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•  An improved analytical model is developed to predict the dynamic response of clamped sandwich beams under shock loading.
•  The bending/stretching resistance of the clamped face sheets and compaction of the core are included in the fluid-structure interaction
process.
•  Compared with existing analytical models, the developed model can take pulse shape effect of the shock loading into consideration.
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An  improved  analytical  model  is  developed  to  predict  the  dynamic  response  of  clamped
lightweight  sandwich  beams  with  cellular  cores  subjected  to  shock  loading  over  the  entire  span.
The clamped face sheets are simplified as a single-degree-of-freedom (SDOF) system, and the core
is  idealized  using  the  rigid-perfectly-plastic-locking  (RPPL)  model.  Reflection  of  incident  shock
wave is considered by incorporating the bending/stretching resistance of the front face sheet and
compaction  of  the  core.  The  model  is  validated  with  existing  analytical  predictions  and  FE
simulation results, with good agreement achieved. Compared with existing analytical models, the
proposed model exhibits superiority in two aspects: the deformation resistance of front face sheet
during  shock  wave  reflection  is  taken  into  account;  the  effect  of  pulse  shape  is  considered.  The
practical application range of the proposed model is therefore wider.
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Clamped beams are widely found in vehicles  and ships.  For
example,  the under-body of  a  vehicle  and the hull  of  a  ship are
both comprised of clamped beams. One of the major considera-
tions in clamped beams is their resistance to blast loading in air
or  underwater.  Sandwich  beams  have  been  demonstrated  to
have superior blast resistance compared to monolithic ones [1–5].
The  benefit  primarily  comes  from  the  structural  responses  of
sandwich beams that are typically divided into three phases [1],

i.e.,  fluid-structure interaction (FSI)  phase,  core crushing phase
and global deformation phase. At present, each phase can be ex-
ploited to  further  improve  and  even  optimize  the  blast  resist-
ance  of  the  sandwich  beam.  To  this  end,  analytical  models
provide the most economical and direct approach.

A  variety  of  analytical  models  have  been  developed  to  not
only predict the dynamic response of clamped sandwich beams
[6–14] but also determine optimal construction of the sandwich
beam, including optimal core compressive strength and optimal
mass distribution  of  front/back  face  sheets  under  specific  im-
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pulse loading.  Typically,  two  groups  of  existing  analytical  mod-
els are  representative.  One  is  the  yield  locus  based  model  pro-
posed  by  Fleck  and  Deshpande  [1],  and  further  developed  by
Tilbrook et al. [6], Qiu et al. [7], Liang et al. [8], and Zhu et al. [9].
In this type of model, the final deflection of the back face sheet is
determined,  but  details  of  core  compaction  and  blast  impulse
transmission process are neglected, because the core is lumped
to add to  the face sheets  and the blast  loading is  treated as  im-
pulsive.  The  other  group  is  the  one-dimensional  (1D)  lumped
parameter model developed separately by Deshpande and Fleck
[10], Main and Gazonas [11], McMeeking et al. [12], and Ghoshal
and Mitra [13]. Here, both the blast impulse transmission phase
and the core compaction process are well captured, but the final
deflection  cannot  be  obtained,  because  such  model  considers
only  a  strip  through  the  thickness  of  the  sandwich  beam,  with
the bending/stretching of face sheets and core excluded. There-
fore,  to  provide  comprehensive  understanding  of  the  dynamic
response of clamped sandwich beams, this study aims to devel-
op  an  improved  1D  model  by  incorporating  with  the  rigid-per-
fectly-plastic-locking  (RPPL)  model  for  core  compression  and
the extended FSI theory of Aleyaasin et al. [14] for shock loading
reflection (or, blast impulse transmission) along with the resist-
ance provided by front/back face sheets.
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Consider  a  clamped  sandwich  beam  of  span  and  unit
width,  with  front  face  sheet  thickness  of ,  back  face  sheet
thickness of  and core thickness of ,  as is shown in Fig. 1(a).
The  face  sheets  are  assumed  to  be  made  from  a  rigid  ideally-
plastic  solid  material  of  yield  strength  and  density ,  while
the  core  is  treated  as  a  rigid  ideally-plastic  foam-like  solid  with
initial  density  while  the  core  is  treated  as  a  rigid  ideally-plastic
foam-like solid with initial  density .  The core compresses at  a
constant strength  up to the densification strain of , beyond
which it becomes rigid, as is shown in Fig. 1(b). This type of con-
stitutive law, known as the RPPL model, is not only representat-
ive of  high porosity  cellular  foams,  but  also other  stacked,  peri-
odic cellular cores such as prismatic diamond, pyramidal trusses
and  octet  trusses.  The  tensile  strength  of  the  core  along  beam
span direction is also assumed to be constant and equals , 
being a coefficient ranging from 0 to 1.

m f = ρs h f

mb = ρs hb m f mb

The front and back face sheets of the sandwich beam shown
in Fig.  1(a) may be modeled as two clamped monolithic beams
loaded  with  uniform  pressure.  According  to  the  equivalent
method  described  in  the  Appendix,  the  front  and  back  face
sheets may be both replaced by equivalent spring-mass systems.
As a result, the prototypical problem of Fig. 1(a) is simplified as a
1D double spring-mass model as sketched in Fig. 2. The mass of
front face sheet per unit length is  and that of back face
sheet  is ,  in  which  and   are  actually  the  areal

densities of the front and back face sheets.
Based  on  the  above  simplified  model,  governing  equations

for each  part  of  the  sandwich  beam  are  derived.  Upon  neglect-
ing  elastic  wave  propagation  in  the  core,  two  distinct  cases  are
considered: (1) shock wave propagates in the core; (2) no shock
wave propagates in the core.
(1) Shock wave propagating in sandwich core: motion equations

pi (t )
pr (t )

When an incident air blast  with reflected over-pressure
 impinges on the front face sheet, the front face sheet is ac-

celerated and the core is compressed. It is assumed that the core
strength  is  high  enough  to  push  the  back  face  sheet  to  move,
provided  that  a  shock  wave  front  is  initiated  in  the  core  and
propagates  from  the  front  to  the  back  face  sheet.  According  to
the simplified model of Fig. 2, the compacted core moves as a ri-
gid body with equal velocity of the front face sheet, while the un-
compressed core moves as a rigid body with equal velocity of the
back face sheet.

From  the  dynamic  equation  of  motion  of  the  equivalent
single-degree-of-freedom  (SDOF)  system  (Appendix,  Eq. (A1))
for the front face sheet, it follows that

KLM m f ü f +R f = pr (t )−σ f (t ) , (1)

σ f (t )
u f

R f

where  denotes  the contact  stress  at  the  interface  between
the  core  and  the  front  face  sheet,  is  the  location  of  the  front
face sheet,  and  denotes the resistance of  the front face sheet
given by Eq. (A2).

Similarly, for the back face sheet

KLM mbüb +Rb =σb (t ) , (2)

σb (t )
ub

Rb

where  denotes  the  contact  stress  at  the  interface  between
the  core  and  the  back  face  sheet,  is  the  location  of  the  back
face  sheet,  and  denotes  the  bending/stretching  resistance  of
the back face sheet.

εD

ρ0/(1−εD ) l = ub −u f

With  as the densification strain, the conservation of mass
dictates  that  the  density  of  the  densified  core  material  is

, and hence the total thickness of the core ( )
can be rewritten as

l = l0 −εD (l0 −x) , (3)

xwhere  denotes  the  thickness  of  the  uncompressed  core.
Therefore,  the  motion  equation  for  the  compressed  core,
obeying Newton's second law, is given by

σ f (t )−σd (t )−Rc1 = ρ0 (l −x)

1−εD

· ü f , (4)

σd (t ) Rc1where  is  the  stress  behind  the  shock  front  and  is  the
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Fig. 1.   a Schematic of clamped sandwich beam subjected to air-blast loading and b engineering stress versus strain relationship (---) for cellu-
lar material and RPPL idealization (−).
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bending/stretching  resistance  of  the  compressed  part  of  the
core. It is noticed that the stress ahead of the shock front equals
the  quasi-static  compressive  strength  of  the  core.  The  motion
equation for  the  uncompressed core,  obeying Newton’s  second
law, is

σt −σb (t )−Rc2 = ρ0xüb , (5)

Rc1where  is  the  bending/stretching  resistance  of  the
uncompressed part of the core.

In addition, momentum conversation across the shock front
sheets leads to

σd (t )−σt = ρ0

εD

(
u̇ f

)2
. (6)

Substituting Eqs. (3), (4), and (6) into Eq. (1), and Eqs. (3), (5)
into  Eq. (2) ,  yields  the  set  of  nonlinear  ordinary  differential
equations

ü f = εD

KLM m f εD +ρ0

(
u f −ub + l0

)[
pr (t )−σt −R f −Rc1 − ρ0

εD

(
u̇b − u̇ f

)2
]

,

üb = εD

KLM mbεD +ρ0

(
ub −u f +εD l0 − l0

) [σt −Rb −Rc2] , (7)

which can be integrated numerically with initial conditions

u f (0) = 0, u̇ f (0) = 0,

ub (0) = l0, u̇b (0) = 0. (8)

(2)  No  shock  wave  propagating  in  sandwich  core:  motion
equations

The  nonlinear  ordinary  differential  equations  of  Eq. (7)  are
valid only when the shock front is initiated and propagates with-
in the core. These equations are nonetheless meaningless in two
scenarios.  Case a:  at  the beginning,  core compaction cannot be
initiated by the front face sheet. Case b: during compression, the

core can no longer be compacted.
Case a:

In this case, the front face sheet, the back face sheet and the
core move as an entirety. Correspondingly, the governing equa-
tions for the entirety of the sandwich beam are given as

pr (t )−R f −Rb −Rc1 −Rc2 = KLM m f ü f +
(
KLM mb + l0ρ0

)
üb ,

ü f = üb , (9)

for which the initial conditions are given by Eq. (8).
The boundary condition that distinguishes whether the com-

paction of the core can be initiated or not depends on the peak
pressure of the reflected over-pressure and the compressive core
strength.  When  the  core  cannot  be  compacted,  the  sandwich
beam  is  accelerated  as  an  entirety  and  the  acceleration  of  its
front face sheet is obtained from Eq. (9), as

üw = pr (t )−R f −Rb −Rc1 −Rc2

KLM m f +KLM mb + l0ρ0

. (10)

ü f ü f > üw

To initiate  the shock front,  the acceleration of  the front  face
sheet  appearing in Eq. (1) should satisfy the condition ,
namely

ü f ≡
pr (0)−R f −σ f (0)

KLM m f

> üw , (11)

σ f (0) =σt t = 0where  at .
Case b:

teq

teq

teq teq
′

∆t = teq
′− teq

In  this  case,  as  the  cellular  core  cannot  be  compacted  at  a
specific time , two situations may arise. One is that the core is
yet fully densified (partial densification), and the other is that the
core  is  fully  densified  (full  densification).  For  the  former,  the
front and back face sheets attain equal velocity temperately at .
For the latter, the front face sheet slams into the back face sheet
at ,  and  then  the  two  obtain  equal  velocity  at  time  due  to
momentum  conservation,  with  representing  the
duration of  slamming  (collision).  Correspondingly,  the  mo-
mentum conservation equation is(

KLM m f +ρ0l0

)
u̇ f

(
teq

)+KLM mbu̇b

(
teq

)
= (

KLM m f +ρ0l0 +KLM mb

)
u̇e

(
teq

′) , (12)

u̇ f

(
teq

′)= u̇b

(
teq

′)= u̇e

(
teq

′) u f

(
teq

′)=
u f

(
teq

)
ub

(
teq

′)= ub

(
teq

)
∆t

where .  It  is  assumed  that 
 and , since  is negligibly short.

teq teq
′

u̇ f ü f

u̇b

üb

σ f (t ) = 0 t > teq t > teq
′

Beyond the instant  (or ), the front face sheet moves at a
decreasing velocity of  with acceleration , while the core and
the back face sheet move together at  a decreasing velocity of 
with  acceleration .  If  the  tensile  strength  at  the  interface
between the  front  face  sheet  and  the  compressed  core  is  as-
sumed  ignorable  relative  to  core  compression  strength,  then

 for   (or   for  the  case  of  full  densification).
Therefore,  motion  equations  for  the  front  and  back  face  sheets
are given, respectively, as

pr (t )−R f = KLM m f ü f , (13)

0−Rb −Rc1 −Rc2 =
(
KLM mb +ρ0l0

)
üb . (14)

Rewriting Eqs. (13)  and (14)  in standard form yields the fol-
lowing nonlinear ordinary differential equations

 

pi(t)

Rf

mf

uf

mb
Rb

X

l0

0

Core

pi(t)
ρ0

ρ0

1−εDRf

mf

σf

σ

σd

σt

σb

mb

Rb

ub

l
x

a

b

c

 

Fig. 2.   Deformation process of clamped sandwich beam under air-
blast loading at a t = 0 and b t > 0. For b, the variation of stress within
sandwich core along its thickness direction is shown in c.
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ü f =
pr (t )−R f

KLM m f

,

üb =−Rb +Rc1 +Rc2

KLM mb +ρ0l0

, (15)

which can be integrated numerically with initial conditions

u f (0) = u f

(
teq

)
, u̇ f (0) = u̇ f

(
teq

)
,

ub (0) = ub

(
teq

)
, u̇b (0) = u̇b

(
teq

)
, (16a)

for partial densification and

u f (0) = u f

(
teq

′) , u̇ f (0) = u̇ f

(
teq

′) ,

ub (0) = ub

(
teq

′) , u̇b (0) = u̇b

(
teq

′) , (16b)

for fully densification.

pr (t )

pi (t )
pi (t ) pr (t )

For  each  case  considered,  the  dynamic  response  of  the
clamped  sandwich  beam  under  blast  loading  can  be  predicted
by  solving  the  corresponding  nonlinear  ordinary  differential
equations. Table  1 summarizes  the  equations  needed  to  be
solved  for  different  cases.  Note  that  the  equations  derived
hitherto  are  based  upon  the  reflected  pressure  of a  spe-
cified air-blast.  In  reality,  the  reflection process  is  coupled with
the motion of front face sheet. To build the governing equations
based  upon  the  incident  pressure  of  a  specified  air-blast,
the  relationship  between  and   should  be  established,
as done below.

Following Taylor [15], the incident air-blast pulse in free air is
defined as

pi (t ) = p0e−(t/t0), (17)

t0 p0where  is the decay period of incident pulse and  is the peak
pressure. As soon as an incident air-blast pulse impinges on the
front  face  sheet  of  sandwich  beam,  the  blast  pulse  is  reflected
and amplified, with the amplification factor defined as

CR = 14+8
(
p0/p A

)
7+ (

p0/p A

) , (18)

p A = 1
p0/p A CR

∼= 2 p0/p A ≫ 1 CR → 8
where  bar  is  the  ambient  pressure.  For  small  values  of

, ; while, for ,  [15].
The reflected  over-pressure  is  dependent  upon  both  the  in-

cident pressure and the moving velocity of face sheet. According
to the extended Taylor theory [14], the reflected pressure can be
expressed as

pr (t ) =
(
CR p0 −ρmaxcs

du f

dt

)
e−(t/t0), (19)

ρmax =
[
7+6

(
p0/p A

)][
7+ (

p0/p A

)]
ρA

cs = cA

√
6p0/(7p A)+1

cA =
√

1.4p A/ρA

ρA

where  and
 are  the  density  of  shock  front  and  the

speed  of  incident  pulse,  respectively,  being  the
sound  speed  at  ambient  atmospheric  pressure  and  the

ρmaxcs

du f

dt

CR

density  of  air.  The  term  in  Eq. (19)  produces  a

velocity-dependent  part,  which  is  actually  affected  by  the
bending/stretching  resistance  of  the  clamped  front  face  sheet
and  the  compaction  of  the  core.  In  this  way,  both  the  core
compaction and the front face bending/stretching resistance are
involved  in  the  FSI  process.  Note  also  that  the  amplification
coefficient  in  Eq. (19)  is  used  as  an  approximation,  for  it  is
defined  for  a  fixed,  rigid  boundary,  but  the  front  face  sheet
actually moves and deforms during the impact process [14].

CR = 8

i =
∫ ∞

0

CR ·p0e−(t/t0)dt

i =V ρ f h f

p0 = 2.5 p0 = 12.5

0.5σyρ0/ρs

0.5σyρ0/ρs γ= 1

To  validate  the  proposed  analytical  model,  the  predicted
mid-span deflections of clamped sandwich beam are compared
with those of  existing yield-locus  based model  as  well  as  the  fi-
nite  element  (FE)  simulation  results  of  Qiu  et  al.  [2].  Note  that
the loading in FE simulations [2] is taken as a prescribed velocity
exerted  on  the  front  face  sheet,  whereas  the  loading  in  the
present  model  is  an incident  pressure  exerted on the  front  face
sheet. To make the two loading conditions equivalent, a transfer
method as  described by Vaziri  and Hutchinson [16]  is  adopted,
wherein  a  pressure  pulse  is  applied  to  ensure  the  upper  bound
( )  of  the  impulse  transmitted  by  the  incident  pressure

(  as used in the present study) equals to the

impulse transmitted by prescribed velocity (  as used in
Qiu  et  al.  [2]).  For  the  incident  pressure,  pressure  pulses  with
equal  impulse  but  different  pulse  shapes  such  as  flat  shape
(  MPa) and sharp shape (  MPa and 25 MPa) are
considered.  Besides,  the material  and geometrical  properties  of
the face sheets and core are kept the same as those of Qiu et al. [2].
Specifically,  the  compressive  strength  of  the  core  equals

 and  its  tensile  strength  in  the  span  direction  is  also
 (namely,  is adopted in the present study).

p0 = 12.5
p0 = 2.5

Figure  3 plots  the  normalized  mid-span  deflection  of  back
face sheet as a function of normalized impulse: the present ana-
lytical  predictions  are  compared  with  the  FE  simulation  results
and  analytical  model  predictions  of  Qiu  et  al.  [2].  The  present
model predictions  are  in  good  agreement  with  existing  FE  res-
ults and  lie  within  the  upper  and  lower  bounds  of  the  predic-
tions obtained with the yield-locus based model when the pres-
sure  pulse  is  sharp  (  MPa  or  25  MPa).  For  the  case  of

 MPa,  however,  analytical  predictions  of  the  present

Table 1     Governing equations and initial conditions for different
cases considered.

Fully densification Partial densification No densification

t ≤ teq Eq. (7), Eq. (8) Eq. (7), Eq. (8) Eq. (8), Eq. (9)

t > teq Eq. (15), Eq. (16a) Eq. (15), Eq. (16b) Eq. (8), Eq. (9)

 

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0
0.50 1.0

FE [2]
Circumscribing [2]
Inscribing [2]
SDOF, p0 = 2.5 MPa
SDOF, p0 = 12.5 MPa
SDOF, p0 = 25 MPa

1.5 2.0 2.5 3.0×103

i−

w

 

w = w=L

i = i=
¡

L
p
¾f½f

¢Fig.  3.     Normalized mid-span deflection ( )  plotted as a

function  of  normalized  impulse  ( ):  comparison

between FE simulation results [2] and analytical predictions by the
present model as well as the yield-locus based model [2].
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model are lower than the FE results, which may be attributed to
the influence of pulse shape. When the pressure pulse is sharp, it
can  be  treated  as  an  impulse,  leading  to  the  good  agreement
between the present model and the yield-locus based model. On
the contrary, when the pressure pulse is flat, the pulse shape ef-
fect  becomes  significant,  and  treating  the  pressure  pulse  as  an
impulse  may  overestimate  the  impulse  transmitted  to  the  front
face sheet,  thus causing the overestimation of  mid-span deflec-
tion. Consequently, for the case when the pulse shape effect be-
comes important,  the  yield-locus  based  model  is  no  longer  ap-
plicable, but the present model is still valid because the incident
loading considered is a pressure-time history which has already
included the influence of pulse shape.

In  summary,  different  from  existing  analytical  models,  the
model proposed in the present study takes into account both the
bending/stretching  resistance  provided  by  the  face  sheets  and
the effect  of  pulse  shape  in  the  FSI  process,  thus  more  univer-
sally applicable.
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Appendix: the rigid perfectly plastic SDOF model

m
p (t )

This  Appendix  provides  the  derivation  of  the  rigid  perfectly
plastic SDOF model. For an ideally rigid plastic monolithic beam
of  mass  per  unit  length ,  clamped  at  both  ends  and  loaded
with transverse pressure , its transverse motion can be sep-
arated into two sequential phases, as is shown in Fig. A1. Phase I
starts  from  the  formation  of  plastic  hinges  at  the  clamped  ends
and  continues  until  the  two  traveling  hinges  meet  at  the  mid-
span of the beam. The subsequent phase II is dominated by axial
stretching with stationary plastic hinges existing at the mid-span
and at the clamped ends, known as the catenary response [17].

up

As an equivalent SDOF model, the clamped monolithic beam
is  transformed  to  an  equivalent  spring-mass  system,  where  the
displacement  and  velocity  of  the  mass  equal  to  those  of  the
beam  according  to  the  energy  equivalence  between  the  beam
and  the  equivalent  system  [18, 19 ]  (Fig.  A1(c)).  The  resistance-
deflection curve covering both phases I and II is displayed in Fig.
A1(d), in which  separates the two phases.

With reference to Fig. A1(c), the dynamic equation of motion
for the equivalent SDOF system can be written as

KLM mü (t )+R (u) = p (t ) , (A1)

u (t ) ü (t )
R (u) KLM

KLM = 0.66 R (u)

where  is  the  equivalent  deflection  of  the  mass,  is  the
equivalent  mass  acceleration,  and  and   are  the  beam
resistance and the so-called load-mass factor, respectively. For a
fully  clamped  beam  with  uniformly  distributed  mass  and  load,

 [18] and the resistant function  is given by

R (u) =


16M

L2
, phase I,

8N (u −up )

L2
+ 16M

L2
, phase II,

(A2)

up 2M/N
M =σ0h2/4

N =σ0h
h σ0

where  (equaling  to )  denotes  the  transverse  deflection
at the end of phase I,  is the plastic bending moment
within  the  span  and  at  the  clamped  ends,  and  is  the
longitudinal  plastic  stretching  strength  where  and   denote
the thickness and yield strength of the beam, respectively.

εD

l
x

M = γσt (l −x)2/4 Nc = γσt (l −x)/(1−εD )
M = γσt x2/4 Nc = γσt x.

The cellular core (with densification strain ) of a sandwich
beam may be taken as a compressed beam. Let the thickness of
the clamped beam be denoted by  and the thickness of the un-
compressed  part  be  denoted  by .  The  bending  moment  and
stretching  strength  of  the  compressed  part  are  then  given  by

 and  .  Similarly,  for  the
uncompressed part,  and 
Nomenclature

L  span of sandwich beam
h f hb,  thickness of front/back face sheet
l0 l x, ,  initial thickness of core, current thickness of core, and

thickness of uncompressed core
σy  yield stress of face sheet material
ρs  density of face sheet material
ρ0 density of core material

 

a

b

c

d

L

p(t)

u(t) M

M

L

p(t)

p(t)

me

u(t)

R

R

uup
u(t) M N

N
M

 

Fig. A1.   Modified equivalent SDOF system: a  deformation profile of real beam in phase I, b  deformation profile of real beam in phase II,
c equivalent spring-mass system, and d typical resistance-deflection curve of the equivalent system
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σt  crushing stress of core material
εD  densification strain of core material
γ KLM,  coefficient ratios defined in the paper
m f mb,  mass of front/back face sheet per unit length
pi (t ) pr (t ),  incident/reflected pressure
σ f (t ) σb (t ),  contact  stress  between  core  and  front/back  face

sheet
σd (t ) stress behind shock front
R f Rb,  bending/stretching resistance of front/back face sheet
u f ub,  location of front/back face sheet
Rc1 Rc2,  bending/stretching  resistance  of  compressed/un-

compressed core
p A p0,  ambient pressure and peak pressure of incident shock

load
CR amplification factor of reflected pressure
teq t ′

eq,  instant when front and back face sheets attain equal ve-
locity

∆t  duration of collision
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