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ABSTRACT
A theoretical model is developed to characterize fully developed laminar flow (Stokes flow) in idealized petal shaped pipes by
regarding the pipe wall as a circular boundary having sinusoidal perturbation (or, equivalently, surface roughness). Built upon the
method of perturbation, the model quantifies the effects of the relative roughness and wave number of the pipe boundary on
the Stokes flow. Approximate solutions of the velocity field, pressure gradient, and static flow resistivity are obtained. The same
approach together with the method of Fourier transform is used to deal with low Reynolds flow in pipes having other cross-
sectional morphologies such as triangle and square. Results obtained from computational fluid dynamics simulations are used to
validate the theoretical model predictions, with good agreement achieved. The presence of surface roughness causes periodic
fluctuation and global offset of velocity distribution and enlarges both the pressure gradient and static flow resistivity in petal
shaped pipes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5067291

I. INTRODUCTION
How surface roughness affects fluid flow is a fundamen-

tal problem in fluid mechanics.1,2 Von Mises3 first introduced
the concept of relative roughness to characterize the influ-
ence of surface roughness. Colebrook et al.4,5 and Nikuradse6

carried out detailed experimental and theoretical studies on
the effect of the relative roughness and Reynolds number,
providing a classic way to analyze the problem. They found
that this effect can be divided into three regions, the lami-
nar region, the transition region, and the turbulence zone; in
the laminar region, the influence of the rough boundary can
be ignored. A series of empirical formulas were also devel-
oped to describe the relationships between relevant param-
eters. Based on experimental and theoretical results, Moody7

plotted the relation diagram between the relative rough-
ness, Reynolds number, and Darcy friction coefficient, which
is called the Moody diagram and widely used in industry.

However, these results are not applicable to cases involving
large relative roughness for existing studies concerned mainly
small values (<5%) of relative roughness. Besides, in existing
studies, the specific morphology of surface roughness was not
fully discussed.

For simplicity in theoretical and numerical modeling, the
rough surface has been commonly assumed to exhibit a peri-
odic structure.8–12 Kandlikar et al.13 pointed out that fluid
concentration caused by the rough structure is not negligible
when the relative roughness becomes relatively large: even in
the laminar region, the change in the friction coefficient due
to the change in the hydraulic radius affects the fluid field.

Topologically speaking, roughness on the inner surface
of a circular pipe may be divided into two main categories.
In the first category, the roughness is distributed along the
axial direction (i.e., direction of fluid flow) of the pipe, which
has been discussed in many studies.13–15 In the other, the
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rough structure is distributed along the circumference of the
pipe, implying that its cross-sectional morphology is no longer
circular. The present study focuses upon the latter one for
it is poorly investigated in the open literature. Specifically,
low Reynolds number flows in pipes with petal shaped cross
sections are investigated.

The flow in pipe also does much meaning for investigat-
ing the acoustic properties of porous medium as it consists of
many microtunnels (pores). However, in most practical cases,
the pore morphology in the porous medium is not smooth. To
address the issue, the acoustical properties of model porous
media with simple pore shapes (e.g., square and triangular)
have been theoretically studied.16 In order to quantify the
influence of the cross-sectional shape of the pore (e.g., devi-
ation from circular) on complex density and compressibility—
two important parameters governing the acoustic properties
of the porous medium—the concept of shape factor was intro-
duced.17 When investigating the sound absorbing ability, as
noted by Attenborough,18 the pore shape with a larger shape
factor provides a greater resistance for sound to pass, thus
a larger air flow resistivity. In other words, the shape factors
for different pore shapes reflect the relative flow resistivities
for fluid to pass through these pores. Although the introduc-
tion of shape factor makes it easy to understand flow inside
pores, there are some limitations to this approach. In addi-
tion to frequency correlation, every time a new pore shape
is of concern, a series of complex operations need to be car-
ried out to obtain its shape factor. By contrast, the method
of perturbation starts with a simplified form of the original
problem, which is simple enough to be solved exactly. The
method is more like a mathematical technique for finding an
approximate solution to a problem, by starting from the exact
solution of a related, simpler problem. A critical feature of the
technique is a middle step that breaks the problem into “solv-
able” and “perturbation” parts.19 In fact, as one of the new
methods for analyzing turbulent boundary layers, it has been
demonstrated that the perturbation method provides more
accurate, yet practical, means for estimating the skin-friction,
heat transfer, and separation on aircraft components under
flight conditions.20,21

In the current study, the modified perturbation method
is employed to investigate analytically the fully developed
laminar flow at small Reynolds numbers (Stokes flow) inside
idealized petal shaped pipes. The pipe wall is taken as a
circular boundary having sinusoidal perturbation (or, equiv-
alently, surface roughness). Approximate solutions for veloc-
ity distribution, pressure gradient, and static flow resistivity
of the petal shaped pipes are obtained. Numerical simula-
tions with computational fluid dynamics (CFD) are performed
to validate the analytical model predictions. The influence of
key geometrical parameters characterizing the petal shaped
cross section on pipe flow is quantified. Furthermore, the
same approach together with the method of Fourier trans-
form is used to deal with low Reynolds flow in pipes hav-
ing other cross-sectional morphologies such as triangle and
square.

II. ANALYSIS OF STOKES FLOW
IN PETAL SHAPED PIPES

Figure 1 depicts schematically a wide range of pipes hav-
ing idealized petal shaped cross sections. For convenience,
relative to the case of a smooth circular pipe, the petal-shaped
pipe may be taken as a roughened pipe in a way similar to
our previous study on surface roughness effects on stokes
flow in circular pipes.22 Let n be the number of waves in the
cross-sectional plane of the petal shaped pipe, which rep-
resents the density of the periodic rough structure on the
pipe wall. According to the definition of relative roughness, ε
= e/D is introduced to quantify the relative altitude of the
rough structure, where D is the nominal diameter of the pipe
(Fig. 1) and 2e is the radical distance between the peak and the
valley of the rough structure. Such periodic microstructures
are evenly distributed over the circumference of the pipe so
that its boundary may be described by

r̄ = Γ(θ)D, with Γ(θ) = 0.5 − ε sin(nθ). (1)

Here, the cylindrical coordinate system has its origin at the
center of the pipe, the z-axis is along its axial direction of the

FIG. 1. Sketch of petal shaped cross-sectional pipes with
different wave numbers.
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pipe, and ρ, θ are in the cross-sectional plane, as shown in
Fig. 1. A dimensionless coordinate system is defined by setting
r = ρ/D. So, the geometric boundary line can be expressed as
r = r̄/D = Γ(θ).

Mathematically speaking, the dimensionless geometric
boundary Γ(θ) of (1) can be treated as a sine-type turbu-
lence on a circle with a radius of 0.5. Having such a com-
plex boundary makes it too difficult to solve directly the
flow in the pipe. However, the perturbation method, which
replaces the disturbance of the geometric boundary with a
disturbance of the fluid field, can provide approximate solu-
tions to the problem in a sophisticated way, as demonstrated
below.

A. Modified perturbation method
With reference to Fig. 1, the case considered is pressure-

driven, steady-state flow (i.e., Poiseuille flow) in straight
channels with different petal shaped cross sections. Here,
the nonlinear Navier-Stokes equation governing the flow of
Newtonian incompressible fluid at small Reynolds numbers
can be simplified to the linear Stokes equation. As both the
characteristic length and characteristic velocity in the prob-
lem of Fig. 1 are taken as considerably small, neglecting the
inertial term is considered acceptable.23,24 Due to the linear-
ity of the Stokes equation, it is reasonable to adopt a rela-
tively large range of relative roughness (e.g., [0, 0.1]) for the
roughened pipe without a significant loss in accuracy.

For fully developed steady incompressible flow, the
dimensionless Stokes equation is

0 = −
∂p
∂z

+
(

1
r
∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2

)
u, (2)

where p and u are the pressure and velocity of the fluid. The
inner boundary of the petal shaped pipe is assumed to be no-
slip, and at the center of the pipe, the flow field is symmetrical.
The boundary conditions can thus be written as

u = 0 at r = 0.5 − ε sin(nθ)
∂u
∂r
= 0 at r = 0

. (3)

Assuming that the relative roughness (ε) of the pipe is
sufficiently small, one can take the Taylor expansion of the
velocity u(r, θ) about ε and retain only its zero- and first-order
terms as

u(r, θ) = u0(r, θ) + εu1(r, θ) + O
(
ε2

)
, (4)

where O(εn) is defined as the infinitesimal of the n-th order.
According to the perturbation method, fluid velocity at the
boundary can be expressed as

u(r, θ)��r=Γ(θ ) = u(r, θ)��r=0.5 − ε sin(nθ)
(
∂u(r, θ)
∂r

) �����r=0.5
+ O

(
ε2

)
.

(5)

In Eq. (5), values at the complex boundary Γ(r, θ) can be
obtained through the properties at the simplified bound-
ary r = 0.5. As a result, the influence of wall rough-
ness can be reflected by the first-order perturbation term

ε sin(nθ)
(
∂u(r,θ )
∂r

) ����r=0.5
. Consequently, the following analysis

and results are all obtained in the equivalent domain: r ∈ (0,
0.5), θ ∈ (0, 2π).

The solution obtained with the zero-order term of the
perturbed equation is

u0 = 2 − 8r2. (6)

This is actually the classical velocity field of Poiseuille flow
inside a smooth circular pipe.

The first-order term of the perturbed equation together
with the revised boundary condition is given by

0 = −
∂p1

∂z
+

(
1
r
∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2

)
u1

u1 = −4 sin(nθ) + Q, at r =
1
2

∂u
∂r

= 0 at r = 0

, (7)

where Q is a first-order infinitesimal, i.e., Q = O(ε). If the
boundary condition is not revised by introducing Q, a non-
ignorable error will occur. In other words, to be consistent
with the physical fact that the cross section of the roughened
pipe is closely related to flow resistance, the perturbation of
the pipe boundary inevitably affects the pressure drop along
the z-axis of the pipe. In fact, the nonlinearity of the boundary
curve, serving as the disturbance source, magnifies the high-
order terms in the system so that the Q term in Eq. (7) cannot
be neglected.

In order to separate the two variables r and θ, taking
Fourier transform of the first-order term of velocity u1 in the
θ (circumferential) direction, we find that only three terms
remain, namely,

u1 = ϕ−1(r)e−(nθ−π/2)i + ϕ0(r) + ϕ1(r)e(nθ−π/2)i, (8)

where nθ − π/2 is adopted to make the real part agree with the
boundary condition. In fact, ϕ−1(r) and ϕ1(r) terms represent
the periodic fluctuation of flow velocity along the circumfer-
ential direction, which is not directly related to the growth of
the pressure gradient, while ϕ0(r) represents the overall offset
of velocity along the radial direction. According to Eq. (2), the
ϕ0(r) term is actually responsible for the increased pressure
drop due to surface roughness. Substituting Eq. (8) into the
governing equations, we arrive at two independent equations
for ϕ1 and ϕ0 as

0 = r2 ∂
2ϕ1(r)
∂r2

+ r
∂ϕ1(r)
∂r

− n2ϕ1(r)

ϕ1 = −2, at r = 0.5
∂ϕ1

∂r
= 0, at r = 0

, (9)

∂p1

∂z
=
∂2ϕ0

∂r2
+

1
r
∂ϕ0

∂r
ϕ0 = Q, at r = 0.5
∂ϕ0

∂r
= 0, at r = 0

. (10)
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Due to symmetry, ϕ1 and ϕ−1 are complex conjugates. The
solution of (9) is given by

ϕ1(r) = −2n+1rn. (11)

As discussed above, this solution does not cause any increase
in the pressure gradient.

To get a better understanding of the influence of the petal
shaped cross section on the pressure drop, the ϕ0 term is
determined next. Solution to (10) can be expressed as

ϕ0(r) = E + Fr2, (12)

where E(ε, n) and F(ε, n) are two functions directly related
to Q. Since incompressible fluid is assumed, the velocity flux
increment in the whole domain should be zero: that is, the
conservation of velocity holds,∫ 2π

0



∫ 1/2

0
u1rdr


dθ = 0. (13)

It has been established that the terms involving ϕ1, ϕ−1
have no contribution to the final result because of the inte-
gration property of the trigonometric function. Inserting (12)
into (13) yields

F = −8E. (14)

Equation (14) is an approximate expression, helpful for esti-
mating the values of F and E. The precise expressions of F(ε, n)
and E(ε, n) are determined in Sec. II B.

B. Solution
Given that the petal shaped cross section blocks fluid flow

relative to its smooth counterpart, the blocking effect may be
quantified based on the flow fields in two extreme cases. One
such limit is when the wave number is so large that the rough
structure is extremely dense, i.e., n → ∞. The other limit cor-
responds simply to the case of smooth pipe, i.e., n = 0. One
may consider these two extreme cases as asymptotic limits,
which means that the pressure drops of the two cases repre-
sent the upper and lower bounds, respectively. As the wave
number n increases, it becomes more difficult for the fluid
to flow through the rough pipe. Correspondingly, the pres-
sure drop increases continuously, approaching the upper limit
asymptotically as n→ ∞. To describe the two asymptotic lim-
its, for the problem considered in the current study, the logis-
tic function25 may be adopted. The logistic function is used to
approximate the dependence of E and F on n as

E = *
,
A

2e−
1

12.5 n

1 + e−
1

12.5 n
+ B+

-
, (15)

F = *
,
C

2e−
1

12.5 n

1 + e−
1

12.5 n
+ D+

-
, (16)

where A, B, C, and D are four coefficients that are dependent
on relative roughness.

When n → ∞, the rough pipe is analogous to a smooth
tube with diameter (1 − 2ε)D. Correspondingly, the Poiseuille
flow has velocity

un=∞ = 8(1 − 2ε)−4 [
(0.5 − ε)2 − r2

]
, (17)

which yields

B =
[
2(1 − 2ε)−2

− 2
] /
ε

D =
[
−8(1 − 2ε)−4 + 8

] /
ε

. (18)

When n → 0, the rough pipe is analogous to a smooth tube
with diameter D. The velocity is

un=0 = 2 − 8r2, (19)

from which

A =
[
2 − 2(1 − 2ε)−2] /

ε

C =
[
8(1 − 2ε)−4

− 8
] /
ε

. (20)

Thus, upon considering the asymptotic limits, the four coef-
ficients A, B, C, and D are determined. Substituting them into
Eq. (8), we obtain the velocity field as

u =
[
2 − 2(1 − 2ε)−2 +

(
8(1 − 2ε)−4

− 8
)
r2

]*
,

2e−
1

12.5 n

1 + e−
1

12.5 n
− 1+

-
− ε2n+2rn sin(nθ) + 2 − 8r2. (21)

The Stokes equation in the z-direction is written as

∂p
∂z
=

(
1
r
∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2

)
u. (22)

Making use of (21), we calculate the ratio of the average pres-
sure drop (i.e., area-weighted average of ∂p/∂z) across a petal
shaped pipe to that across a smooth pipe, resulting in

kf (ε,n) =
(∂p/∂z)rough
(∂p/∂z)smooth

=
1

(1 − 2ε)4
+ *

,
1 −

1

(1 − 2ε)4
+
-

2e−
1

12.5 n

1 + e−
1

12.5 n
.

(23)

To quantify the influence of surface roughness on fluid
flow, the concept of static flow resistivity is employed, which
is a fluidic parameter reflecting the viscous resistance of the
pipe. By definition, the static flow resistivity is the quotient of
the air pressure difference across a pipe divided by the volume
velocity of airflow through it.26 So, the static flow resistivity
can be expressed as σ = −∆P/LU, with ∆P being the fluid pres-
sure drop across the pipe, L being the length of the pipe, and
U being the average volume velocity of fluid in the pipe. The
relative static flow resistivity of the present petal shaped tube
is hence

σrough

σsmooth
=

(∆P/LU)rough
(∆P/LU)smooth

= kf , (24)

where σsmooth = 8µ/R2 is the static flow resistivity of a
smooth tube with radius R. When ε = 0, the relative static
flow resistivity is equal to 1. When the wave number n → 0,
the relative static flow resistivity takes the minimum 1; when
n → ∞, it takes the maximum 1/(1 − 2ε)4. That is, when n is
increased, the relative static flow resistivity increases from
1 to 1/(1 − 2ε)4.
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C. Triangular and square cross-sectional pipes
In addition to sinusoidal (petal shaped) cross sections

considered above, several common cross-sectional mor-
phologies, such as triangle and square, can be modeled by
decomposing their boundary curve functions into series of
sinusoidal functions via Fourier transform. This is demon-
strated next.

To select a moderate length to apply the proposed mod-
eling approach, the length corresponding to the unit circle is
adopted. Thus, the areas of triangle and square are set equal to
that of the unit circle, as shown in Fig. 2. According to Eq. (7),
the effect of the cross-sectional shape on flow is characterized
using the revised boundary condition. For any given shape of
the boundary curve, Fourier transform can be expressed by
the general form as

rshape(θ) − 0.5 = −
∞∑
n=1

sgnn · εn sin(nθ), (25)

where sgnn represents the sign of the n-th component. As
the model present above, εn is the relative roughness, whose
value is positive. To assure the completeness of the expres-
sion, sgnn is introduced so that when the n-th effect is nega-
tive, it should be “-.” In other words, the equilateral triangle
and square are considered as a circle with numerous petal
shaped disturbances.

The left side of (25) represents the disturbed part of the
boundary rshape on a unit circle (r(θ) = 0.5), which can be trans-
formed into the summation of a series of sinusoidal functions.
The negative sign to the right side of (25) is set to be consis-
tent with the shape function of (1). For triangular and square
shapes, the Fourier transform expressions are presented in the
Appendix. By regarding the cross-sectional shape as the sum-
mation of a unit circle and a series of petal shapes, it follows
from (23) and (24) that the ratio of static flow resistivity of a
given shape to that of the unit circle is

kf_shape(s) = 1 +
∞∑
n=1

sgnn ·
[
kf (εn,n) − 1

]
. (26)

Note that in each item of the series, the effect is subtracted
by that of the unit circle, i.e., kf (εn, n) − 1. Inserting Fourier
transforms of triangle and square, i.e., Eqs. (A2) and (A4), into
Eq. (26), we can obtain their relative static flow resistivities.

FIG. 2. (a) Circular, (b) equilateral triangular, and (c) square cross sections with
identical area S.

III. RESULTS AND DISCUSSION
A. Validation against numerical simulation results

Numerical simulations with Computational Fluid Dynam-
ics (CFD) software FLUENT are carried out on petal shaped
pipes. Figure 3 displays the simulation settings. The left sur-
face is set as the velocity inlet, and the right surface is set
as the outflow. The boundary between the velocity inlet and
outflow is set as the wall, and the fluid region inside is set
as FLUID. Quadrilateral mesh is selected to sweep the whole
region, and the maximum size of the grid is sufficiently small
to ensure convergence of numerical simulation results: gen-
erally, if the grid number is more than 100 000, it can meet
the requirement of mesh independence. In accordance with
the assumption of small Reynolds numbers, the fluid velocity
is set as 0.001 m/s. The CFD results are used to validate the
theoretical model predictions, as illustrated below.

B. Velocity distribution
With the wave number fixed at 6 (i.e., n = 6), Fig. 4(a) dis-

plays the remarkable influence of relative roughness on the
velocity field in a petal shaped pipe (D = 1 mm), as obtained
separately from the present theoretical model and CFD sim-
ulation. Corresponding results for the case of fixed relative
roughness (ε = 0.1) but varying wave number are presented
in Fig. 4(b). Overall, the comparison between model predic-
tion and numerical simulation is reasonably well. As the same
conclusion holds for other combinations of the wave number
and relative roughness, the results are not presented here for
brevity.

The results of Fig. 4 show that, due to the no-slip bound-
ary condition, the velocity at the boundary is zero and the
closer to the pipe center, the greater the fluid velocity. To
examine clearly the difference in velocity fields between the
theoretical and numerical results, line-scatter figures are pre-
sented in Fig. 5. It shows that the theoretical predictions
agree well with the numerical simulations in a whole. The
predicted velocities at the center are greater than the corre-
sponding numerical ones, especially when the relative rough-
ness or wave number is small. This occurs because when solv-
ing the perturbation equation, the logistic function form is
assumed to characterize the two asymptotic limits so that
the two parameters E and F in Eq. (12) can be determined. It

FIG. 3. Sketch of numerical simulations with FLUENT.
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FIG. 4. Comparison between theoretically predicted and
numerically simulated velocity fields as contour maps in
petal shaped pipes: (a) n = 6 and (b) ε = 0.1.

FIG. 5. Comparison between theoretically predicted and
numerically simulated velocity fields as line-scatter figures
in petal shaped pipes: (a) n = 6, ε = 0.06 and (b) n = 4,
ε = 0.1.

Phys. Fluids 31, 013602 (2019); doi: 10.1063/1.5067291 31, 013602-6

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 6. Influence of surface roughness on the pressure
gradient in a petal shaped pipe: (a) n = 6 and (b) ε = 0.1.

should, however, be pointed that, as an approximate approach,
this inevitably involves certain errors, thus causing the dis-
crepancy between the analytically predicted and numerically
calculated velocities.

As for the influence of petal shapes, as shown in Fig. 4,
upon changing the boundary morphology from a circle into
a petal shape, the velocity contours also exhibit a petal-like
shape, especially when the relative roughness or wave num-
ber is increased. From Eq. (21), we find that the disturbance of
the pipe boundary affects the velocity field in two ways. One is
reflected by the term containing θ, representing the change in
the shape of the velocity contour. The other is reflected by the
term without θ, representing the global offset of the velocity
field. It should be pointed out that, in the presence of surface
roughness, the fluid in the protruding portions of the petal
shaped pipe is trapped (i.e., u = 0) due to the fluid viscosity
and no-slip boundary condition. This feature is well captured
by the proposed theoretical model.

C. Pressure gradient
Boundary disturbance also affects significantly the pres-

sure gradient in petal shaped pipes. As described in Eq. (2), the
pressure gradient is the second derivative of the fluid veloc-
ity. Substituting the velocity field [Eq. (21)] into the Stokes
equation, i.e., Eq. (2), we find that the second derivative of
the period term containing θ in the velocity expression is
zero. This implies that there is no period term in the pres-
sure gradient. It is thus interesting to observe that while the
velocity field inside a petal shaped pipe exhibits periodic dis-
turbance, the pressure gradient is constant over a specified
cross section. The latter actually ensures that the fluid field is
symmetrical.

The theoretical predictions and numerical results of the
pressure gradient inside a petal shaped pipe (normalized by
that inside a smooth circular pipe) are compared in Fig. 6 for
selected values of wave number and relative roughness. Again,
reasonably good agreement is achieved. Relative to a circu-
lar pipe (either ε = 0 or n = 0), the pressure gradient in a
petal shaped pipe is much greater. As the relative roughness
and/or wave number is increased, the perimeter of the pipe
cross section becomes longer, which implies more contact
area between the fluid and the solid wall. The wall imposes
a drag force to the flowing fluid due to its viscosity, increas-
ing as the surface roughness of the pipe is increased. In fully
developed flow, this drag force is balanced with the pressure
difference.

D. Static flow resistivity
The flow resistance depends largely on the parameters

characterizing the rough structure, as shown in Fig. 7. The
influence of the relative roughness and wave number on
relative static flow resistivity is quantified theoretically and
numerically. Theoretical expressions of the static flow resis-
tivity for petal shaped pipes are given in Eqs. (23) and (24).
Table I presents further explicit expressions of static flow
resistivity by taking the Taylor expansion and retaining terms
up to ε2 (which ensures the accuracy of calculation). The
agreement between the theory and numerical simulation is
good. As the relative roughness increases, the relative static
flow resistivity rises, increasing more sharply [Fig. 7(a)]. By
contrast, the results of Fig. 7(b) show that as the wavenum-
ber increases, the numerically calculated relative static flow
resistivity first rises and then tends to an upper limit. In com-
parison, the theoretical model predictions deviate from the

FIG. 7. Comparison of static flow resistivity between theo-
retical predictions and numerical calculations: (a) n = 6 and
(b) ε = 0.1.

Phys. Fluids 31, 013602 (2019); doi: 10.1063/1.5067291 31, 013602-7

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

TABLE I. Theoretically predicted static flow resistivity (σ) of petal shaped pipes with
varying wave numbers and relative roughness.

Wave number n Shape σ

n = 1
(
1 + 0.32ε + 1.6ε2

) 8µ
a2

n = 2
(
1 + 0.64ε + 3.2ε2

) 8µ
a2

n = 3
(
1 + 0.96ε + 4.8ε2

) 8µ
a2

n = 4
(
1 + 1.28ε + 6.4ε2

) 8µ
a2

n = 5
(
1 + 1.6ε + 8ε2

) 8µ
a2

. . . . . . . . .

n = ∞ . . .
(
1 + 8ε + 40ε2

) 8µ
a2

numerical results when the wave number is small. When n is
small (e.g., n = 1, 2), the pipe cross section is yet to develop
into a periodic petal-like structure, reducing thus the effec-
tiveness of the calculation process. Furthermore, as different
morphologies of the cross section require different grids for
simulation, the accuracy of numerical results varies among the
morphologies considered.

From Table I, it is seen that as the wave number increases,
the static flow resistivity also increases, which is consistent
with Fig. 7(b); when the wave number becomes infinitely large,
the static flow resistivity approaches asymptotically its upper
limit. Increasing the wave number enables more fluid to be
trapped due to its viscosity and the no-slip condition, and
hence it becomes harder for the fluid to pass through. The
results of Table I also reveal that when the wave number is
small, the static flow resistivity is approximately linearly pro-
portional to the wave number, providing thus a quick way
to estimate the effect of the wave number on static flow
resistivity.

E. Triangular and square pipes
In Secs. III B–III D, the flow field, pressure gradient, and

static flow resistivity of petal shaped pipes have been obtained
using the modified perturbation method. It is interesting that
the same method can be combined with Fourier transform
to deal with triangular and square pipes, as demonstrated in
Sec. II C and the Appendix.

Table II compares the static flow resistivity predicted by
the present model with that obtained by Bruus et al.27 for
circular, triangular, and square pipes. Excellent agreement is
achieved, validating again the modified perturbation method
proposed in the present study.

TABLE II. Static flow resistivity (σ) for circular, triangular, and square pipes:
comparison between the present model and the existing study.

Cross-sectional morphology σ (present study) σ (Ref. 27)

8µ
a2

8µ
a2

76.95µ
a2

80µ
a2

28.46µ
a2

28.4µ
a2

IV. CONCLUSION
A theoretical model has been established to estimate the

fully developed flow at a small Reynolds number (Stokes flow)
inside petal shaped pipes by regarding the pipe wall as a
circular boundary with sinusoidal perturbation (or, equiva-
lently, surface roughness). The effects of the relative rough-
ness and wave number of the petal shaped pipe wall are quan-
tified using the modified perturbation method. Approximate
solutions of the velocity field, pressure gradient, and static
flow resistivity are obtained, which are validated by results
obtained from direct numerical simulations. The main findings
are summarized as follows:

(1) The presence of surface roughness leads to periodic
fluctuation and global offset of velocity distribution.

(2) Increasing the relative roughness or wave number of the
pipe wall enlarges both the pressure gradient and static
flow resistivity.

(3) For relatively small wave numbers of roughness, the
static flow resistivity is linearly proportional to the wave
number.

(4) With the triangle or square taken as the summation of
a series of sinusoidal perturbations and a unit circle, the
flow resistivity inside triangular and square pipes can be
obtained via Fourier transform.
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APPENDIX: FOURIER TRANSFORM EXPRESSIONS
FOR THE BOUNDARY CURVE FUNCTIONS
OF TRIANGULAR AND SQUARE SHAPES

With reference to Fig. 2, because the equilateral triangle
and square are assumed to have an identical cross-sectional
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area as the unit circle (with radius r = 0.5), the side length of

the triangle is
√
π/
√

3, while that of the square is
√
π/2. Their

Fourier transforms are presented below so that the flow field
is equivalent to that obtained from the summation of a series
of petal shaped pipes.

The boundary curve function of the equilateral triangle is
expressed using a piecewise function as

rtriangle(θ) =




√
π/
√

3/2
√

3

cos(θ − π/6)
, −

π

6
< θ <

π

2√
π/
√

3/2
√

3

cos(θ − 5π/6)
,
π

2
< θ <

7π
6√

π/
√

3/2
√

3

cos(θ − 3π/2)
,
7π
6
< θ <

11π
6

. (A1)

Regarding the boundary curve as the summation of a series
of petal shapes with increasing wave numbers, we can obtain
Fourier transform of the triangle. Here, to assure the accuracy
of calculation, we obtain Fourier transform by retaining items
up to 9 as

rtriangle(θ) − 0.5 = −0.010 86 sin(θ) − 0.132 19 sin(3θ)

+ 0.026 34 sin(5θ) − 0.038 15 sin(7θ)

+ 0.009 28 sin(9θ) + . . . . (A2)

For the case of a square pipe, the boundary curve function
is

rsquare(θ) =




√
π/2/2

cos(θ)
, −

π

4
< θ <

π

4
√
π/2/2

cos(θ − π/2)
,
π

4
< θ <

3π
4

√
π/2/2

cos(θ − π)
,

3π
4
< θ <

5π
4

√
π/2/2

cos(θ − 3π/2)
,

5π
4
< θ <

7π
4

. (A3)

Similarly, to assure the accuracy of calculation, we obtain
Fourier transform by retaining items up to 9 as

rsquare(θ) − 0.5 = −0.00246 sin(θ) + 0.03363 sin(3θ)

−0.05339 sin(5θ) − 0.03185 sin(7θ)

+ 0.0032 sin(9θ) + .... (A4)
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