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A B S T R A C T

Free vibration of ultralight all-metallic (Ti-6Al-4V alloy) sandwich beams with corrugated channel cores was
investigated by experiments and finite element (FE) simulations. The natural frequencies and mode shapes were
measured and compared with simulations from both three-dimensional model (3D model) and two-dimensional
equivalent model (2D model). Predictions of the 2D model agreed well with results obtained from the 3D model
and experiments. It was found that for sandwich beams, the topological change from corrugated core to cor-
rugated channel core eliminates the anisotropy of the structural stiffness and suppresses the local modes of
vibration. The effect of geometrical parameters on the first natural frequency was also explored. In addition,
preliminary assessment of the influence induced by varying the core topology was carried out. The first natural
frequency of sandwich beams with corrugated channel cores having an inclination angle θ > 45° is higher than
those of sandwich beams constructed with competing core topologies, including tetrahedral, Kagome and pyr-
amidal trusses and hexagonal honeycombs.

1. Introduction

Sandwich structures with periodic lattice cores possess marvelous
multi-functional properties which may be harnessed for novel appli-
cations in engineering structures. They not only outperform monolithic
structures of the same mass in stiffness, strength and shock resistance,
but also provide additional features, such as thermal transport [1–3],
energy absorption [4–6] and sound insulation [7–9].

As a type of two-dimensional core topology, corrugations employed
as sandwich cores have been widely studied including static and dy-
namic mechanical properties. Under out-of-plane compression, a cor-
rugation was first deformed by stretching of corrugated member and
then collapsed by Euler or plastic buckling at a small strain, softening
rapidly due to node failure and/or core buckling [10,11]. Rubino et al.
[12] found a serious anisotropy of corrugated sandwich beams under
foam projectile impact loading. The anisotropy of corrugations existed
also existed in vibration problems of sandwich beams [13]. In terms of

vibration features, local vibration modes of corrugated sandwich
structures were prone to appear even at relatively low frequencies [13].
In order to suppress the local vibration modes, honeycomb and foam
were inserted into the corrugated core [13,14], respectively, for the
insertion could be regarded as elastic foundation to stabilize the local
parts of the corrugations and face sheets. However, the insertion,
especially closed-pore metallic foam, blocks the two-dimensional (2D)
channel of the corrugation core, thus becoming a serious barrier for
active cooling. Consequently, how to modify the core topology of cor-
rugations to achieve the same advantage in vibration properties is an
important issue that must be solved.

More recently, inspired by traditional corrugations, i.e., folded
plates, Lu et al. [15] proposed a novel sandwich panel with fluid-
through corrugated channel core which exhibits enhanced active
cooling performance. It was demonstrated that the proposed sandwich
panel also has superior out-of-plane compression performance (espe-
cially in the low density regime) in comparison with competing
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sandwich structures constructed using corrugations, honeycombs and
pyramidal trusses as shown in Fig. 1. In other words, the proposed
sandwich panels with corrugated channel cores have the capability of
simultaneous load bearing and active cooling, attractive for applica-
tions in supersonic vehicles, spacecraft skins, cooling jackets for com-
bustors and detonation tubes of pulse detonation engine [16–18]. When
such engineering structures are exposed to dynamic loading, the se-
quent oscillation or vibration may generate serious structural damages
if the vibration frequency approaches the natural frequency. For ex-
ample, as pulse detonation engines (PDEs) are typically subjected to
internal moving shock loading, vibration on the detonation tubes may
generate various structural damages, e.g., high-cycle fatigue at rela-
tively low pressure, dynamic tearing at medium pressure and even
plastic expansion with dynamic fragmentation at high pressure [16]. As
the operating frequency of the PDE is usually 40–500 Hz [18–21], it is
likely that the corresponding frequency range contains the first two
natural frequencies of its sandwich wall [13,14]. Thus, for safety rea-
sons, it is important to investigate the free vibration behavior (natural
frequencies and mode shapes) of sandwich beams with corrugated
channel cores.

As an important area of concern, free vibration of lightweight
sandwich structures has been widely investigated [22–24]. For in-
stance, recent advances in buckling and free vibration of laminated
composite and sandwich beams, including theories and finite element
simulations, has been comprehensively reviewed [22]. Lou et al.
[25,26] studied the free vibration of composite sandwich beams with
pyramidal truss cores and considered the effect of local damage on
modal characteristics. The modal properties of a clamped-free hex-
agonal honeycomb plate used for satellite structural design were in-
vestigated using experiments, simulations and equivalent approaches
[27], while the forced vibration of aluminum and Nomex honeycomb
sandwich beams was experimentally studied with clamped-free
boundary conditions [28]. Further, the damping characteristics of
composite sandwich cylindrical shell with pyramidal truss core were
investigated [29], a vibration analysis of multi-span lattice sandwich
beams was carried out using the assumed mode method [30], and the
free vibration of sandwich beams with soft cores was analyzed based on
a refined zig-zag theory [31]. To date, as existing research works on
free vibration of sandwich structures have focused mainly upon the-
ories and numerical simulations, experimental investigations are rela-
tively scant.

Among numerous methods [22], homogenization is an effective
method to investigate the static or dynamic problems of sandwich
structures [32], improving significantly the computational efficiency

through simplifying the discrete 2D or 3D lattice core to a homogeneous
one [33]. In this study, we employed this method to build an equivalent
FE model (2D model) wherein the corrugated channel core was treated
as a homogeneous orthotropic core so that the sandwich beam itself
could be regarded as a three-layer structure. Correspondingly, the ef-
fective elastic constants of the equivalent core were analytically de-
rived.

The outline of this work is as follows. First, a modified fabrication
route to form corrugations was detailed and the experimental protocol
for modal testing was introduced. Then, global vibration properties of
sandwich beams were determined through FE simulations and experi-
ments; meanwhile, a validation study of the 2D model was carried out.
Next, the corrugated channel core was compared to traditional corru-
gations. Further, the influence of key geometrical parameters on free
vibration was quantified using FE simulations. Finally, the first natural
frequency of sandwich beams with corrugated channel cores was in-
directly compared with those of sandwich constructions with com-
peting lattice cores, including tetrahedral, Kagome and pyramidal
trusses and hexagonal honeycombs.

2. Experiments

2.1. Materials and fabrication

Fundamental assumptions of the present study are: (1) the behavior
of the sandwich falls within the state of small deformation and linear
elasticity; (2) local vibration is not considered; (3) no slippage or de-
lamination between the face sheets and the corrugated channel core
occurs.

Consider a long, narrow and thin-walled sandwich beam with cor-
rugated channel core as shown in Fig. 2. Relevant geometric parameters
are listed as below. The length, width and height of the sandwich beam
are L, W and H, respectively. The thickness of the face sheets and the
corrugated sheet in the core as well as the height of the core are tf, tc
and hc, respectively. The wave amplitude, the length of one-half wave,
the corrugated member length, the inclination angle of corrugated
member, and the neighboring separation of the core are a, p, lc, θ and d,
respectively. The relative density of the corrugated channel core, ¯, can
thence be expressed as:

= t l
pd

¯ c c

(1)

Ti-6Al-4V has much higher specific yield strength and service tem-
perature than aluminum alloys. Zhao et al. [15] proposed a detailed

Fig. 1. Excellent out-of-plane compressive strength of sandwich panels with
corrugated channel cores [15].

Fig. 2. (a) Schematic of sandwich beam with corrugated channel core, (b) top
view and (c) lateral view.
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fabrication methodology for Ti-6Al-4V sandwich panels with corru-
gated channel cores through stamping forming. However, stamping
forming has two serious difficulties in fabricating corrugated channel
cores at room temperature [34]. On one hand, it is hard to control the
inclination angle of corrugated members due to high spring-back errors
of Ti-6Al-4V sheets. On the other hand, stamping forming could result
in cracks and even fracture on the side of connection nodes experien-
cing tensile stressing, due to the low ductility of Ti-6Al-4V. Queheillalt
and Wadley [35] considered the relation between the minimum bend
radius/sheet thickness ratio (the ratio at which cracks appear on the
tensile stress side of nodes) and tensile elongations. Their experimental
results indicated that the bend radius/sheet thickness ratio of Ti-6Al-4V
should be kept in a range of 2.5–4. Nonetheless, these authors just at-
tempted to avoid cracking during stamping forming process, and did
not control the inclination angles of corrugated members. Rather, we
adopted a modified fabrication method called the cutting forming
method (CFM), which directly cut the needed core from a metal block.
This fabrication technology not only avoids spring-back errors, but also
controls precisely the inclination angle of corrugated members.

Both the corrugated channel core and the face sheets were all made
of Ti-6Al-4V alloy, with E=126GPa, ν=0.34 and ρ=4430 kg/m3

[15]. The fabrication process of the sandwich beam shown in Fig. 3 is
consisted of three main steps: (1) cutting the corrugated channel core
through electro-discharge machining, (2) assembling the face sheets
and the cores to form sandwich beam, and (3) vacuum brazing. Vacuum
brazing was conducted in a furnace with a vacuum atmosphere of

×5 10 3 Pa, using 40Ti-20Cu-20Ni-20Zr (wt%) braze alloy (Lucas Mil-
haupt Co., Ltd.) at 900℃. The brazing temperature was preserved for
10min [36] to let capillarity draw the brazing solder into the joints and
the applied pressure came from a stainless steel weight [37], both
leading to an excellent bond between the face sheets and the core. The
test specimen contained 14 unit cells along the length direction, as
shown in Fig. 5, with the following geometric parameters L = 396mm,
H =24mm, W=40mm, tf =2mm, tc =1mm, lc =20mm, hc
=20mm, θ=45° and d =20mm.

2.2. Experimental process

Modal test was performed on the fabricated sandwich beam under
clamped-free boundary condition as shown in Fig. 4. In this test, the
experimental system was comprised of an impact hammer (B&K), an
accelerometer (KISTLER Type 8702B25M), a charge amplifier, a fixture
and a modal analysis system (LMS Test Lab 14a). The charge amplifier
was connected to a data acquisition card and PC. The modal analysis
system installed on the PC was used to process the data. With point-by-
point excitation method adopted, the sandwich beam was divided into
9 regions linked by 18 points (the impact points), as shown in Fig. 5.

We placed an accelerometer on point 1, and then applied an impact
force by the impact hammer on points 1–18 in sequence. We used the
piezoelectric sensor built in the impact hammer to generate the voltage
signal, and then calibrated the electronically applied force signal.
Generally, an accelerometer is consisted of a frame, a mass and a pie-
zoelectric sensor. The excitation of impact hammer could vibrate the
mass in the accelerometer and the built-in piezoelectric sensor gener-
ated the voltage signal. This voltage signal was calibrated using the
response signals, including acceleration, velocity and displacement. The
signals from the accelerometer (response signal) and the impact
hammer (force signal) were transferred to a charge amplifier connected

Fig. 3. Fabrication of sandwich beam with triangular corrugated channel core: (a) cutting the core; (b) assembling the sandwich beam; (c) vacuum brazing.

Fig. 4. The experimental system for modal analysis.
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to a data acquisition board and a PC. Based on the response and force
signals, we used the modal analysis system (LMS Test Lab 14a) to cal-
culate the frequency response function through Fast Fourier Transform
(FFT) and then determine the natural frequencies and mode shapes.

Due to the special topology of corrugated channel core, the accel-
erometer was placed on the top of face sheet to measure the bending
modes, but it could not be fixed on the core to measure the lateral
modes. Therefore, the first two bending modes were experimentally
measured and then compared with predictions of 2D and 3D numerical
models. In contrast, the first two lateral modes were numerically cal-
culated using both 2D and 3D models. In addition, the first torsional
mode was also numerically simulated. For consistency, only average
results from three experimental tests were reported below.

3. Finite element modeling

The vibration characteristics of sandwich beam with corrugated
channel core were analyzed using FE simulations using both the
equivalent FE model (2D model) and the three dimensional FE model
(3D model). In the 2D model, the discrete corrugated channel core was
treated as an equivalent homogeneous core. The corresponding effec-
tive stiffness matrix CHcould be obtained using the homogenization
method, as (details given in the Appendix A):

=
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The commercial finite element code ABAQUS v6.14 (Hibbitt,
Karlsson & Sorensen, Inc.) was employed to obtain the natural fre-
quencies and mode shapes of the sandwich beam. In the 3D model, the
corrugated channel core was meshed using linear quadrilateral shell
elements with induced integration (S4R) and the face sheets were dis-
cretized using eight-node linear brick elements with reduced integra-
tion (C3D8R). In the 2D model, C3D8Rs were used to mesh both the
equivalent core and the face sheets. A mesh sensitivity study was car-
ried out to ensure convergence of the numerical results. Subsequently, a
linear perturbation analysis step was created, and the frequency ex-
traction procedure was carried out with the subspace solver. The
maximum number of iterations was set at 100. In the FE models, the
corrugated channel core and the face sheets were tied together. On one
end of the sandwich beam, all degrees of freedom including displace-
ments and rotations were restrained.

4. Results and discussion

4.1. Validation study

The first two bending modes (natural frequencies and mode shapes)
of the sandwich beam with corrugated channel core were obtained
using the 2D model, the 3D model and the experimental tests, as shown
in Fig. 6 and Table 1. It is seen that results obtained from the 2D model
agreed well with those from the 3D model and experiments. The mode
shapes obtained from the three different methods were the same. The
first two bending natural frequencies (f1 and f3) predicted by the 2D
model were very close to those of the 3D model, with an error was less
than 1%. The experimental results were relatively lower than those of
the 2D and 3D models. The discrepancy might be caused by (1) the
damping effect, (2) the additional mass of the brazing solder and ac-
celerometer, and (3) the experimental boundary condition (weaker
than clamped boundary condition assumed in FE simulations).

In addition to natural frequency, the first two lateral modes were
also investigated using 2D and 3D FE models and the results are dis-
played in Fig. 7 and Table 2. As shown in Table 2, the error between the
two FE models was less than 1%. In addition, Fig. 8 compares the mode
shapes of the first torsional mode calculated by the 3D model with those
by the 2D model. Correspondingly, the natural frequency of the first
torsional mode was 954.20 Hz by the 3D model, relative to 1016.40 Hz
by the 2D model, approximately 6.5% higher than the former. Similar
results were reported in several prior studies [13,14,38].

Fig. 5. Accelerometer position, impact points and clamping area for the sand-
wich beam.
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4.2. Enhancement achieved by the proposed core topology

In terms of local vibration modes and anisotropy of the sandwich
core, a comparative analysis was carried out between the traditional
corrugated core and the present corrugated channel core. The vibration
properties of the corrugated-core sandwich beam having the same mass

Table 1
The first two bending natural frequencies (Hz) obtained using three different
methods.

Order 3D FE model 2D FE model Experimental test

f1 (1st bending mode) 176.37 176.87 166.28
f3(2nd bending mode) 962.12 981.07 912.25

Fig. 7. The first two lateral mode shapes predicted by (a) 3D model and (b) 2D
model.

Table 2
The first two lateral natural frequencies (Hz) predicted by 2D and 3D FE
models.

Order 3D model 2D model

f2 (1st lateral mode) 188.33 188.53
f4 (2nd lateral mode) 1129.4 1135.6

Fig. 8. The first torsional mode shapes predicted from (a) 3D model and (b) 2D
model.

Fig. 9. The first two local mode shapes of sandwich beam cored with (a) cor-
rugations and (b) corrugated channels.

Fig. 6. The first two bending mode shapes obtained from (a) experimental test, (b) 3D FE model and (c) 2D FE model.
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as that given in Section 4.1 were also calculated using ABAQUS. As
shown in Fig. 9(a), the first two local modes appeared as the seventh
and eleventh modes and the corresponding natural frequencies were
2906.5 Hz and 4939.4 Hz. In comparison, the first two local vibration
modes of the current sandwich beam started as the sixteenth and se-
venteenth modes as shown in Fig. 9(b) and the natural frequencies were
6809.2 Hz and 6918.6 Hz, respectively. The results revealed that the
corrugated channel core leads to significantly suppressed local vibra-
tion modes.

Besides, according to Liu et al. [38], the effective shear stiffness of a
corrugated core along its transverse and longitudinal directions were
different, thus causing the anisotropy of sandwich beams in three-point
bending [10] and dynamic impacting [12]. In Section 4.1, the effective
elastic properties of corrugated channel cores obtained via homo-
genization were validated. For the present core topology, the effective
shear moduli along the transverse and longitudinal directions were the
same (Appendix A). Therefore, the anisotropy of the proposed core
topology is not as significant as the corrugated core.

4.3. Effects of geometric parameters

The effects of relevant geometrical parameters such as the slen-
derness ratio tc/lc, the face sheet thickness ratio tf/hc, the inclination

angle of corrugated member θ and the number of unit cells n on the first
natural frequency quantified using 2D and 3D FE models.

To highlight the superiority of sandwich beams over solid beams, a
dimensionless natural frequency parameter is proposed as ω/ω0, where
ω and ω0 are the first natural frequency of the sandwich beam and the
corresponding solid beam having the same length, width, weight and
boundary conditions, respectively. The height of the solid beam can be
obtained as:

= +h h t¯ 2c f (12)

Thus, based on the theory of Bernoulli-Euler beams, the first natural
frequency of the solid beam is given by [13,27]:

= Eh
L

1.01
20

2

4 (13)

where and E are the density and Young’s modulus of the base mate-
rial, and L is the length of the solid beam.

Fig. 10 presents the effects of geometric parameters on the first
natural frequency. As the slenderness ratio tc/lc grows, the natural
frequency firstly increases and then decreases. Obviously, a higher tc/lc
leads to a higher structural stiffness and a larger weight, although the
ratio of structural stiffness and weight may not increase. The effects of
face sheet thickness ratio tf/hc and corrugation angle θ are consistent. It

Fig. 10. Effects of geometric parameters on the first natural frequency of sandwich beam: (a) slenderness ratio of corrugated member tc/lc; (b) face sheet thickness
ratio tf/hc; (c) inclination angle of corrugated member θ; (d) number of unit cells n.
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is observed that as tf/hc or θ is increased, the natural frequency in-
creases. Concerning the number of unit cells n, it was found that it plays
an important role in the computational accuracy of 2D FE simulations.
When n increases, the equivalent core constituted by the discrete unit
cells increasingly approaches the corresponding continuous core, re-
ducing thus the computational error. Table 3 displays the first natural
frequencies predicted with 2D and 3D models for selected geometric
parameters.

Fig. 11 shows the superiority of the proposed sandwich beam over
the solid beam. The effects of slenderness ratio tc/lc, face sheet thickness
ratio tf/hc and angle of corrugated member θ are consistent. It is noted
that as tc/lc, tf/hc or θ is increased, the superiority of the sandwich beam
gets weaker. Among the three geometric parameters, the effects of tc/lc
on the dimensionless natural frequency are greater. Besides, when the
number of unit cells n increases, the superiority of sandwich beam re-
mains nearly constant.

4.4. Comparison with competing cores

A number of theoretical models have been developed to char-
acterize the vibration properties of sandwich beams, such as the Allen
model [39], the equivalent single layer (ESL) model [40,41], the layer
wise (LW) model [42,43] and the zig-zag (ZZ) model [44,45]. These
models substantiated a common belief that the first natural frequency
of the sandwich beam is determined by its flexural rigidity and trans-
verse shear stiffness. Based on the first shear deformation theory, Ti-
moshenko [46,47] gave an analytical solution to the natural frequency
pm of prismatic beams with simple supported ends, as:

= +p
L

EIg I
L

E1 1
2

1m

2

2

2

2 (14)

where Λ is the modulus of transverse shear stiffness, λ is a constant
relying upon the shape of the cross-section, L is the length of a wave, EI
is the flexural rigidity of the prismatic bar, Ω is the area of the cross-
section, and ρ/g is the density of the base material. As shown in Eq.
(14), as the transverse shear modulus is increased, the natural fre-
quency increases. In terms of flexural rigidity, for a sandwich beam, the
part contributed by the face sheets is dominant and the part contributed
by the core can be ignored so that the core mainly dedicates the
transverse shear stiffness of the sandwich beam [39]. When the face
sheets are the same, the transverse shear stiffness of the core governs
the first natural frequency of the sandwich beam. Based on the homo-
genization method, the effective transverse shear stiffness of the cor-
rugated channel core is compared with competing core topologies
(tetrahedral, Kagome and pyramidal trusses; hexagonal honeycombs),
as shown in Fig. 12 and listed as follows [32,48,49]:

= =C C ETetrahedral or Kagome truss: 1
9

¯tetrahedral Kagome (15)

=C EPyramidal truss: 1
8

¯pyramid (16)

=C GHexagonal honeycomb: 1
2

¯hexagonal (17)

=C GCorrugated channel core: ¯ sincorrugated
2 (18)

As the Poisson ratio varies in a range of < <0 0.5, the effective
transverse shear stiffness of the corrugated channel core lies within the
range:

< = <E C G E1
3

¯ sin ¯ sin 1
2

¯ sincorrugated
2 2 2

(19)

According to Eq. (18), the inclination angle θ has direct effect on
the effective transverse shear stiffness. When > °20.7 , the effective
transverse shear stiffness of the corrugated channel core is higher than
that of tetrahedral, Kagome or pyramidal truss core. When > °45 , it is
even higher than that of hexagonal honeycomb.

5. Concluding remarks

Sandwich beams with corrugated channel cores are particularly
attractive for multi-functional applications. Their vibration properties
(natural frequencies and mode shapes) are investigated through ex-
periments and FE simulations. FE simulations with both 2D and 3D
models are used to calculate the natural frequencies and capture the
mode shapes. The main findings of the present study are:

(1) The effective elastic properties of the corrugated channel cores
calculated using the homogenization method can be employed to
predict accurately the global vibration properties, as validated by
experimental data and full 3D FE simulations.

(2) Compared to traditional corrugated core, the proposed corrugated
channel core for sandwich construction can suppress local vibration
modes and weaken the anisotropy of the sandwich.

(3) When the inclination angle of corrugated member exceeds 45°, the
first natural frequency of sandwich beams with corrugated channel
cores is higher than those of competing core topologies (tetra-
hedral, Kagome and pyramidal trusses and hexagonal honey-
combs).

(4) The first natural frequency of the proposed sandwich beam is higher
than that of solid beam having the same mass.

Table 3
Effects of geometric parameters on natural frequency: comparison between
sandwich beam and the corresponding solid beam.

Varied geometrical
parameter

Sandwich beam Solid beam

3D model
(Hz)

2D model
(Hz)

Error (%) Hz

Slenderness ratio tc/lc
0.005 170.93 179.18 4.83 22.64
0.025 184.92 187.69 1.50 25.74
0.05 176.37 176.87 0.28 29.60
0.1 159.5 160.35 0.53 37.33
0.125 152.62 153.17 0.36 41.20

Face sheet thickness tf/hc
0.05 129.47 130.26 0.61 26.40
0.075 146.92 147.6 0.46 31.87
0.1 159.5 160.35 0.53 37.33
0.125 169.68 170.63 0.56 42.80
0.15 178.2 179.37 0.66 48.27

Inclination angle of corrugation θ
40 139.12 139.3 0.13 30.80
45 159.5 160.35 0.53 37.33
50 187.81 189.6 0.95 47.05
55 227.77 231.61 1.69 62.21
60 286.13 294.48 2.92 87.48

Number of unit cells n
10 308.33 312.03 1.20 73.17
12 215.98 218.21 1.03 50.82
14 159.5 160.35 0.53 37.33
16 122.52 122.98 0.38 28.58
18 97.03 97.28 0.26 22.58
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This work ushers in designing more complex sandwich structures

(plates and shells) with corrugated channel cores and contributes as
further fundamental research on applications of these novel sandwich
structures, such as the pulse detonation engines.

Acknowledgments

This work was supported by the National Key Research and
Development Program of China (2017YFB1102801), the Open Project
for Key Laboratory of Intense Dynamic Loading and Effect
(KLIDLE1801), National Natural Science Foundation of China
(11472209 and 11472208), China Postdoctoral Science Foundation
(2016M600782), Zhejiang Provincial Natural Science Foundation of
China (LGG18A020001), Postdoctoral Scientific Research Project of
Shaanxi Province (2016BSHYDZZ18).

Appendix A

For a unit cell of the corrugated channel core, the effective elastic stiffness matrix is derived in the spirit of Liu et al. [50]. Similar to the
homogenization framework of honeycombs [32] and 2D corrugated cores [38], the unit cell is discretized into Euler-Bernoulli beam units. The strain
energy density of the corrugated channel core can thence be written as:

Fig. 11. Effects of geometric parameters on dimensionless frequency parameter of sandwich beam: (a) slenderness ratio of corrugated member tc/lc; (b) face sheet
thickness ratio tf/hc; (c) inclination angle of corrugated member θ; (d) number of unit cells n.

Fig. 12. Effect of core topology on effective transverse shear stiffness (base
material: Ti-6Al-4V).

X. Wang et al. Thin-Walled Structures 135 (2019) 329–340

336



=U
V

¯ 1 1
2
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where ũ i( ) is the global nodal displacement vector for the ith beam unit, and K̃ i( ) is the global stiffness matrix of the ith beam unit. Note that, Liu et al.
[50] investigated the calculation accuracy of Euler-Bernoulli beam unit and found that Timoshenko beam unit hardly improves the calculation
accuracy of thin sandwich structures. As shown in Fig. A1, the unit cell of the corrugated channel core contains four beam units (n=4).

Here, we consider the deformation of a beam unit subjected to a y z¯ ¯ plane macroscopic strain as schematically shown in Fig. A2(a).
According to prior research [15], it is assumed that the beam unit is clamped at both ends. ũ i( ) is the global nodal displacement vector characterized
by end nodes and in Fig. A2 (b) and can be described as:

=ũ T ũi T i e( ) ( ) (A2)

= w v w vũ ( )i e( ) (A3)

=T

cos sin 0 0 0 0
sin cos 0 0 0 0
0 0 1 0 0 0
0 0 0 cos sin 0
0 0 0 sin cos 0
0 0 0 0 0 1 (A4)

Fig. A1. Representative volume element (RVE or unit cell) of (a) corrugated channel core and (b) equivalent core.

Fig. A2. Homogenization of corrugated channel core: (a) the kinematics of an inclined corrugated member; (b) an inclined corrugated member subjected to nodal
forces/moments; (c) shear flow in a typical cell and its representative volume element when: (c) macroscopic shear stress τ21 or (d) macroscopic shear stress τ31 is
imposed.
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where ũ i e( ) denotes the nodal displacement vector in under local coordinates (y, z), T is the transformation matrix between local and global co-
ordinates, superscript e represents values in local coordinates and superscript T represents the transpose of a matrix. The global nodal displacement
vector for the ith beam can be written as:

=ũ ( 0 0 0 0)i i T( )
1 2

( ) (A5)

where 1 and 2 denote the projections of end node displacement , given by:

= a2
sin

N0 (A6)

where

= = =E E
sym EN (cos , sin ) , , ( m r)T T

0
22 23

33
1 2

(A7)

N0 denotes the unit vector along which the inclined beam is initially aligned and the volume of the current unit cell = pd4 . K̃ i( )is the global
stiffness matrix that satisfies the transformation between local and global coordinates as shown in Fig. A2(b):

=K̃ T K̃ Ti T i e( ) ( ) (A8)
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where K̃ i e( ) is the local stiffness matrix of the i-th beam.
For linear elastic medium, the stress-strain relation can be obtained by

=C U*
* *ijkl

H

ij kl

2
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(A10)

The y z¯ ¯ plane macroscopic effective stiffness of the corrugated channel core can be written as:
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If a macroscopic strain E11 is solely imposed on the core, the local normal stress x
c in the x̄ direction is given by:

= E E
1x

c
2 11 (A15)

It follows that the macroscopic stress is

= ¯x x
c (A16)

so that

=C E¯
1

H
11 2 (A17)

If E22 or E33 is solely imposed on the core, the macroscopic stress can be obtained by using nodal displacements and the corresponding equi-
librium equations. Consequently, C H

12 and C H
13 can be written as:

=C E¯
1

cos
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H
12 2 (A18)
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cos
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When subjected to a macroscopic shear strain E21 or E31, the resulting distributed shear flow in a unit cell is shown in Fig. A2(c) and (d). The
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corresponding equilibrium equations can be written as:

= t l2 sinc c21 21 (A20)

= t l2 sinc c31 31 (A21)

In both cases, due to symmetric layout of the unit cell, all inclined core members have the same local out-of-plane shear stresses, 21 and 31. The
local shear strains can be written accordingly, as:

=
G221
21

(A22)

=
G231
31

(A23)

Using the micro-macro relationship [51], we have:
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from which:
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