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A B S T R A C T

The global buckling behavior of a vertically standing corrugated sandwich plate subjected to body force and
terminal load is analyzed through an improved first order zig-zag shear deformation theory, with the transverse
shear effect of face sheets taken into account. When the face sheets are relatively thick and/or the sandwich plate
has relatively large thickness to height ratios, the transverse shear effect of the face sheets affects significantly
the critical buckling load. The effect becomes more obvious when body force rather than terminal load is applied
on the clamped plates. The influence of geometric parameters on critical buckling parameters is also explored.

1. Introduction

Sandwich plates with periodic lattice cores, either two- or three-
dimensional, possess superior bending stiffness, strength and shock
resistance with respect to monolithic plate of the same mass. They also
present opportunities for additional functionalities, such as energy ab-
sorption, active cooling and vibration/noise control. In particular, due
to simple fluid-through topology and relatively easy fabrication, cor-
rugated sandwich plates have enjoyed widespread applications in areas
of packaging, building construction and high-speed railway transpor-
tation [1,2]. Recently, it has been envisioned that corrugated sandwich
plates are attractive candidate for constructing oversized lightweight
structures with multi-functionalities, such as large-scale gates and
towering walls. In practice, when such a large structure exhibits ac-
celerated movement, its self-weight or acceleration-induced body force
as a kind of in-plane distributed load can play an important role in
affecting its stability and natural frequencies. Considering the effect of
body forces is therefore necessary in the stability analysis and design of
a standing plate especially when it has relatively large scale.

Existing theoretical studies on the buckling and vibration behaviors
of standing monolithic or laminated plates subjected to body forces are
mainly carried out with the classical plate theory or the Mindlin plate
theory. Considering the effect of body forces, Sussaman and Wang [3]
studied the elastic stability of a simply-supported thin rectangular plate
under linearly variable compressive stresses. Brown [4] investigated the
elastic buckling behavior of plates with a variety of boundary

conditions under three different distributions of in-plane loading. Using
the Levy and Ritz method, Wang et al. [5,6] solved the gravity-induced
buckling problem of a standing vertical plate under several boundary
conditions.

Apart from body forces, the influence of top (terminal) load and
plate aspect ratio (e.g., ratio of width to height) on the buckling per-
formance of standing plates have been explored. For instance, based on
the Mindlin plate theory, Bodaghi and Saidi [7] presented an exact
analytical solution for the stability of a vertical moderately thick la-
minated plate subjected to self-weight and top load.

In addition to buckling, Fauconneau and Marangoni [8], Yu and
Wang [9,10] demonstrated that self-weight affects considerably the
natural frequency and mode shape of a standing heavy plate.

Existing theories for modeling the displacement fields and char-
acterizing the buckling/vibration behaviors of laminated composite
plates and sandwich plates include: the classical theory, the higher-
order equivalent single layer theory, the zig-zag theory, the layerwise
theory, and the mixed theories [11,12]. These theories differ mainly in
the shape functions of shear deformation and the modeling of inter-
laminar continuity stresses. Up to now, the global buckling analysis of
standing corrugated sandwich plates subjected to in-plane distributed
load is yet studied. Further, most existing theories assume that the face
sheets of sandwich plates are thin and hard so that their shear effect can
be ignored [13,14]. Recently, Krzysztof et al. [15] developed a seven-
layer sandwich beam model and found that the shear deformation of
face sheets should be taken into account when the sandwich core is

https://doi.org/10.1016/j.tws.2018.03.013
Received 24 May 2017; Received in revised form 7 February 2018; Accepted 11 March 2018

⁎ Corresponding authors at: MOE Key Laboratory for Multifunctional Materials and Structures, Xi’an Jiaotong University, Xi’an 710049, PR China.
E-mail addresses: hanbinghost@mail.xjtu.edu.cn (B. Han), tjlu@mail.xjtu.edu.cn (T.J. Lu).

Thin-Walled Structures 127 (2018) 688–699

Available online 23 March 2018
0263-8231/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/02638231
https://www.elsevier.com/locate/tws
https://doi.org/10.1016/j.tws.2018.03.013
https://doi.org/10.1016/j.tws.2018.03.013
mailto:hanbinghost@mail.xjtu.edu.cn
mailto:tjlu@mail.xjtu.edu.cn
https://doi.org/10.1016/j.tws.2018.03.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2018.03.013&domain=pdf


relatively soft.
The buckling behavior of a vertical corrugated sandwich plate under

body force and/or terminal load remains to be explored. Relative to a
monolithic or laminated plate of equal mass, the corrugated sandwich
plate may be more stable because of its in-plane orthotropic mechanical
property and excellent flexural rigidity, especially when the main
bending direction is coincident with the in-plane loading direction. This
study aims to address the issue by employing the first order shear de-
formation theory and the improved zig-zag formulation [16] to describe
the kinematics of the corrugated sandwich plate subjected to different
combinations of boundary constraints (e.g., free, simply supported and
clamped). During the analysis, the corrugated core is modelled as an
equivalent orthotropic layer. Different from previous studies on similar
problems, the proposed displacement field takes the shear effect of face
sheets into account. The principle of minimum total potential energy
and the p-Ritz method are employed to solve the global buckling pro-
blem. The theoretical predictions are validated by comparing with ex-
isting results when the sandwich plate is degenerated to a monolithic
plate as well as finite element simulation results when the corrugated
sandwich plates are of concern. The influence of face sheet shear effect
on critical buckling loads is quantified for face sheets made of metal,
functional graded material (FGM) and carbon fiber-reinforced compo-
site (T700/3234). The effects of face sheet thickness, core relative
density, corrugation inclination angle, and sandwich plate aspect ratio
are also explored.

2. Formulation

2.1. Problem definition

With reference to Fig. 1a, consider the global buckling behavior of a
vertically standing corrugated sandwich plate of width W and height L
subjected to both gravitational force and terminal load. Let a =W/L
define the aspect ratio of the sandwich plate, and let the Cartesian
coordinate system be located at the geometrical center of the plate.
Fig. 1b depicts the geometric parameters of the sandwich cross-section:
total thickness h, core height c, face sheet thickness tf, core plate
thickness tc, and corrugation inclination θ. The terminal load P is ap-
plied at the center line of the top cross-section, while the gravity G is
exerted on the whole sandwich structure.

2.2. Kinematics

The present study treats the discrete corrugated core of Fig. 1b as an
equivalent uniform orthogonal layer. Then, based on the first order
shear deformation theory and the improved zig-zag formulation [16],
Fig. 2 presents the displacement hypothesis for the sandwich with
equivalent core. Upon deformation, the straight line abode originally
perpendicular to the mid-surface moves to a new position a1b1od1e1. Let
αc and αf represent the rotation angle of the core and the face sheets in

Fig. 1. (a) A vertically standing corrugated sandwich plate under combined body force and terminal load; (b) cross-sectional view of corrugated sandwich.

Fig. 2. Displacement hypothesis of improved zig-zag form (x -z plane).
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x-z plane, and let γc and γf denote the shear angle of the core and the
face sheets, respectively. Relevant assumptions made by the hypothesis
are:

(1) First order shear deformation is assumed when shear deformation
of both the core and the face sheets is considered;

(2) The core and the face sheets are assumed to have the same trans-
verse displacement w(x, y), but their rotations may be different;

(3) Buckling analysis is limited to linear-elastic range;
(4) No relative slippage occurs at the interface between the core and

the face sheets;
(5) The two face sheets have the same thickness and are made of the

same material, and hence possess the same rotation.

In view of the forgoing hypothesis, the in-plane displacement field
of the sandwich can be written as:

• Top face sheet − ≤ ≤ −h z c( /2 /2):

= − +

= − +
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where βc and βf represent separately the rotation angle of the core and
the face sheets in y-z plane.Correspondingly, the strains associated with
the displacement field are:
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• Corrugated core:
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where ε{ }f and ε{ }c are the strain vectors of the face sheets and the

(equivalent) corrugated core, respectively.

2.3. Constitutive equations

To verify the effectiveness of the displacement hypothesis detailed
in the previous section, face sheets made of three different materials are
considered: metal, FGM and fiber-reinforced composite. The stress-
strain relationship of the face sheets and the equivalent core can be
concisely expressed as:

= εσ C{ } [ ] { }f f f, c , H , c (6)

where σ{ }f and σ{ }c represent the stress vectors of the face sheets and the
equivalent core, C[ ]f is the stiffness matrix of the face sheets, and C[ ]H is
the equivalent stiffness matrix of the core. When written explicitly, they
are:
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in which the expressions of Cij
H are referred to Han et al. [1]. Specific

expressions of the macroscopic equivalent stiffness of a foam-filled
corrugated core have been obtained by Han et al. [1] obtained using the
method of energy-based homogenization. The assumptions adopted
during the homogenization, such as small deformation and linear
elasticity, are suitable for the present analysis. Upon removing the re-
levant terms relevant to foam insertion, the equivalent stiffness of an
empty corrugated core can be expressed as:
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2.4. Energy formulation

The strain energy of the corrugated sandwich plate can be expressed
as:

∫
∫ ∫

∑

∑
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By adopting the assumption of von Karman large deformation and
neglecting the membrane deformation, the potential energy contains
contributions from both the body force and the terminal load, given by:
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where ρc is the equivalent density of the corrugated core and ρf is the
material density of the face sheets. The equivalent density ρc is given by:
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where ρcm is the material density of the corrugated plate, Mcore is the
mass of a unit cell of the corrugated core and Vcore represents the cor-
responding equivalent volume.

3. Solution method and boundary conditions

3.1. Solution method

For generality and convenience, the following non-dimensional
terms are introduced:
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in which teq represents the equivalent thickness of a homogeneous plate
having the same mass as the corrugated sandwich and the same ma-
terial as the face sheets, and Deq represents the equivalent stiffness of
the corrugated sandwich plate in the y direction (Fig. 1), given speci-
fically by:
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Here, ρc represents the relative density of the corrugated core layer,
which is defined in the present study as the ratio of ρc to ρf .

The p-Ritz method [17] is used to solve the problem of Fig. 1, using
the following p-Ritz functions:
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where p is the degree of the complete polynomial space,
w α β α β, , , ,i i
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subscript m given by:
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geometric boundary conditions [17].
Upon substituting (17) into (4) and (5), the strains can be rewritten

as:
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Accordingly, the strain energy of the corrugated sandwich plate
becomes:
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for which the stiffness matrix of the sandwich can be written as:
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Explicit expressions of the elements in [K] are presented in
Appendix A.

Upon substituting (17) into (13), the two contributions of the po-
tential energy can be rewritten as:
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Finally, the geometric stiffness matrices due to terminal load and
body force can be expressed separately by:
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so that the equilibrium equation for buckling analysis takes the form of:

+ + =ΔK K K 0([ ] [ ] [ ]){ } { }P G (29)

F.-H. Li et al. Thin-Walled Structures 127 (2018) 688–699

691



When Δ{ } has non-zero solutions, the determinant of its coefficient
matrix should be zero, i.e., + + =K K K[ ] [ ] [ ] 0P G . Note that [KP] and
[KG] contain the two buckling load parameters P and q to be solved. In
the present study, when a specific value is prescribed to P or q , the
corresponding critical buckling parameter q or P is obtained via
MATHEMATICA.

3.2. Boundary conditions

Theoretically, the p-Ritz method can be used to solve any type of
boundary conditions. However, when cost and effectiveness are con-
sidered, four different boundary condition types for the four edges of
the plate displayed in Fig. 3 are discussed. For example, as listed in
Table 1, the boundary condition FCSF means that the 1st edge is free,
the 2nd edge is clamped, the 3rd edge is simply-supported, and the 4th
edge is Free. For each type of boundary condition, the basic functions
are presented in Table 1, which satisfy the geometric boundary condi-
tions as the p-Ritz method requires [17].

4. Buckling results and discussion

4.1. Validation

Since there exists no study on the gravity-induced buckling of cor-
rugated sandwich plate, two approaches are taken to compare and
verify the critical buckling parameters calculated using the present

theoretical method: (1) the corrugated sandwich plate is degenerated to
a homogeneous plate so that the predicted buckling parameters can be
compared with existing solutions [5,6]; (2) the critical buckling para-
meters of the corrugated sandwich plate are calculated numerically
using the method of finite elements (FE) and compared with those
predicted theoretically.

For the first approach, the stiffness constants of the equivalent
corrugated core in Eq. (10) are replaced with those of a homogeneous
isotropic plate, i.e., =C C[ ] [ ]H f , =E E1

f
2
f , =ν ν12

f
21
f and = =G G G12

f
23
f

13
f .

The critical buckling parameters of a standing vertical homogeneous
plate thus obtained are then compared with the 3D FE simulation re-
sults and existing solutions, as shown in Table 2 for the case when

=P 0. Six 3D solid elements (C3D8R) are used across the thickness of
the plate. Overall, good agreement is achieved. The results of the pre-
sent study are closer to the 3D FE results than the results of Wang et al.
[5,6], as the latter did not consider the shear deformation while the
former takes into account the first order shear deformation. As ex-
pected, the influence of shear effect gets smaller as the aspect ratio L/h
increases, which is consistent with our previous study [18], in which
the shear effect is found to decrease with increasing slender ratio L/h.

To determine the relation between P and q for corrugated sandwich
plates, FE calculations using ABAQUS/Standard are implemented for all
four types of boundary conditions listed in Table 1. 3D deformable four-
node shell elements with reduced integration (S4R) are used to model
the corrugated sandwich structure as depicted in Fig. 4. Interactions
between the top/bottom face sheet and the corrugated core are as-
sumed to be perfect bonding (Tie). To determine the stability of a
corrugated sandwich plate under terminal load and body force, the two
step analysis is employed: A general step of static analysis is firstly
carried out for calculating the initial stress field under the prescribed
“self-weight” with gravity option; subsequently, a linear perturbation
step of buckle analysis is applied. For sandwich plates under sole
terminal load or body force, only a buckle analysis is needed. Mesh
convergence has been guaranteed for each calculation, and the maximal
element size used in all FE calculations is 0.008m. Relevant material
parameters of the face sheets and the corrugated plate are:

=ρ m7900 kg/ 3, =v 0.3 and =E 210GPa. Geometric parameters used in
the FE simulations are: =L 4m, a =1, =h 0.1m, =c 0.09m,

=t 0.005mc , =t 0.005mf and =ρ 0.11c . With global buckling assumed,
the first order global buckling results of FE calculations are viewed as
the critical buckling parameters and compared with the theoretical
predications. The first order global buckling modes calculated from the

Fig. 3. Order of plate edges for boundary conditions specified in Table 1.

Table 1
Basic functions under different boundary conditions.

Boundary Conditions ϕ ϕ/b
xc

b
xf ϕ ϕ/b

yc
b
yf ϕb

w

FCFFa(1234b) + +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 1

0 0
+ +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 1

0 0
+ +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 1

0 0

FSSF(1234) + +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 1

0 0
+ +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 0

1 0
+ +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 1

1 0

FCSF(1234) + +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 1

0 0
+ +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 1

1 0
+ +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 1

1 0

FSSS(1234) + +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 1

0 1
+ +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 0

1 0
+ +
− −

x a y
x a y

( ) ( 1)
( ) ( 1)

0 1

1 1

a F: free; C: clamped; S: simply-supported.
b Order of plate edges are specified in Fig. 3.

Table 2
Comparison of q when =P 0: homogeneous plate (a = 0.5).

Case FCFF SSSF SCSF CSCF SSSS

3D FE (L/h=40) 7.257 195.646 280.818 325.570 195.858
3D FE (L/h=100) 7.357 203.092 287.700 334.454 203.372
Present study (L/h=40) 7.456 210.304 299.924 338.818 210.583
Present study (L/h=100) 7.473 213.167 305.095 351.423 213.468
Wang et al. [5,6] 7.4752 213.72 306.09 353.95 214.02

*3D FE simulation results are calculated from ABAQUS (Element type: C3D8R); the re-
sults from Wang et al. [5,6] did not consider the shear effect, and were independent of L/
h.

Fig. 4. The model of corrugated sandwich plate adopted in FE calculations (the face
sheets and corrugated core are all modelled with 3D deformable shell elements).
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Fig. 5. First order buckling modes under four different types of boundary condition (the sandwich plate is under sole body force): comparison between FE calculations and theoretical
predictions.
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FE and the theoretical formulation are compared in Fig. 5, and it is seen
that consistent results are obtained. Fig. 6 illustrates the way that the
present FE model considers the shear effect of the corrugated core, in
which the angle between the line l1l2 (equal displacement line) and the
line l3l4 perpendicular to the mid-plane represents the shear effect. As
shown in Fig. 7, for each type of boundary condition considered, the
theoretical predictions of critical buckling parameters agree well with
the FE results, with a discrepancy less than 3%.

4.2. Shear effect of face sheets

Example 1:. Metal face sheets and metal core

First, the shear effect of metal face sheet is studied when its thick-
ness tf is increased, as shown in Fig. 8 for a corrugated sandwich plate
with FCSF boundary. Unless otherwise stated, solid lines in Fig. 8 (as
well as Figs. 9, 11 and 12) refer to results obtained with the shear effect
of face sheets taken into account, while the dashed lines denote results
obtained without accounting for such effect. The results of not con-
sidering the shear effect of face sheets are obtained using the same
solution method as mentioned in Section 3. Here, relative to the “Face
shear” results, the difference is that the two unknown functions αf , βf in
Eqs. (1) and (3) are replaced with ∂ ∂w x/ , ∂ ∂w y/ . The results of Fig. 8

demonstrate that shear effect is no longer negligible when the face sheet
thickness becomes larger than about 15% of total sandwich thickness
(Fig. 1). Note that the range of face sheet thickness considered in
plotting Fig. 8 is similar to that used by Kardomateas [13].

To explore further the shear effect, Fig. 9 plots the critical buckling
parameters as functions of h L/ for different boundary conditions, with

=t h2 / 0.4f . While the shear effect becomes obvious when the ratio of
total plate thickness to height increases, it is more apparent under FCFF
constraints than under FCSF. This is because the deformation of the
sandwich plate becomes smaller when its edges are simply-supported,
reducing thus the corresponding shear effect of the face sheets. Further,
when the plate is subjected to in-plane uniformly distributed load, like
body force, the shear effect is more sensitive to the variation of h L/ in
comparison with the case when the plate is subjected to terminal load.
In sharp contrast, for sandwich plates under FSSF and FSSS constraints,
the results of Fig. 9(b) and (d) show that the shear effect is negligibly
small within the whole range of geometrical parameters considered.

Example 2:. FGM face sheets and metal core

Consider next the case when the metal face sheets are replaced with
FGM face sheets that have metallic inner side and ceramic outer side, as
shown in Fig. 10. It is assumed that the material make of the corrugated
core plate remains to be metal, thus this change will not influence the
connection between the face sheets and the core. For simplicity, the
Poisson ratio is assumed to be constant ( =ν 0.3) for both the FGM face
sheets and the core plate, and the Young's modulus of the FGM is as-
sumed to vary according to the following linear expressions [19–21]:

=
⎧
⎨
⎩

+ − ∈ − −

+ − ∈

+
−
−

−

E z
E E E z

E E E z
( )

( )( ) [ , ]

( )( ) [ , ]

z h
h c

h c

z h
c h

c h
f c m c

2
2 2

c m c
2

2 2 (30)

where Ec and Em represent the Young's moduli of ceramic and metal,
respectively.

Fig. 11 shows the variation trend of shear effect caused by the
change of E E/c m under FCSF constraint. The metal is stiffer than
ceramic when E E/c m is less than 1 and softer than the ceramic when
E E/c m is greater than 1; when =E E/ 1c m , the face sheets are monolithic.
From Fig. 11 it is seen that the influence of shear effect on the critical
buckling parameters P and q becomes apparent as E E/c m is increased,
and both decrease with increasing E E/c m.

Example 3:. Composite face sheets and core plate

Fig. 6. The way that the FE model considers the shear effect of the core (1st-order
buckling mode of corrugated sandwich plate subjected to sole body force with FCFF
boundary).

Fig. 7. Comparison between theory and FE simulation: relation between critical buckling
parameters of corrugated sandwich plate under body force and terminal load for four
different types of boundary condition (Table 1).

Fig. 8. Shear effect of metal face sheets on critical buckling parameters of corrugated
sandwich plate under FCSF constraint for selected face sheet thicknesses ( =θ π

3
, =a 1,

=h L/ 1/40 and =ρ 0.11c ).
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As a third example, consider an all-composite corrugated sandwich
plate. Both its face sheets and core are made of T700/3234, with the
following elastic properties [22]: = =E E 8.7GPa1 3 , =E 110GPa2 ,

= = =G G G 4GPa12 13 23 , =ν 0.313 , = =ν ν 0.3221 23 . The main direction
of the fiber-reinforced composite material is in line with the y-axis
(Fig. 1). For FCSF constraints, Fig. 12 displays the change of shear effect
as a result of varying the face sheet thickness. To validate the shear
effect of the face sheets, the results of Fig. 12 are obtained by modeling
the face sheets with 3D solid elements (C3D8R), which is the different
from the FE model depicted in Fig. 4. There are 4 elements in the
thickness direction of the face sheets, and it has been established that
numerical convergence is guaranteed. As shown in Fig. 12, the differ-
ence between the 3D FE results and the present study decreases when
the shear effect of face sheets is taken into account. Similar to the

previous two examples, the influence of shear effect on critical buckling
parameters is significant when the face sheets are relatively thick. For
the case of body force, the maximum error can reach 27.34% if shear
effect is neglected.

For all the three examples considered thus far, the predicted critical
buckling parameters with face sheet shear effect ignored are smaller

Fig. 9. Shear effect of metal face sheets on critical buckling parameters of corrugated sandwich plate under different boundary conditions ( =θ π
3
, =a 1, =h L/ 1/40, =ρ 0.11c and

=t h2 / 0.4f ).

Fig. 10. Corrugated sandwich plate with FGM face sheets.

Fig. 11. Shear effect of FGM face sheets on critical buckling parameters of corrugated
sandwich plate under FCSF constraint ( =θ π

3
, =a 1, =h L/ 1/40, =ρ 0.11c and

=t h2 / 0.4f ).
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than those calculated with shear effect duly accounted for.
Consequently, in practice, it is conservative to design large-scale
sandwich structures without considering the shear deformation of the
face sheets.

4.3. Parametric study

The topological parameters of the corrugated sandwich plate that
affect its critical buckling parameters (P and q ) include: ratio of total
thickness to height h/L, ratio of face sheet thickness to total sandwich
thickness ratio t h2 /f , relative density of corrugated core ρc, inclination
angle θ, and plate aspect ratio a (= W/L).

With regard the influence of h/L, it can be seen from Fig. 9 that as h/
L increases, the critical buckling parameters decrease regardless the
type of boundary condition used.

Fig. 13 presents the influence on buckling parameters caused by
changing t h2 /f and ρc. It is assumed here that the area density M of the
structure remains unchanged:

= − +M ρ t
h

t
h

(1 2 ) 2
c

f f
(31)

so that when t h2 /f decreases, ρc increases. From Fig. 13, the buckling
parameters are seen to increase under FCFF constraint and decrease
under FSSF, whereas under both FCSF and FSSS constraints a peak
appears on each curve (although the peak under FCSF is rather weak).

With regard to the influence of inclination angle θ, it can be seen
from Fig. 14 that P and q increase monotonically as θ is increased
under FCFF and FCSF boundary conditions, and the increase is more
rapid under FCSF. Under FSSF and FSSS boundary conditions, however,
peaks appear on both the P and q curves and the peaks do not appear at
the same inclination angle. Further, the variation of q is more sig-
nificant than that of P .

Finally, the variation trends of P and q brought by varying the as-
pect ratio a are displayed in Fig. 15. As a is increased, while P and q

Fig. 12. Critical buckling loads of all-composite (T700/3234) corrugated sandwich plate
with FCSF constraint and varying face sheet thickness; FE results are calculated from
ABAQUS (Face sheets are modelled with 3D solid elements: C3D8R, and the corrugated
core are modelled with 3D shear deformable elements: S4R; =θ π

3
, =a 1, =h L/ 1/40 and

=ρ 0.11c ).

Fig. 13. Critical buckling parameters plotted as functions of relative density ρc under different boundary conditions, with =θ π
3
, =a 1 and =h L/ 1/40.

F.-H. Li et al. Thin-Walled Structures 127 (2018) 688–699

696



increase slightly under FCFF, they decrease under other three boundary
conditions. For both P and q , the variation is more rapid when <a 1.

5. Conclusions

The global buckling behavior of a standing corrugated sandwich
plate subjected to body force and terminal load has been analyzed
under four different types of boundary condition. The effect of shear
deformation in the face sheets on critical buckling loads is considered
using an improved first order zig-zag shear deformation theory. The
validity of theoretical predictions is checked against existing solutions
as well as full numerical simulation results. The main conclusions are:

(1) The gravity buckling parameter decreases almost linearly with in-
creasing terminal load for all the cases considered in the present
study.

(2) The transverse shear effect of face sheets has significant influence
on the critical buckling parameters of corrugated sandwich plates
with relatively thick face sheets and small aspect ratio of sandwich
plate.

(3) The shear effect of face sheets is more obvious when the structure is
subjected to in-plane uniformly distributed load (e.g., body force)
rather than terminal load.

(4) The critical buckling parameters increase with increasing relative
density ρc under FCFF constraints, but exhibit opposite trend under
FSSF. In contrast, under either FCSF or FSSS constraints, the

buckling parameters peak when ρc is approximate 0.25.
(5) The critical buckling parameters increase with increasing inclina-

tion angle under FCFF and FCSF. In contrast, these parameters peak
when the angle is approximately 45o under FSSF and 60o under
FSSS.

(6) The buckling parameters decrease with increasing aspect ratio
under FSSF, FCSF and FSSS constraints, while an opposite trend is
observed under FCFF.

The present results demonstrate that the shear effect of face sheets
can be significantly large and that the body force plays a vital role in the
buckling behavior of corrugated sandwich plates, which are useful for
the design and analysis of large-scale corrugated sandwich plates in
engineering applications.
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Appendix A．. Elements of stiffness matrix [K] for corrugated sandwich plate

The stiffness matrix [K] of Eq. (25) for a corrugated sandwich plate have the following elements:
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Fig. 15. Critical buckling parameters plotted as functions of plate aspect ratio a under different boundary conditions, with =θ π
3
, =h L/ 1/40, =ρ 0.11c and =t h2 / 0.1f .
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