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ABSTRACT
Wave propagation in microtubules plays an important role in cell function and engineering applications. Interfacial tension and hydrostatic
pressure significantly affect such wave propagation in liquid-filled microtubules, but it remains elusive how they influence the dispersion
relation. To address this, we develop a theoretical model based on Flügge’s theory, with interfacial tension and hydrostatic pressure duly
accounted for. We then employ the model to analyze the dispersion relation of axisymmetric and non-axisymmetric waves. The difference
between interfacial tension and hydrostatic pressure is found to affect the dispersion relation. With the increase in interfacial tension, wave
velocity increases for all modes of axisymmetric waves under different hydrostatic pressures. With the increase in interfacial tension or
decrease in hydrostatic pressure, wave velocity increases for the first mode of the non-axisymmetric wave but non-monotonously changes for
the second and third modes of the non-axisymmetric wave. Notably, increasing the difference between dimensionless hydrostatic pressure
(μ) and dimensionless interfacial tension (λ) can lead to mode instability. For the axisymmetric wave, the second mode becomes unstable
when |μ-λ| is sufficiently large. For the non-axisymmetric wave, the first mode becomes unstable when |μ-λ| is large enough and the second
mode becomes unstable only when μ-λ is positive and large enough. The developed theory enables a better understanding of the effect of the
environment on signal transmission in cells and provides guidelines in nondestructive testing with microtubules.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5144442., s

I. INTRODUCTION

Microtubules are filamentous structures composed of a hollow
cylinder of tubulin subunits (α, β, and their isoforms),1,2 which are
basic structural and functional units involved in cell signaling, cell
shape maintenance, cell transport, cell motility, and cell division.3–5

Wave propagation in microtubules is important in both cell func-
tion and bioengineering applications. In cell signaling, microtubules
are important parts of axons, which play a key role in the propa-
gation of action potential accompanied by mechanical waves.6,7 In
cell division, microtubules mediate the waves of cytoplasm reor-
ganization, which reflects the appearance and spreading of mitotic

activity.8 Radial microtubule systems are important in the prop-
agation of successive mitotic waves, which are significant in
plant morphogenesis.9 In cell mobility, the wave propagates along
microtubules in the movement of cells by flagella and cilia,
where microtubules function as transmission lines.10,11 Further-
more, understanding wave propagation in microtubules is helpful
in its application as an ultrasonic contrast agent in ultrasound imag-
ing.12 It is also helpful in non-destructive detection to determine the
viscoelastic properties of structures in cells.13,14

Continuum mechanics is a common and applicable method
to describe the mechanical behavior of microtubules (longer
than 0.5 μm).15,16 The validity of continuum mechanics can be
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examined by several numerical methods such as the lattice model17

and the molecular structural mechanics method.18 The elastic
parameters measured in experiments are able to describe the bend-
ing, shear, and compression of microtubules.16 Based on the con-
tinuum mechanics approach, several theoretical models were devel-
oped to characterize the properties of wave propagation in cellular
microtubules. Isotropic elastic beam models have been used to study
the buckling behavior of microtubules in terms of flexural rigid-
ity.19,20 However, elastic beam models cannot describe the shell-like
two-dimensional (2D) behavior of hollow microtubules, e.g., shell-
like buckling15,21 and vibration modes.22 In addition, microtubules
exhibit strong anisotropy.23,24 Based on Flügge’s shell theory and
the orthotropic constitutive relation, both axisymmetric and non-
axisymmetric waves in free microtubules have been studied17,25 and
the validity of the shell model for dispersion relation of micro-
tubules is verified by comparison with known results obtained from
the lattice model.17 Wave propagation in microtubules embedded
in elastic medium has also been studied, as stiffening of the elas-
tic medium increases the flexural rigidity of microtubules.26 In a
real situation, however, microtubules are always in a liquid environ-
ment with hydrostatic pressure, e.g., p = 770 kPa.27 Besides, surface
tension, e.g., σ = 0.072 N/m,28 needs to be considered for micro-
tubules typically with outer diameter do ≈ 24 nm and inner diameter
di ≈ 12 nm.29 These two factors are expected to have an impor-
tant influence on the dispersion relation of wave propagation.30–33

However, there is yet a study on the effects of interfacial ten-
sion and hydrostatic pressure on the dispersion properties of wave
propagation in microtubules.

In the current study, based on Flügge’s shell theory, the gov-
erning equation of a microtubule is developed by introducing rel-
evant terms concerning hydrostatic pressure and interfacial ten-
sion. Frequency dispersions (i.e., relation between wave velocity and
wave number) of both axisymmetric and non-axisymmetric waves
in microtubules are determined by systematically varying the inter-
facial tension and hydrostatic pressure. The proposed theory enables

better understanding and prediction of the dispersion properties of
wave propagation in liquid-filled microtubules.

II. THEORETICAL ANALYSIS
A. Governing equations

Microtubules are filamentous structures involved in many
aspects of cell structure, motility, and transport. A microtubule is
composed of a hollow cylinder of tubulin subunits (α, β, and their
isoforms), which are arranged in a polar fashion along 13 protofila-
ments in the axial direction1,2 [Fig. 1(a)]. As a result, the microtubule
exhibits strong anisotropic properties.3–5 The microtubule is filled
with uniquely arranged water molecules.34,35 As these molecules are
confined, the fluid is hard to flow, thus causing no flutter and insta-
bility in the microtubule. At the size of a microtubule (outer diam-
eter do ≈ 24 nm and inner diameter di ≈ 12 nm), water inside is
bulk-like liquid phase.36,37 In addition, for nanoscale capillaries, the
liquid–solid interfacial tension (σ) is not negligible. In some cases
(e.g., metaphase and anaphase of mitosis), two ends of the micro-
tubule are attached to chromosome and centrosome, respectively,
which forms a closed tube,38,39 to achieve their function. Due to the
change of environment of the cytoplasm, the outer pressure will
differ from the pressure inside the microtubule. Therefore, there
will be hydrostatic pressure (p) caused by the difference between
inner and outer pressure. In the current study, based on Flügge’s
shell theory,17,25,40 a modified orthotropic shell model is developed
to describe a liquid-filled microtubule, with interfacial tension and
hydrostatic pressure accounted for.

We set the interfacial tension coefficient to be σ and the mean
radius of the microtubule to be R. The inner and outer interfacial
tension plays the role of a uniform radial tensile force 2σ

R around
the microtubule cross section (yielding a hoop force 2σ) and ini-
tial stress in the x direction [Figs. 1(b) and 1(c)]. At nanoscale, we
assume that the liquid is attached to the wall of the microtubule

FIG. 1. (a) Sketch of a microtubule-like
capillary tube. [(b) and (c)] Sketch of
interfacial tension and hydrostatic pres-
sure in a liquid-filled microtubule. σ is the
interfacial tension between microtubule
and the liquid in it. According to the
Young–Laplace equation,71 the radial
force due to the inner and outer inter-
facial tension is 2σ

R
. (d) Sketch of inter-

nal forces in a micro-element, with u, v,
and w denoting the direction of displace-
ment. (e) Sketch of internal moments
in a micro-element, with Nx , Nθ , Nxθ ,
Nθx , Qθ , Qx , Mx , Mθ , Mxθ , Mxθ describ-
ing forces and moments per unit length
acting on the sides of a shell element.
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and is unable to move freely, and thus no inner pressure is
induced. Considering the hydrostatic pressure p, which generates
a hoop force in the shell, we write the initial internal forces in the
shell as

NθI = −pR + 2σ, (1a)

NxI = 2σ, (1b)

where p is the hydrostatic pressure, and NθI and NxI represent the
initial internal forces in θ and x directions, respectively. Using N̄
with superscript to represent the total forces, we can get

Nθ = NθI + Nθ = −pR + 2σ + Nθ, (2a)

Nx = NxI + Nx = 2σ + Nx, (2b)

Nxθ = NxθI + Nxθ = Nxθ, (2c)

Nθx = NθxI + Nθx = Nθx. (2d)

Here, Nθ, Nx, Nxθ, and Nθx are the additional forces caused by wave
propagation and have elastic relations with the additional displace-
ments u, v, and w caused by wave propagation compared with the
situation without wave propagation [Figs. 1(d) and 1(e)]. The x-y-z
coordinate is a global coordinate introduced to describe the whole
microtubule so that Figs. 1(a)–1(c) look clearer. In the following
theoretical analysis, however, the x-θ-z coordinate is adopted as a
local coordinate to characterize an arbitrary micro-element of the
microtubule [Figs. 1(d) and 1(e)].

By Newton’s second law and the constitutive law of orthotropic
shells,41,42 the governing equation for a liquid-filled microtubule can
be given as

{(
2σR2

Kx
+ R2
)
∂2

∂x2 + (
KxθR2 + Dxθ + 2σR2

− pR3

R2Kx
)
∂2

∂θ2 }u + {
R(vxKθ + Kxθ)

Kx

∂2

∂x∂θ
}v

+{(
2σR − RvxKθ − pR2

Kx
)
∂

∂x
+
RDx

Kx

∂3

∂x3 −
Dxθ

RKx

∂3

∂x∂θ2 }w =
ρh
Kx

R2 ∂
2u

∂t2 , (3a)

{R(vθ +
Kxθ

Kx
)

∂2

∂x∂θ
}u +

⎧⎪⎪
⎨
⎪⎪⎩

Kθ + 2σ − pR
Kx

∂2

∂θ2 +
(KxθR2 + 3Dxθ + 2σR2

)

Kx

∂2

∂x2

⎫⎪⎪
⎬
⎪⎪⎭

v

+{
pR − 2σ − Kθ

Kx

∂

∂θ
+ (

vθDx + 3Dxθ

Kx
)

∂3

∂x2∂θ
}w =

ρh
Kx

R2 ∂
2v

∂t2 , (3b)

{
(KxvθR + pR2

− 2σR)
Kx

∂

∂x
− R

Dx

Kx

∂3

∂x3 +
Dxθ

RKx

∂3

∂x∂θ2 }u + {(
Kθ − pR + 2σ

Kx
)
∂

∂θ
−
(vxDθ + 3Dxθ)

Kx

∂3

∂x2∂θ
}v

+{−R2 Dx

Kx

∂4

∂x4 − (
vxDθ + vθDx + 4Dxθ

Kx
)

∂4

∂x2∂θ2 +
2σR2

Kx

∂2

∂x2 −
Dθ

R2Kx

∂4

∂θ4 −
2Dθ + 2σR2

− pR3

R2Kx

∂2

∂θ2 − (
Dθ

R2Kx
+
Kθ

Kx
)}w

=
ρh
Kx

R2 ∂
2w
∂t2 . (3c)

Here, x and θ are the axial coordinate and circumferential angular
coordinate, respectively, u, v, and w are the additional axial dis-
placement, circumferential displacement, and radial (inward posi-
tive) deflection caused by wave propagation, ρ is the mass density,
and R is the average radius of the microtubule. Furthermore, Kx,
Kxθ, and Kθ are the extensional rigidity, and Dx, Dθ, and Dxθ are
the flexural rigidity, which satisfy Kx =

Exh
1−vxvθ , Kθ =

Eθh
1−vxvθ , Kxθ

= Gxθh, Dx =
Exh3

0
12(1−vxvθ) , Dθ =

Eθh3
0

12(1−vxvθ) , and Dxθ =
Gxθh3

0
12 . h is

the equivalent thickness for tension and compression; h0 is another
effective thickness for bending. Ex is the longitudinal modulus, Eθ
is the circumferential modulus, Gxθ is the shear modulus, and vx is
the Poisson ratio along the longitudinal direction. The Poisson ratio
vθ along the circumferential direction can be determined by vθ/vx
= Eθ/Ex.

B. Dispersion equations
We assume the wave in a microtubule to be a traveling wave.

Mathematically, it is described by ui = U igi(nθ)f i(kxx − ωt), where
i = 1, 2, 3 represents the direction x, y, and z, U i is the amplitude of
the wave component in the i direction, and n is the circumferential
wave number representing the degree of non-asymmetry. According
to the value of n, two forms of wave can be obtained: when n = 0, an
axisymmetric wave is obtained, which means that the wave form is
not related to θ; when n > 0, a non-axisymmetric wave is obtained in
which the wave form depends on θ.

1. Axisymmetric wave
The axisymmetric solution to Eq. (3) is independent of θ, which

can be written as
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u(x, t) = U sin(kxx − ωt), (4a)

v(x, t) = V cos(kxx − ωt), (4b)

w(x, t) =W cos(kxx − ωt), (4c)

where the displacements in all three directions are independent of
coordinate θ. Substituting them into Eq. (3), we can get

[(1 + λ)k2
−Ω2
]U + k(λ − μ − αvx − γk2

)W = 0, (5a)

{Ω2
− k2
[β(1 + 3γ) + λ]}V = 0, (5b)

[(αvx + μ − λ)k + γk3
]U + [Ω2

− γk4
− λk2

− α(γ + 1)]W = 0,

(5c)

in which α = vθ
vx
=

Eθ
Ex
=

Kθ
Kx
=

Dx
Dθ

, β = Gxθ
Ex
≈

Gxθ
Ex(1−αvx2)

=
Dxθ
Dx
=

Kxθ
Kx
(αvx2

→ 0) are separately the ratio of circumferential
to longitudinal moduli and the ratio of shear to longitudinal mod-
uli, which characterize the anisotropy of the microtubule, γ = h3

0
12hr2 ,

and SL =
√

Kx
ρh ≈

√
Ex
ρ is the longitudinal sound speed. λ = 2σ

Kx
,

μ = pR
Kx

, Ω = ω
SL

, and k = Rkx are the dimensionless interfacial ten-
sion, dimensionless hydrostatic pressure, dimensionless frequency,
and dimensionless wave number, respectively.

Equation (5b) is decoupled from the other two, leading to the
velocity of torsional waves,

ct = SL
√
β(1 + 3γ) + λ. (6)

This is similar to that of shearing waves in an infinite medium,
cT =

√
Gxθ
ρ .

The other two equations of (5) can be expressed as

A(k, Ω)2×2(U,W)T = 0. (7)

For non-trivial solution of the equation, we arrive at

Det[A(k, Ω)2×2] = 0. (8)

Equations (6) and (8) are the dispersion equations.

2. Non-axisymmetric waves
The non-axisymmetric solution to Eq. (3) can be written as

u(x, t) = U sin(kxx − ωt)cosnθ, (9a)

v(x, t) = V cos(kxx − ωt)sinnθ, (9b)

w(x, t) =W cos(kxx − ωt)cosnθ. (9c)

Substitution of (9) into (3) yields

{(1 + λ)k2
−Ω2 + [β(1 + γ) + λ − μ]n2

}U

+ k(αvx + β)nV + k(λ − μ − αvx − γk2 + βγn2
)W = 0, (10a)

[−k(αvx + β)n]U + {Ω2
− k2
[β(1 + 3γ) + λ] − (α + λ − μ)n2

}V

+ [k2γ(αvx + 3β)n − (μ − λ − α)n]W = 0, (10b)

TABLE I. Mechanical properties and structural parameters for an orthotropic
microtubule.

Parameters Values

Longitudinal modulus, Ex 0.5–2 GPa15

Circumferential modulus, Eθ 1–4 MPa25

Shear modulus, Gxθ 1 MPa26,72

Poisson ratio in the axial direction, vx 0.326

Density, ρ 1.47 g/cm325

Equivalent thickness, h 2.7 nm25,40

Effective thickness for bending, h0 1.6 nm40

Interfacial tension between water and 0.053 N/m46
hydrophobic matter, σmax
Interfacial tension between water 0.002 N/m46
and hydrophilic matter, σmin

Hydrostatic pressure p 770 kPa27

[(αvx + μ − λ)k + γk3
− βγkn2

]U + [(α + λ − μ)n + γk2
(αvx + 3β)n]V

+ [Ω2
− γk4

− λk2
− 2γ(αvx + 2β)k2n2

− αγn4

+ (2αγ + λ − μ)n2
− α(γ + 1)]W = 0. (10c)

These equations can be written as

B(n, k, Ω)3×3(U,V ,W)T = 0, (11)

from which the dispersion equation is given by

Det[B(n, k, Ω)3×3] = 0. (12)

The dispersion equations [(8) and (12)] can be solved numerically
by MATLAB. The ranges of material constants for microtubules are
listed in Table I. In our numerical solution, we set the parameters
as R = 12.8 nm, Ex = 1 GPa, Eθ = 1 MPa, Gxθ = 1 MPa, νx = 0.3,
ρ = 1.47 g/cm3, h = 2.7 nm, h0 = 1.6 nm, α = 0.001, β = 0.001, and
γ = 0.0008.

III. RESULTS
A. Axisymmetric wave

Phase velocity is the rate at which the phase of the wave prop-
agates in space (i.e., the velocity of one harmonic wave in the wave
packet). In this study, we focus on individual modes of the waves in
which phase velocity is an appropriate property. Besides, to explore
the dispersion relation, the phase velocity is commonly studied in
the existing literature of wave propagation.25,26,43 Admittedly, there
are other properties such as the group velocity that usually used
to describe the velocity of energy propagation. These other prop-
erties related to wave propagation will be studied in our future
work.

Solving Eqs. (6) and (8), we can get the dispersion relation
about phase velocity of three different modes for varying values of
interfacial tension and hydrostatic pressure. Since we care about the
stable modes that will not attenuate or diverge along the propagat-
ing path, we only deal with the solution with real dimensionless
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wave number k. In this situation, the phase wave velocity can be
expressed as c = ω

kx
. Thus, we can get the wave velocity c as a function

of k.
Equation (5b) is decoupled from Eqs. (5a) and (5c), which

gives the velocity of the first mode wave [Eq. (6)]. The velocity of
the first mode is dependent upon interfacial tension but indepen-
dent of hydrostatic pressure. Besides, the velocity does not change
with k, which shows no frequency dispersion. With the increase in
interfacial tension, the velocity of the torsional mode will increase
[Figs. 2(a)–2(d)]. In fact, these results can also be obtained from
Eq. (6).

For the other two modes, the dependence of mode velocity
upon dimensionless wave number k can be solved from Eq. (8) ana-
lytically, as detailed in the supplementary material. In the absence
of interfacial tension and hydrostatic pressure (i.e., μ = 0 and

λ = 0), the wave velocity coincides well with that reported in the lit-
erature.25,26,43 Compared with a free microtubule (μ = 0 and λ = 0),
the interfacial tension increases the mode velocity [Figs. 2(a)–2(d)].
With the increase in k, the velocities of the second mode for both
cases approach to a certain value 835.1 m/s [Figs. 2(a)–2(d)].

The dispersion curve is also compared to that of longitudinal
and shearing waves in an infinite medium and the bending wave
in a beam [Fig. S1(b)]. The dispersion curve of the first mode is
similar to that of the shearing wave in infinite medium, which indi-
cates that the first mode contains mainly the torsional wave mode.
Besides, the dispersion curves of the second and third mode are sim-
ilar to those of longitudinal and bending waves. This suggests that
the second and third modes are combinations of the radial wave and
the longitudinal wave. For the second mode, when k < 1, the lon-
gitudinal mode makes up the majority; when 1 < k < 35, the radial

FIG. 2. Influence of interfacial tension
and hydrostatic pressure on the dis-
persion relation for the axisymmetric
wave. Increasing the interfacial tension
increases wave velocities of all the
modes under different hydrostatic pres-
sures. (a) μ = 0: when λ = 0.05 and
0.5, the second mode becomes unsta-
ble. (b) μ = 0.05: when λ = 0 and 0.5,
the second mode becomes unstable. (c)
μ = 0.5: when λ = 0 and 0.05, the sec-
ond mode becomes unstable. (d) μ = 5:
the second mode becomes unstable
when λ = 0, 0.05, and 0.5. (e) Stability
phase diagram of second mode: when
|λ-μ| is large enough, the second mode
will become unstable in a certain range
of k.
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mode makes up the majority. When k > 35, the longitudinal mode
makes up the majority and the velocity remains constant. For the
third mode, there is a platform stage when 0.2 < k < 35 in which the
longitudinal mode takes up the majority. In this stage, there is no
dispersion. When k > 35, the velocity of the third mode increases,
consistent with the bending wave in a beam. In this stage, the radial
wave takes the majority.

In multi-mode cases, the “quasi-osculation point” is a common
phenomenon.44,45 In the present case, a “quasi-osculation point”
exists between the second and third modes when k is about 35
[Figs. 2(a)–2(d)]. Near this point, the dispersion curves of the two
modes are close to each other and show a rapid change in gradi-
ent. This is because different wave fields (i.e., radial wave, longitu-
dinal wave, and torsional wave) are coupled together, and neigh-
boring modes change their properties (e.g., from the radial wave to
longitudinal wave in the second mode) with each other.

To further study how interfacial tension and hydrostatic pres-
sure influence the dispersion curve quantitatively, we compare the
dispersion curve when the dimensionless interfacial tension satisfies
λ = 0, λ = 0.05, and λ = 0.5 under the situation that the dimension-
less hydrostatic pressure takes the value of μ = 0, μ = 0.05, μ = 0.5,
and μ = 5, respectively. For reference, the dimensionless interfacial
tension between water and hydrophobic matter is λ = 0.0393 and
that between water and hydrophilic matter is λ = 0.0015,46 while
the dimensionless hydrostatic pressure is μ = 0.0037.27 Therefore,
the range of interfacial tension and hydrostatic pressure examined
in this study covers the actual values.

Generally speaking, the increase in interfacial tension will
increase the velocities of all modes under different hydrostatic pres-
sures [Figs. 2(a)–2(d)]. Interestingly, in certain situations, the second
mode becomes unstable when k lies in the range between 1 × 10−3

and 1.0, and the instability point is related not only to interfacial ten-
sion but also to hydrostatic pressure (Fig. 2). According to Eqs. (6)
and (8), since the two dimensionless parameters are always coupled
together as (λ-μ) except for a few special places, the mode instability
is closely related to the combined parameter |λ-μ|. This parameter
represents the difference between dimensionless interfacial tension
and dimensionless hydrostatic pressure. When |λ-μ| is sufficiently
small, there will be no mode instability [Figs. 2(a)–2(c)]. However,
when |λ-μ| is large enough (bigger than 0.032), the second mode will
become unstable in certain ranges of k [Fig. 2(d)]. The phase dia-
gram of Fig. 2(e) displays the critical line between the stable and
unstable state of the second mode.

The observed mode instability may be explained as follows.
Within a certain range of the dimensionless frequency (which is a
real number), the dispersion equation only has complex wave num-
ber solution for the second mode. In other words, in this situation,
the second mode cannot exist in stable form. Physically, this occurs
because the second mode mainly contains the radial wave mode,
which is suppressed by the hydrostatic pressure and interfacial ten-
sion. When the imaginary part of the wave number of the second
mode is positive, the second mode will attenuate along the prop-
agation path. In contrast, when the imaginary part becomes nega-
tive, the second mode will diverge along the propagation path.47 In
the current study, for the complex solution, the imaginary part is
positive, which denotes that the second mode attenuates along the
propagating path. In this study, we focus on the dispersion relation,
which is only related to the real solution. The real solution represents

the propagation (not attenuating) mode of the wave structure, while
the imaginary part of the complex solution represents the energy
attenuation.47 Therefore, the dispersion curve does not show the
attenuation or divergence mode.

B. Non-axisymmetric wave
Equation (12) gives dispersion equations for all three modes of

a non-axisymmetric wave. Again, we only consider real wave num-
ber solution with stable modes and systematically vary the values of
interfacial tension and hydrostatic pressure to quantify how these
two parameters influence the dispersion curve. For validation, we
compare the theoretical predictions with existing results in the limit
when there is no interfacial tension and hydrostatic pressure:25,26,43

excellent agreement is achieved.
Unlike the axisymmetric situation, the three modes of a non-

axisymmetric wave are coupled. To clarify the property of each
mode, we compare the dispersion curves of the three modes to those
of longitudinal and shearing waves in infinite medium and the bend-
ing wave in a beam [Fig. S2(e)]. For the first mode, when k < 0.1, the
dispersion curve is similar to that of the bending wave, implying that
the first mode contains mainly the radial wave mode; when k > 0.1,
the dispersion curve is similar to that of the shearing wave, indicat-
ing that the first mode contains mainly the torsional wave mode.
Besides, the dispersion curves of the second and third modes are
similar to those of longitudinal and bending waves. This suggests
that the second and third modes are combinations of the radial wave
and the longitudinal wave. For the second mode, when k < 1, the lon-
gitudinal mode makes up the majority; when 1 < k < 35, the radial
mode makes up the majority. When k > 35, the longitudinal mode
makes up the majority and the velocity remains constant. For the
second mode, there is a platform stage when 0.2 < k < 35 in which
the longitudinal mode takes up the majority. In this stage, there is
no dispersion. When k > 35, the velocity of the third mode increases,
consistent with the bending wave in a beam. In this stage, the radial
wave takes the majority.

For an axisymmetric wave, only one “quasi-osculation point”
exists. For a non-axisymmetric wave, however, there exist two
“quasi-osculation points,” separately between the first and second
modes and between the second and third modes. That is because the
three modes of the non-axisymmetric wave are coupled together and
can be transformed into each other.

To explore the role of interfacial tension, we study the influ-
ence of dimensionless interfacial tension λ on the dispersion curve
for different modes when μ = 0.005 [Figs. 3(a)–3(c)]. For the first
mode with the lowest velocity, when λ = 0 and λ = 0.05, the first
mode becomes unstable when the dimensionless wave number k is
small (k ≈ 1). Besides, the increase in interfacial tension will increase
the steady velocity when k reaches 100. For the second mode with
medium velocity, mode instability occurs only when λ = 0. For the
second and third modes, the wave velocity increases as the circum-
ferential wave number n (not near k = 1) is increased. However, the
increase in λ causes non-monotonic change in wave velocity because
the increase in λ causes non-monotonic change in |λ-μ| and a posi-
tive relation exists between |λ-μ| and the velocity of the two modes
[Eq. (12)].

To explore the role of hydrostatic pressure, we study the influ-
ence of dimensionless hydrostatic pressure μ on the dispersion curve
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FIG. 3. Influence of interfacial tension
and hydrostatic pressure on dispersion
relation of a non-axisymmetric wave with
angular parameter n = 1, 2, 3, and 4.
[(a)–(c)] Influence of dimensionless inter-
facial tension λ on dispersion relation
of modes 1, 2, and 3 when dimension-
less hydrostatic pressure μ = 0.005. The
increase in λ increases the wave veloc-
ity of the first mode but causes non-
monotonic change in wave velocity of the
second and third modes. [(d)–(f)] Influ-
ence of hydrostatic pressure on disper-
sion relation of modes 1, 2, and 3 when
λ = 0.005. Increasing the dimension-
less hydrostatic pressure causes slightly
decreased wave velocity of the first
mode but causes non-monotonic change
in wave velocity of the second and third
modes. Mode instability happens in both
the first and second modes.

for different modes when λ = 0.005 [Figs. 3(d)–3(f)]. For the first
mode with the lowest velocity, when μ = 0 and μ = 0.05, the first
mode becomes unstable when k is small (k ≈ 1). For the second
mode with a medium velocity, mode instability occurs only when
μ = 0.05. With the increase in circumferential wave number n, the
wave velocities of all three modes increase. The increase in μ causes
increased wave velocity of the first mode and nonmonotonic change
in the second and third modes.

The dispersion curves in Figs. 3(a)–3(f) are similar, which
means that the effects of interfacial tension and hydrostatic pres-
sure on dispersion are similar. This can be interpreted as follows:

while hydrostatic pressure only generates radial force as shown in
Eq. (3), interfacial tension induces both radial force and axial ten-
sion. Nonetheless, although interfacial tension has influence on two
directions, its influence on the axial direction is not obvious. There-
fore, interfacial tension and hydrostatic pressure exhibit similar
effects on dispersion.

To explore how interfacial tension and hydrostatic pressure
influence the mode instability, we present the phase diagram of the
second and third modes [Figs. 4(a) and 4(b)]. Upon varying λ and μ,
mode instability occurs in both the second and third modes (Fig. 3)
because they both contain the radial wave mode, which is repressed

FIG. 4. Phase diagram of stability: (a) first mode and (b)
second mode.
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by the hydrostatic pressure. For the first mode, mode instability is
only related to the value of |λ-μ|. When |λ-μ| is small enough (|λ-μ|
< 0.001), there is no mode instability in the first mode. As a result,
the stable area is restricted in a banding regime, which separates the
three parts of the phase diagram [Fig. 4(a)]. However, for the sec-
ond mode, the phase diagram of mode stability is divided into two
parts [Fig. 4(b)]. Only when (μ-λ) is positive and large enough (μ-λ
> 0.001), the second mode becomes unstable.

IV. DISCUSSION
Wave propagation along a microtubule plays critical roles in

cell division, cell motility, and signal transmission.3–5 As the sur-
rounding environment of the microtubule changes, it is likely that
the interfacial tension and hydrostatic pressure will also change.
Specifically, the change of osmotic environment may change the
hydrostatic pressure, and the change of cellular components may
change the interfacial tension. Our theoretical model can pro-
vide quantitative predictions regarding how interfacial tension and
hydrostatic pressure can influence cell division, cell motility, and sig-
nal transmission. The change of environment can cause changes of
interfacial tension and hydrostatic pressure in cells, which, in turn,
will possibly cause the attenuation (a kind of instability) of differ-
ent modes in microtubules. This may serve as a signal for the cell to
modulate its division period and moving path. In signal transmis-
sion, for neuron cells, the propagation of action potential is always
accompanied by mechanical waves along microtubules in axon.6,7

According to the theory proposed in the present study, varying
the interfacial tension and/or hydrostatic pressure can cause certain
modes to attenuate, which, in turn, can disable the propagation of
signal with a certain wave number.

Nondestructive testing is a wide group of analysis methods in
science and technology to evaluate the properties of a material or
component without causing damage.48 This technique has also been
used in cell investigation.12–14 Since the frequency range (Figs. 2
and 3) (7.8 × 106–7.8 × 1012) covers the frequency of ultrasound
imaging in cells (30–50 MHz),49,50 our study provides guidelines for
ultrasound imaging and other non-destructive detections in cells.
In cell ultrasound imaging, microtubules can serve as a contrast
agent.12 Mode instability may lead to reduced contrast intensity. By
adjusting the osmotic environment or changing the concentration
of certain components by drug delivery, hydrostatic pressure and
interfacial tension can be controlled so that mode instability can
be avoided, thus enhancing the quality of image. Wave propaga-
tion in microtubules is also used in other non-destructive detections
in cells to obtain information concerning the mechanical proper-
ties of cells. Besides detecting the mechanical properties of micro-
tubules, the minimum wave number of certain stable modes can
also be used to evaluate hydrostatic pressure and interfacial ten-
sion and characterize the relevant properties of the surrounding
matter.

Wave propagation in many other microtubule-like capil-
lary structures, e.g., Arabidopsis leaf trichomes,51,52 auditory hair
cells53,54 and capillary vessel55 in nature, and carbon nanotubes56,57

in engineering fields, can also be significant for both biological sig-
nal transmission and engineering applications. Although our the-
oretical model is used to describe the behavior of microtubules, it
can be generalized to these microtubule-like capillary structures.

For instance, hair cells are the sensory receptors of both the audi-
tory system and the vestibular system in the ears of all vertebrates.
They are sensitive to the sound wave, which can cause mechan-
otransduction for them to detect the movement in their environ-
ment.58 By adjusting the environment, we may prevent the mode
attenuation due to senescence or injuries. In engineering, for nano-
electromechanical systems (NEMS), nano-components such as high
frequency resonators and oscillators59,60 are inevitably subjected to
the shock wave,61 which can have an impact on the function of these
advices. By adjusting the environment, we can control the interfacial
tension and hydrostatic to avoid certain modes. In ultrasound imag-
ing, Intravascular Ultrasound (IVUS)62 and Intravascular Optical
Coherence Tomography (OCT)63 are common methods to visualize
the endothelium of blood vessels in living individuals in which wave
propagation in capillary vessels is important for imaging. By adjust-
ing the physiological environment, we can avoid disadvantageous
mode attenuation in order to improve the image quality. Active
feedback control has enjoyed wide applications in elastic wave meta-
materials to control the properties of sound radiation.64 Inspired by
this, we can also utilize active feedback control to tune the stability
of wave mode in microtubule-like structures to enhance the quality
of the ultrasound image.

Small scale is an important feature at the size of a microtubule.
The small scale effect includes the interface effect and discrete effect.
In the current work, we mainly consider the interface effect related
to small scale instead of the discrete properties related to small
scale. As for the discrete properties, there exist a few modified con-
tinuum mechanics models (e.g., nonlocal, modified coupled stress,
and strain gradient theories) that describe the mechanical behav-
ior related to the small scale characteristic of the discrete effect.65–70

In wave propagation, although the classical continuum mechanics
model presents inaccurate dispersion relation when the wave num-
ber is large (>2 × 108 m−1), accurate dispersion relation can be
obtained when the wave number is small (<2 × 108 m−1).43 There-
fore, although we do not consider the discrete properties related to
the small scale in our model, it is suitable for the quantitate study of
low frequency (small wave number) waves and the qualitative study
of high frequency (large wave number) waves.

V. CONCLUSION
In this study, with the consideration of interfacial tension and

hydrostatic pressure, the governing equation of a microtubule is
developed based on Flügge’s shell theory. The dispersion properties
of both axisymmetric wave and non-axisymmetric wave in micro-
tubules are then characterized for the selected values of interfacial
tension and hydrostatic pressure. For axisymmetric waves, the veloc-
ities of both the first and second modes increase sensitively with
the increase in interfacial tension or decrease in hydrostatic pres-
sure, but the third mode is less sensitive. Mode instability is closely
related to the difference between dimensionless interfacial tension
and hydrostatic pressure. When the difference is sufficiently large,
mode instability occurs. For non-axisymmetric waves, the wave
velocity is positively correlated with the difference between dimen-
sionless interfacial tension and hydrostatic pressure for the second
and third modes, exhibiting a non-monotonic change when increas-
ing either the interfacial tension or the hydrostatic pressure. The
change of interfacial tension and hydrostatic pressure causes mode
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instability in the first and second modes. In addition, the critical con-
ditions for mode instability are different between the two modes: for
the first mode, the stability area (i.e., no mode attenuation) is band-
like and for the second mode, the stability area is a semi-infinite area.
Since the change of wave velocity and mode instability can reflect
the information on the surrounding properties, our results can help
understand the role of wave propagation in cell division, mobility,
and signal transmission under different environments and provide
guidelines for nondestructive testing in cells.

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed derivation of the
governing equation of a liquid-filled microtubule. Furthermore, the
dispersion relation of an empty microtubule is compared to that of
a liquid-filled microtubule. The dispersion relation of a liquid-filled
microtubule is also compared to that of longitudinal and shearing
waves in infinite medium and the bending wave in a beam.
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