid com-
pressibility. When the liquid compressibility is increased, we find
that the location of the maximum shear stress transfers from the
tip of the inclusion in the load direction (point A in Fig. 1) to the tip
in the free direction (point B in Fig. 1). At the transition point, the
maximum shear stress at A is equal to that at B. We can formulate
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Fig. 6. An Ashby-type representation of the ranges of liquid inclusions within a
solid matrix for which compressibility plays an important role. These examples
are classified into three board categories. i.e., geological, biological and engineering
materials. References are listed in the Supplementary material.

the maximum shear stresses at A and B as

τA =
3
[
1 + 5ν + 3k

(
4 − 3ν + 5ν2

)]
2 (7 − 5ν)

[
2 + 3k (1 + ν)

] Eε,

τB =
3
[
9 − 5ν + 3k

(
1 + 8ν − 5ν2

)]
2 (7 − 5ν)

[
2 + 3k (1 + ν)

] Eε.

(25)

By solving τA = τB, we find the transition point is dependent only
on the Poisson ratio of the matrix:

ktransition =
2 (4 − 5ν)

3(3 − 11ν + 10ν2)
. (26)

This is the transition line plotted in Fig. 4. Correspondingly, we can
also calculate the critical value of the maximum shear stress at the
transition point, as:

τcritical =
15Eε

2 (14 − 10ν)
. (27)

In order to further investigate the impact of liquid compress-
ibility on stress concentration, we plot the normalized maximum
shear stress as a function of the liquid bulk modulus as well as
the elastic modulus and Poisson ratio of the solid in Fig. 5. Within
the region of sensitivity between the two dashed lines, the maxi-
mum shear stress is sensitive to the normalized liquid bulk mod-
ulus k/E. The minimum of τmax/τ

∞
max occurs when the liquid bulk

modulus and the solid elastic modulus have the same magnitude
(k/E ∼ 1). This important property of liquid inclusions can be
favorably exploited formaterials design targeting both engineering
and biological applications. For example, we can reduce the stress
concentration around inclusions for porous materials by choosing
proper liquid fillers. Furthermore, this provides insight into the
benefit of compressibility that has been observed in cells such as
articular chondrocytes [31]. These results may have implications
for the mechanisms underlying cell migration in a soft matrix.

According to the results above, we find that the effect of liquid
compressibility is greatest when the bulk modulus of the liquid
and the Young’s modulus of the solid are on the same order of
magnitude. This provides a criterion to judge whether considering
the compressibility of liquid in practical applications. If k

E < 0.1
(e.g., liquid–gas mixtures in rocks [8]), the inclusion has the same
properties as cavity. If k

E > 10 (e.g., liquid droplet in hydrogel [11]),
the liquid in the inclusion can be treated as incompressible liquid.
If 0.1 ≤

k
E ≤ 10 (e.g., cells in bones [34–36]), we must consider

liquid compressibility.

5. Compressibility in composites with liquid inclusions

To further apply the analytical results, we collect common ex-
amples in nature and engineering. Although this paper deals with
liquid inclusions, in the mechanical analysis we only make two
fundamental assumptions about the liquid: (1) it is compressible;
(2) it can transmit only normal force to the matrix. Consequently,
the results obtained can also be used for inclusions of a gas or a
gas–liquid mixture.

The case of a gas–liquid inclusion is particularly interesting.
For a pure substance, the gas–liquid mixture is saturated. When
the far field load is applied, the pressure of the inclusion remains
constant and the volume fraction of liquid in the inclusion changes.
Therefore, the inclusion volume will change. At this time, the
inclusion behaves like a void cavity. The matrix deformation is
described by Eq. (14) by setting the inclusion bulk modulus k = 0.

If the gas–liquid mixture is a mixture (such as a gas–liquid
mixture in rocks), in general, the gas and liquid are not saturated.
Under the assumption of small deformation of the matrix, we can
ignore the phase transition and estimate the bulk modulus kmixture
by liquid bulk modulus kliquid and gas bulk modulus kgas through
a harmonic average [37] (details can be seen in Supplementary
material):

kmixture =
1

φgas
kgas

+
φliquid
kliquid

(28)

where φgas and φliquid are volume fraction of gas and liquid, respec-
tively.

If kliquid ≫ kgas, the bulk modulus of the mixture can be
estimated as

kmixture =
kgas
φgas

(29)

The matrix deformation is described by Eq. (14) by setting the
inclusion bulk modulus as (28) or (29).

For application, we present selected examples of two-phase
elastic composites in the

(
k, ν

)
space in an Ashby-type plot (Fig. 6).

These examples are classified into three categories, i.e., geo-
logical materials, biological materials and engineering materials
(Supplementary material). Geological materials are, for example,
rocks containing gas, oil or water. In these materials, the liquid
bulk modulus k often has a smaller magnitude than the solid
elastic modulus E, and the solid often has a relatively low Poisson
ratio (ν < 0.4). Thus, geological materials are distributed in the
lower left corner of the

(
k, ν

)
space. According to our theoretical

results, liquid compressibility must be considered for liquid–gas
mixture inclusions and is negligible for liquid inclusions. This is
consistent with the earlier findings that approximate liquid–gas
mixture inclusions by cavity [8].

Biological examples include a very broad range of normalized
moduli, ranging from a compliant cell such as a chondrocyte em-
bedded in a relatively stiff tissue, to a stiff, activated fibroblast
invading a compliant granulation tissue in wound healing. The
mechanical properties (Young’s modulus E and Poisson ratio ν)
of human tissue vary greatly, so that the selected examples are
widely distributed in this space. In both Fig. 6 and the Supple-
mentary material, the cells are taken as nearly incompressible.
However, due to mass transfer across cell membrane, cells can
change their volume under load, which makes the compressibility
of cells complex [31,38–40]. Consequently, for biological examples,
the inclusion compressibility must be considered. According to
the results of Figs. 4 and 5, to minimize stress concentration,
cells prefer to be surrounded by tissues having similar properties.
Similar phenomena have been observed in experiments, with cells
changing theirmechanical properties tomatch the stiffness of their
extracellular matrix [24,41–43].
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Engineering materials are mainly elastic composites with dis-
tributed liquid or gas inclusions. Because the matrix materials are
often polymers (e.g., rubber or gel) with high Poisson ratios, these
materials are distributed toward the top of the space (ν > 0.4).
According to our theoretical results, the compressibility must be
considered for both gas inclusions and gas–fluidmixture inclusions
while the limit of incompressible inclusion [9] can be used for
liquid inclusions.

6. Conclusion

In this paper, a unified mechanical model is established to
analyze the elastic field of compressible liquid inclusionswhich are
common in nature and engineering. An explicit analytical solution
to the problem is given. Deformation and pressure evolution of the
liquid inclusion is analyzed. It is found thatwhen the bulkmodulus
k of the liquid inclusion and the elastic modulus E of the solid
matrix are on the same order of magnitude, liquid compressibility
has the greatest effect on the volume and pressure of the inclusion.

Stress concentration around the liquid inclusion is attenuated
by optimal compressibility of the liquid inclusions. There is an
optimal value of liquid compressibility for which the peak shear
stress in the matrix is lower than either the stress concentration
around a void in that matrix, or the stress concentration around
an incompressible liquid inclusion. The present results have in-
teresting implications for design of composite materials: tailoring
the compressibility of liquid inclusions can increase the macro-
scopic strength of a composite. The results furthermore provide a
putative explanation for why cells remodel themselves and their
local environments to match the mechanical properties of their
microenvironment.

Finally, common examples of liquid inclusions in nature and
engineering are classified. We analyze the role of liquid com-
pressibility in each category. For the mechanical analysis of liquid
inclusions, in practice, our results show that for all three classes of
materials, there exist ranges over which compressibility must be
considered (Fig. 6.) For cases with very high or very low effective
compressibility, the material can be separately modeled using the
void cavity model [8,15] or incompressible liquid inclusion model
[9]. For the case of k/E ∼ 1, the significant influence of compress-
ibility on the mechanical system needs to be specially considered.

We conclude with some caveats about two key assumptions in
the article. The first is that the study is applicable to cases where
the inclusions are sufficiently large that surface energy is not a
factor in the mechanics of the composite. When the size of the
liquid inclusion gradually becomes smaller, the influence of the
surface energy gradually becomes greater. According to previous
literature, the surface energy affects the elastic field around liquid
inclusions [9], and it coupleswith the compressibility of inclusions.
This can in certain cases lead to elastic instability [44–46]. The role
of surface energy will be considered in the sequel. A second limi-
tation is that only isolated liquid pockets were considered. Inter-
actions between inclusions increase up to a percolation threshold,
beyond which the effective strain (strain factor) approaches unity
and the rule of mixtures begins to apply to the composite [25,26].
The effects of liquid inclusions on this approach to percolation, and
the effects of elastic interactions on such effects [47], represent
important future directions of inquiry.
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