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Translation of a Coated Rigid
Spherical Inclusion in an Elastic
Matrix: Exact Solution, and
Implications for Mechanobiology
The displacement of relatively rigid beads within a relatively compliant, elastic matrix can
be used to measure the mechanical properties of the matrix. For example, in mechanobio-
logical studies, magnetic or reflective beads can be displaced with a known external force to
estimate the matrix modulus. Although such beads are generally rigid compared to the
matrix, the material surrounding the beads typically differs from the matrix in one or two
ways. The first case, as is common in mechanobiological experimentation, is the situation
in which the bead must be coated with materials such as protein ligands that enable adhe-
sion to the matrix. These layers typically differ in stiffness relative to the matrix material.
The second case, common for uncoated beads, is the situation in which the beads disrupt
the structure of the hydrogel or polymer, leading to a region of enhanced or reduced stiff-
ness in the neighborhood of the bead. To address both cases, we developed the first analyt-
ical solution of the problem of translation of a coated, rigid spherical inclusion displaced
within an isotropic elastic matrix by a remotely applied force. The solution is applicable to
cases of arbitrary coating stiffness and size of the coating. We conclude by discussing appli-
cations of the solution to mechanobiology. [DOI: 10.1115/1.4042575]
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1 Introduction
Tracking the displacements of a relatively rigid particle em-

bedded within an elastic medium can be used to estimate the elastic
modulus of that medium. The idea is that, by tracking the dis-
placement of the sphere in response to a known force, one canestimate
the elastic properties of the medium in which the sphere is embedded.
This technique was first developed in the 1920s and applied to the
elastic properties of cells and gels [1]; however, the models to
which the experimental results were fit did not enable the estimation
of elastic moduli. The first exact solutions of the theory of linear elas-
ticity that enabled predictions of elastic moduli became available half
a century later (Refs. [2,3] are English translation editions of these
Russian works), as described in Sec. 2. The technique is now fairly
standard, and a broad range of biological stiffness assays rely on track-
ing the motion of relatively rigid spherical beads by known magnetic
or optical forces [4]. Additionally, these responses of rigid beads
underlie the mechanics of magneto-elastic materials [5], and analo-
gous responses are important in geo-mechanics [6].
However, across this entire range of applications, a common

occurrence is that an interphase exists between the particle and
the matrix. From the perspective of biomaterials and engineering
composites, a coating must often be placed on the outside of the
bead to ensure its adhesion to the matrix [7]. For example, in mag-
netic hydrogels, a protein peptide linker must often be placed on the
exterior of the bead to ensure adhesion [8]. From the perspective of
polymer and soil mechanics, rigid spheres can cause local compac-
tion of matrix material. Additionally, sufficiently small spheres can
act as “fillers” that disrupt the structure of a polymer [9]. These
ligand layers, compacted layers, and disrupted layers typically
differ in elastic properties relative to the matrix material, and the
classical solutions available for interpretation of bead translation
experiments are not applicable.
We therefore developed the first analytical solution of the problem

of translation of a coated, rigid spherical inclusion displaced within
an isotropic elastic matrix by a remotely applied force. We solved
for the problem for a range of interactions between the particle and
coating ranging from fully bonded to frictionless, and extended the
solution to the case of multiple, interacting inclusions.

2 Background and Problem Statement
The mathematical analog of the rigid sphere inclusion transla-

tion problem dates back to an elastostatics problem solved by
Robin in 1886 [10]. In the theory of elasticity, Lurie solved the
problem of translation of a rigid ellipsoid [3,11]. Subsequently,
the problem for some specific cases was solved. For example,
Selvadurai developed the solution for a rigid sphere in an incom-
pressible matrix [12], Zureick presented an analogous solution for
the case of a transversely isotropic matrix [13], and Selvadurai
considered the case of a frictionless “bilateral” interface
between the inclusion and the matrix [14]. Following Kupradze
[2] and Lurie and Belyaev [3], the rigid inclusion translation
problem considered in the present study is referred to as
Robin’s problem.
Although many biomaterials in vivo are anisotropic, the target

applications we envision for our approach are in vitro systems for
which isotropy is a good approximation such as hydrogels [15].
We therefore focus on only isotropic solids in this paper.
Note that for techniques based on spherical harmonics, the shear

modulus G is typically more convenient to use than Young’s
modulus E= 2G(1+ ν), where ν is Poisson’s ratio. This has been
the case in nearly all previous theoretical literature on related prob-
lems [3,12,14,16], and in this paper, we also use shear modulus to
describe the problem and express the solution.
A typical experiment involves applying a magnetic force F to an

isolated rigid sphere of radius Ri that is embedded in an infinite, iso-
tropic, linear elastic matrix of shear modulus Gm and measuring the
displacement U in the direction of F. Without losing generality, we
assume that both the force F and the displacement U are directed
along the direction of the z-axis (Fig. 1). The effective shear
modulus measured is then given by

Geff =
F/πR2

i

U/Ri
(1)

Thereafter, the challenge is to relate Geff to Gm using an exact
solution from the theory of linear elasticity. For a noncoated
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sphere in an elastic matrix, the two are related by η(νm) that is a
function only of the Poisson ratio νm of the matrix:

Gm = η(νm) Geff (2)

The most important linear elasticity solution for interpreta-
tion of these experiments is the solution of Robin’s problem
[16,17] for a sphere that is perfectly adhered to the matrix, for
which

ηbonded(νm) =
5 − 6νm

24(1 − νm)
(3)

which has the range 1/6≤ ηbonded(νm)≤ 11/48.
For the case of a frictionless “bilateral” interface between the

sphere and the matrix, which has an approximate frictionless bound-
ary condition that will be discussed below, Selvadurai [14] derived
the below expression:

ηunbonded(νm) =
7 − 8νm

24(1 − νm)
(4)

which has the range 1/4≤ ηunbonded≤ 5/16.
The relationship between Gm and Geff becomes nonlinear and

more complicated when a rigid spherical inclusion with an elastic
coating is considered (Fig. 1). To arrive at the expression, we
studied a rigid sphere of radius Ri with an elastic, concentric
coating of outer radius Rc. Considering the rotational symmetry
of the problem, we use a polar coordinate system. The origin
of the system is set as the center of the rigid inclusion, while the
θ = 0 direction is set along the direction of the z-axis, i.e., the direc-
tion of the external force F. We also assumed F to be sufficiently
small that the coating and matrix could be described by small
strain linear elasticity.

2.1 Governing Equations. Within the framework of linear
elasticity, the equations governing matrix deformation are

ε(m) = 1
2(∇u

(m) + u(m)∇)

σ(m) = 2Gm
νm

1 − 2νm
tr(ε(m)) + ε(m)

[ ]

∇ · σ(m) = 0

(5)

where u(m), ε(m), and σ(m) are the displacement, strain, and stress
in the matrix, respectively, and Gm (N/m2) and νm are the shear
modulus and Poisson ratio of the matrix material, respectively.
The equations governing the response of the coating are

ε(c) = 1
2(∇u

(c) + u(c)∇)

σ(c) = 2Gc
νc

1 − 2νc
tr(ε(c)) + ε(c)

[ ]

∇ · σ(c) = 0

(6)

where u(c), ε(c), and σ(c) are the displacement, strain, and stress in the
coating, respectively, and Gc (N/m

2) and νc are the shear modulus
and the Poisson ratio of the coating material, respectively.

2.2 Boundary Conditions. Two sets of boundary conditions
were considered. In the first, the connection between the coating
and the sphere was treated as perfectly bonded, and in the second
it was treated as frictionless. In both cases, the coating was perfectly
bonded to the matrix material, so that the displacement and stress
fields were continuous:

uc|r�Rc
= um|r�Rc

, σc|r�Rc
= σm|r�Rc

(7)

Fig. 1 Schematic figure of the problem. A rigid spherical inclusion with an elastic coating is
imbedded in an infinite linear elastic matrix. Gm (N/m2) and νm are the shear modulus and
Poisson ratio of the matrix. Gc (N/m2) and νc are the shear modulus and Poisson ratio of the
coating, respectively. An external force with magnitude F translates the rigid inclusion and
deforms the matrix and coating. The boundary between the inclusion and coating is constraint
or frictionless, while the coating is perfectly bonded to the matrix.
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For the case of a perfectly bonded sphere-coating interface, the
boundary condition for the sphere-coating interface was

u(c)r |r�Ri
= U cos θ, u(c)θ |r�Ri

= −U sin θ (8)

For the case of a frictionless sphere-coating interface, an approx-
imate, smooth bilateral interaction was used, which assumed suffi-
cient normal contact stresses to prevent separation at the interface;
this is used widely for analogous problems [18,19]. The boundary
condition was thus

u(c)r |r�Ri
= U cos θ, σ(c)rθ |r�Ri

= 0 (9)

In the far field, the matrix was free from load, so that

u(m)|r�∞ = 0 (10)

3 Solution of the Problem
In addition to experimental [4] and simulation methods [20],

two approaches have been developed for solving equations such
as Eqs. (5)–(10) for the noncoated spherical inclusion problem.
Walpole [21] and Kachanov et al. [22] used a generalized
Eshelby equivalent inclusion approach [23], while Selvadurai and
others [14,24] used Legendre polynomial-based solutions. We
adopted the latter approach and wrote the solution as

ur =
∑∞
n=0

An

rn
n(n + 3 − 4v) −

Bn(n + 1)
rn+2

[ ]
Pn(cos θ)

+
∑−1
n=−∞

An

rn
n(n + 3 − 4v) −

Bn(n + 1)
rn+2

[ ]
P−n−1(cos θ)

uθ =
∑∞
n=0

An

rn
(−n + 4 − 4v) +

Bn

rn+2

[ ]
∂
∂θ

Pn(cos θ)

+
∑−1
n=−∞

An

rn
(−n + 4 − 4v) +

Bn

rn+2

[ ]
∂
∂θ

P−n−1(cos θ)

(11)

where ν is the Poisson ratio of the coating or matrix and Pn(cos θ) is
the Legendre polynomial of rank n.

3.1 Perfectly Bonded Inclusion and Coating. For the per-
fectly bonded case, with boundary conditions represented by Eqs.
(7), (8), and (10), the displacement fields within the coating could
be written as

u(c)r = cos θ A(c)
0 − 2(1− 4νc)A

(c)
1 r2 + 4(1− νc)

A(c)
2

r
− 2

A(c)
3

r3

[ ]

u(c)θ =− sin θ A(c)
0 + (6 − 4νc)A

(c)
1 r2 + (3− 4νc)

A(c)
2

r
+
A(c)
3

r3

[ ] (12)

and those in the matrix as

u(m)r = cos θ 4(1 − νm)
A(m)
2

r
− 2

A(m)
3

r3

[ ]

u(m)θ = − sin θ (3 − 4νm)
A(m)
2

r
+
A(m)
3

r3

[ ] (13)

where A(c)
0 , A(c)

1 , A(c)
2 , A(c)

3 , A(m)
2 , A(m)

3 are coefficients shown in
Appendix A. Then, the stress field in the coating was

σ(c)rr =−4Gc cos θ 2(1+ νc)A
(c)
1 r − (−2+ νc)

A(c)
2

r2
− 3

A(c)
3

r4

[ ]

σ(c)rθ =−2Gc sin θ 2(1+ νc)A
(c)
1 r + (−1+ 2νc)

A(c)
2

r2
− 3

A(c)
3

r4

[ ] (14)

and that in the matrix was

σ(m)rr =−4Gm cos θ −(−2+ νm)
A(m)
2

r2
− 3

A(m)
3

r4

[ ]

σ(m)rθ =−2Gm sin θ (−1+ 2νm)
A(m)
2

r2
− 3

A(m)
3

r4

[ ] (15)

The force F of the inclusion must balance the boundary traction
on the inclusion-coating interface. Because of the axial-symmetry
of the problem, summation of the boundary force on the inclusion-
coating interface in the direction of the applied force (θ= 0) could
be written as

F = 2πR2
i

� π

0
(σ(c)rr cos θ − σ(c)rθ sin θ) sin θ dθ (16)

Substituting from Eq. (15) yielded

F = 16πA(c)
2 (−1+ νc)Gc (17)

which could be rewritten as

Geff

Gm
=

Sβ(X1 + X2β)

X3 + X4β + X5β
2 (18)

where

α=
Rc

Ri
, β =

Gc

Gm

S= 48α(1− νm)(1− νc)

X1 = (α5 − 1)(4− 6νc)

X2 = 4− 6νc + α5(1+ νc)

X3 = (α− 1)2(1− νm)[4(1+ α4)(2− 3νc)(5− 6νc)

+ α(1+ α2)(35− 108νc + 72ν2c )

+ 6α2(5− 18νc + 12ν2c )]

X4 = (−1+ α){4(2− 3νc)(10− 11νm − 11νc + 12νmνc)

+ α(1+ α)[35− 43νm − 4νc(5− 6νm)(5− 3νc)]

+ α3(1+ α)[45− 53νm − 4νc(5− 6νm)(5− 3νc)]

+ 2α5(1− νm)(1+ νc)(5− 6νc)}

X5 = 2(5− 6νm)(1− νc)[2(2− 3νc)+ α5(1+ νc)]

(19)

Although the relationship is in general nonlinear and must be
solved numerically, Eq. (18) reduces to the simple form of the solu-
tion of Robin’s problem (Eq. (3)) in all of the appropriate cases,
including a coating with no material mismatch (νc= νm, Gc=Gm)
and a coating with no thickness (Rc/Ri= 1). In the case of no mate-
rial mismatch, this is seen in Fig. 2. In the limit when Rc/Ri→ 1, we
observe that

lim
α�0

X1 = 0, lim
α�0

X3 = 0, lim
α�0

X4 = 0

from which it follows that

lim
α�1

Geff

Gm
= lim

α�1

SX2

X5

= lim
α�1

48α(1− νm)(1− νc)[4− 6νc + α5(1+ νc)]
2(5− 6νm)(1− νc)[2(2− 3νc)+ α5(1+ νc)]

=
24(1− νm)
5− 6νm
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or can be written in an alternative way as

Gm =
5 − 6νm

24(1 − νm)
Geff

This result is the same as that given by Eqs. (2) and (3).
Similarly, as expected, Eq. (18) yields, for an infinitely thick

coating,

Gc

Geff
= ηbonded(νc) (20)

which is the solution of Robin’s problem with the coating proper-
ties substituted for the matrix properties. For a rigid coating (Gc/
Gm→∞), the expression again recovers the solution of the
classic Robin problem, except with the sphere radius replaced by
Rc to represent a larger radius sphere.

3.2 Frictionless Inclusion-Coating Interface. For the fric-
tionless case, with boundary conditions represented by Eqs. (7),
(9), and (10), the displacement fields within the coating could be
written as

u(c)r = cos θ B(c)
0 − 2(1− 4νc)B

(c)
1 r2 + 4(1− νc)

B(c)
2

r
− 2

B(c)
3

r3

[ ]

u(c)θ =− sin θ B(c)
0 + (6 − 4νc)B

(c)
1 r2 + (3− 4νc)

B(c)
2

r
+
B(c)
3

r3

[ ] (21)

and the displacement fields in the matrix as

u(m)r = cos θ 4(1 − νm)
B(m)
2

r
− 2

B(m)
3

r3

[ ]

u(m)θ = − sin θ (3 − 4νm)
B(m)
2

r
+
B(m)
3

r3

[ ] (22)

where B(c)
0 , B(c)

1 , B(c)
2 , B(c)

3 , B(m)
2 , and B(m)

3 are coefficients shown in
Appendix A. The stress field in the coating was then

σ(c)rr =−4Gc cos θ 2(1+ νc)B
(c)
1 r − (−2+ νc)

B(c)
2

r2
− 3

B(c)
3

r4

[ ]

σ(c)rθ =−2Gc sin θ 2(1+ νc)B
(c)
1 r + (−1+ 2νc)

B(c)
2

r2
− 3

B(c)
3

r4

[ ] (23)

and that in the matrix was

σ(m)rr = −4Gm cos θ −(−2 + νm)
B(m)
2

r2
− 3

B(m)
3

r4

[ ]

σ(m)rθ = −2Gm sin θ (−1 + 2νm)
B(m)
2

r2
− 3

B(m)
3

r4

[ ] (24)

Following Eq. (16), the force could be written as

F = 16πB(c)
2 (−1 + νc)Gc (25)

and the effective modulus could be written as

Geff

Gm
=
48αβ(−1 + νm)(1 − νc)(Y1 + Y2β)

Y3 + Y4β + Y5β
2 (26)

where

Y1 = 1+ νc + 2α5(2− 3νc)

Y2 = (α5 − 1)(1+ νc)

Y3 = (α− 1)(1− νm)[2(1+ νc)(5− 6νc)

+ α(1+ α)(1− 20νc + 24ν2c )

+ α3(1+ α)(11− 40νc + 24ν2c )

+ 4α5(2− 3νc)(7− 8νc)]

Y4 = 2(1+ νc)(10− 11νm − 11νc + 12νmνc)

− 9α(1− νm)(1+ 2νc − 4ν2c )+ 10α3(1− νm)(1− 2νc)

+ α5(35− 43νm − 98νc + 118νmνc + 72ν2c − 84νmν
2
c )

+ 2α6(1− νm)(1+ νc)(7− 8νc)

Y5 = 2(α5 − 1)(5− 6νm)(1− νc)(1+ νc)

(27)

As above, Eq. (26) reduces to the solution of the classic Robin
problem (Eq. (4)) in the appropriate limits, including a coating
with no material mismatch (νc= νm,Gc=Gm). Reduction to the lim-
iting case of no material match is demonstrated by the numerical
results shown in Fig. 2. In the limit when Rc/Ri→ 1, we observe that

lim
α�0

Y2 = 0, lim
α�0

Y3 = 0, lim
α�0

Y5 = 0

from which

lim
α�1

Geff

Gm
= lim

α�1

48α(−1+ νm)(1− νc)Y1
Y4

=
48(−1+ νm)(1− νc)[1+ νc + 2(2− 3νc)]

10(7− 8νm)(1− νc)2
=
24(1− νm)
7− 8νm

or equivalently

Gm =
7− 8νm

24(1− νm)
Geff

This solution is the same as that given by Eqs. (4) and (5).

Fig. 2 The influence of coating radius on the effective modulus.
The effectivemodulus is defined asGeff = ((F/πR2

i )/(U/Ri)). Differ-
ent trends represent different stiffness of the coating. The solid
lines represent the cases of bonded boundary, and the dash dot
lines represent the cases of frictionless boundary. As Rc/Ri
increases, each line approaches an asymptote (dashed lines).
The dashed lines were calculated using the solutions given in
Ref. [14] for the case of a rigid inclusion translation in an infinite
solid which has the samematerial properties (i.e., shear modulus
Gc and Poisson ratio νc) as the coating. νc=0.3 and νm=0.3 were
chosen in this figure.
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4 Results and Discussion
The expressions derived in Sec. 3 indicated that the stiffness and

thickness of the coating influences the force–displacement relation-
ships. After exploring this effect, we estimated the stiffness of the
coating from these force–displacement relationships.

4.1 Force–Displacement Relationships. Studying Eqs. (18)
and (26) as a function of the normalized coating thickness Rc/Ri

(Fig. 2(a)) for the case of νc= νm= 0.3 revealed an asymptote
in Geff/Gm for thin coatings (Rc/Ri→ 1), which is independent of
whether the inclusion-coating interface was bonded or frictionless.
This indicated that a coating could be neglected provided that
the coating thickness is sufficiently thin. Geff/Gm increased for
stiff coatings (Gc/Gm> 1) and decreased for compliant coatings
(Gc/Gm < 1), indicating that coatings that are stiff compared to the
matrix attenuate translation of the sphere, while coatings that are
compliant compared to the matrix enhance it. Comparison of the
two interfacial conditions revealed that the constrained boundary
provides more resistance to bead motion in all cases. As Rc/Ri

increases, each line approaches to a limit calculated by the classical
solutions [14,21] of Robin’s problem, which means the translation
behavior of a rigid inclusion coated by a thick coating is similar as
the inclusion translation in an infinite matrix with shear modulus Gc

and Poisson ratio νc.
Studying these equations as a function of the relative coating

modulus Gc/Gm (Fig. 3) again revealed that Geff/Gm increases
with increasing Gc/Gm and that the constrained boundary condition
increases the resistance to bead motion. Geff/Gm approaches an
asymptote for Gc/Gm sufficiently large that the coating appro-
ximates a rigid sphere of radius Rc. In that limit, the sphere-
coating boundary condition does not affect the solution, and the
solution approaches the solution [14,21] of Robin’s problem
for a sphere of radius Rc. As expected, the solutions reduced to
the solution [14,21] of Robin’s problem for a sphere of radius
Ri for the case of a coating with no material mismatch (Gc=Gm,
νc= νm). Geff/Gm approaches 0 for coatings approximating a
cavity (Gc/Gm→ 0).

4.2 Estimation of Coating Stiffness. A practical application
of the present solution is to estimate the modulus of the coating.
This requires an estimate of the coating Poisson ratio, νc, a measure-
ment of Geff from an experimental force–displacement relationship,
a measurement of bead diameter Ri and coating outer diameter Rc

from microscopy, and an independent measurement of matrix
mechanical properties (Gm and νm) from a standard tensile test.
Solving Gc in Eq. (18) for the case of a perfectly bonded coating

yielded

Gc

Gm
=
SX1 + (Geff/Gm)X4 +

�����������������������������������������������������������������
((SX1 + (Geff/Gm)X4)2 − 4(Geff/Gm)X3(SX2 + (Geff/Gm)X5))

√
2(−SX2 − (Geff/Gm)X5)

(28)

and, analogously, solving Eq. (26) for Gc for the case of frictionless boundary yielded

Gc

Gm
=
SY1 + (Geff/Gm)Y4 +

����������������������������������������������������������������
((SY1 + (Geff/Gm)Y4)2 − 4(Geff/Gm)Y3(SX2 + (Geff/Gm)Y5))

√
2(−SY2 − (Geff/Gm)Y5)

(29)

Note that X1, X3, X4 and Y2, Y3, Y5 approach zero when Rc/Ri→ 1,
which means that the right-hand side of Eq. (28) approaches
zero and the right-hand side of Eq. (29) approaches infinity when
Rc/Ri→ 1. Both of these limiting cases are meaningless, for
Gc/Gm (i.e., β) disappears in Eqs. (18) and (26) when Rc/Ri→ 1.
Correspondingly, Eqs. (18) and (26) become “artificial” equations
for Gc/Gm. That is, solutions (28) and (29) are meaningless when
Rc/Ri→ 1.
Plotting Eqs. (28) and (29) as a function of Geff/Gm for νc=

νm= 0.3 and for a range of coating thicknesses revealed mono-
tonic trends (Fig. 3). An asymptote at which the coating is
effectively rigid was observed. The effect of coating stiffness
on the trends in Fig. 3 was again for perfect bonding to increase
the resistance of the bead to displacement; failing to account for
bead-coating sliding will lead to underestimation of the coating
stiffness.

4.3 Application to Estimation of Cytoplasmic Stiffness. We
next explored whether the approach could be effective for the
purpose of estimating the effective elastic modulus of cytoplasm,
as has been the goal of papers cited above dating as far back as
the early 1920s [25]. The idea here is that a magnetic bead would
be embedded in the cytoplasm of a cell and displaced by magnetic
force or that the entire nucleus of a cell with a relatively rigid, highly
lamin-coated nucleus would be displaced by a bead on its interior.
The lamin network surrounding the nucleus can be sufficiently stiff
to impeded cell migration [26]. The bead or nucleus itself would
function as the rigid sphere, the cytoplasm as the coating, and the
extracellular matrix or hydrogel as the infinite matrix. Although
these conditions are not representative of natural tissues, they are
realistic for model systems with both natural and synthetic extracel-
lular matrices, bespoke systems typically designed for the specific
purpose of quantifying cellular biophysics [8]. Magnetic activation

Fig. 3 The influence of coating stiffness on the effective modu-
lus. The effective modulus is defined as Geff = ((F/πR2

i )/(U/Ri)).
Different trends represent different radii of the coating. The
solid lines represent the cases of bonded boundary, and the
dash dot lines represent the cases of frictionless boundary.
Representing the asymptotic values of effective modulus, the
dashed lines were calculated using the solutions presented in
Refs. [14,21] for the case of a rigid inclusion translation with
radius Rc in the matrix (i.e., shear modulus Gm and Poisson
ratio νm). νc=0.3 and νm=0.3 are chosen in this figure.
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is common for such systems [27], and the tracking of bead displace-
ments in three dimensions for the purpose of measuring cell biophy-
sics is commonplace [28].
The results of Sec. 4.2 indicated that in certain regions of param-

eter space, the modulus of a coating can be estimated with high res-
olution, while in others the resolution is low. For the cases of
interest here, the cytoplasm would be expected to be much more
compliant than the matrix: estimates of cytoplasmic stiffness from
bead rheology experiments are in the order of 10–1000 Pa [29],
while moduli of collagen are in the order of 1–300 MPa [30]. For
Gc/Gm in this range and below, the relationship between Geff/Gm

and Gc/Gm is linear (Fig. 4). The range of linearity terminates at
an upper value of Gc/Gm that increases with decreasing bead or
nucleus size Rc/Ri. For Rc/Ri= 2, corresponding to the volume of
the bead or nucleus is about 10% of the whole volume of the
coating and bead (or nucleus), the range extends up to Gc/Gm≪
0.1. Within the linear range, the coating modulus relates to the
effective modulus according to

Gc = η*Geff (30)

where

η* =

X3

X1S
, fully bonded bead/coating interface

Y3
Y1S3

, frictionless bead/coating interface

⎧⎪⎪⎨
⎪⎪⎩ (31)

When the modulus of the coating is sufficiently small compared
to that of the matrix, the matrix is essentially rigid and Geff depends
on the size and mechanical properties of the coating (shear
modulus, Poisson’s ratio, and thickness); the mechanical properties
of the matrix do not affect the amount that the bead displaces. For
example, for the case of a perfectly bonded bead-coating interface in
the linear range,

η* =
(α − 1)2

48α(1 − vc)(α5 − 1)(4 − 6vc)
[4(1 + α4)(−2 + 3vc)(−5 + 6vc)

+ α(1 + α2)(35 − 108vc + 72v2c ) + 6α2(5 − 18vc + 12v2c )]

(32)

4.4 Implications for the Role of Nuclear Lamination in
Nuclear Mechanosensing. The nucleus of animal cells connects
through the cytoplasm to the extracellular matrix (ECM) through
an integrated network of proteins called the LINC complex [31].
This complex determines the degree to which cytoskeletal stress,
either from external loading or internal contraction, delivers
mechanical force to the nuclear envelope. Proteins of the lamin
family surrounding the nucleus form over the course of develop-
ment and can form a shell that is stiff over certain time scales of
loading [32]. The degree to which the nucleus translates in
response to an applied force relates to the degree to which the
nucleus can be perturbed by stressing of the ECM.
Equations (30) and (31) have certain consequences for cellular

mechanosensing. First, the time scales over which nuclear mechan-
osensing via the LINC complex can occur must change as the
short-term mechanical stiffness of the nucleus changes: as lamina-
tion progresses and the nuclear envelope stiffens, the nucleus
ceases to sense the ECM stiffness and instead senses only the cyto-
skeleton and cytoplasm. Changes to cell and ECM stiffness over
development, wound healing, and aging [33], thus, can serve as
tools with which to affect how the nucleus senses exogenous
mechanical force over longer time scales, and cytoskeletal fluidiza-
tion in response to rapidly applied forces [34] can do so over shorter
time scales.
An additional aspect of potential nuclear mechanosensing on

which this solution sheds light is the controversial possibility of
mechanical vibration affecting cell function. Cells including osteo-
blasts have been reported to respond favorably to certain frequen-
cies of mechanical vibration [35]. In osteoblasts, the reported
outcome is upregulation of the deposition of new bone tissue. A
central question that must be answered if this is to occur is how
information about vibration can make it through the ECM to
change gene expression and thereby upregulate bone deposition.
Why could this occur in bones but not in tendons? From the per-
spective of the current solution, if the ECM is sufficiently stiff
compared to the cytosol, the nucleus could vibrate in a way that
depends on the mechanics of the cytosol and cytoskeleton
only. This means that, provided that the mechanical signal is suffi-
ciently strong that viscous attenuation does not damp it entirely, a
signal tuned to reach the nucleus could possibly penetrate the
ECM to engage nuclear mechanosensing. For Rc/Ri= 2 and Gc/
Gm≤ 0.1, the effective stiffness for nuclear displacement is well
within the range that depends linearly on the stiffness of the
cytosol (Fig. 4).

5 Conclusions
The solution presented for the displacement of a coated, rigid

bead within an elastic matrix enables the characterization of the
shear modulus of a coating on a bead that is displaced via
optical or magnetic actuation. For cases of a matrix that is relatively
stiff compared to the coating, the bead feels only the coating and is
insulated from the matrix. For cases of a matrix that is more com-
pliant, the effect of the coating and matrix combine nonlinearly.
The results have implications for magnetic testing of biological
materials and for ways that the cell nucleus might respond to vibra-
tory loading.
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the limit values of effective modulus. νc=0.3 and νm=0.3 are
chosen in this figure.
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Appendix A: Coefficients in the analytic solution
The coefficients in Eqs. (12) and (13) are given by

A(c)
0 =

Z0 + Z1β + Z2β
2

X3 + X4β + X5β
2 U

A(c)
1 =

3U
2R2

α(α2 − 1)(1 − β)(1 − νm)

X3 + X4β + X5β
2

A(c)
2 = 3RU

α(1 − νm){2(α5 − 1)(2 − 3νc) + β[2(2 − 3νc) + α5(1 + νc)]}

X3 + X4β + X5β
2

A(c)
3 = R3U

α3(1 − νm){2(α3 − 1)(2 − 3νc) + β[2(2 − 3νc) + α3(1 + νc)]}

X3 + X4β + X5β
2

and

A(m)
2 = 3RU

αβ(1 − νm){2(α5 − 1)(2 − 3νc) + β[2(2 − 3νc) + α5(1 + νc)]}

X3 + X4β + X5β
2

A(m)
3 = R3U

α3β(1 − νc){4(α3 − 1) + α3(α2 − 1)(5νm − 1) − 6ν1(α5 − 1) + β[4 − 6νc + α5(1 + νc)]}

X3 + X4β + X5β
2

where

α =
Rc

Ri
, β =

Gc

Gm

X3 = (α − 1)2(1 − νm)[4(1 + α4)(2 − 3νc)(5 − 6νc) + α(1 + α2)(35 − 108νc + 72ν2c ) + 6α2(5 − 18νc + 12ν2c )]

X4 = (−1 + α){4(2 − 3νc)(10 − 11νm − 11νc + 12νmνc) + α(1 + α)[35 − 43νm − 4νc(5 − 6νm)(5 − 3νc)]

+ α3(1 + α)[45 − 53νm − 4νc(5 − 6νm)(5 − 3νc)] + 2α5(1 − νm)(1 + νc)(5 − 6νc)}

X5 = 2(5 − 6νm)(1 − νc)[2(2 − 3νc) + α5(1 + νc)]

Z0 = (1 − α)(1 − νm)[4(2 − 3νc)(5 − 6νc)(1 + α + α2 + α3 + α4) + 5α3(1 + α)]

Z1 = 4(−2 + 3νc)(10 − 11νm − 11νc + 12νmνc) + α3( − 5 + 5νm) + α5(35 − 43νm − 98νc + 118νmνc + 72ν2c − 84νmν
2
c )

Z2 = 2(−5 + 6νm)(−1 + νc)[2(2 − 3νc) + α5(1 + νc)]

The coefficients in Eqs. (21) and (22) are

B(c)
0 =

W0 +W1β +W2β
2

Y3 + Y4β + Y5β
2 U

B(c)
1 =

3U

2R2
i

α(1 − β)(1 − νm)(1 + α2 − 2νc)

Y3 + Y4β + Y5β
2

B(c)
2 = 3RiU

α(1 − νm)[β(α5 − 1)(1 + νc) + 1 + νc + 2α5(2 − 3νc)]

Y3 + Y4β + Y5β
2

B(c)
3 = R3

i U
α3(1 − νm)[1 − 4α3 + νc + 14α3νc − 12α3ν2c + β(1 + νc)(−1 − α3 + 2α3νc)]

Y3 + Y4β + Y5β
2

and

B(m)
2 = 3RiU

αβ(1 − νc)[1 + νc + 2α5(2 − 3νc) + β(α5 − 1)(1 + νc)]

Y3 + Y4β + Y5β
2

B(m)
3 = R3

i U
α3β(1 − νc)[1 + νc + 2α5(2 − 3νc) + β(α5 − 1)(1 + νc)]

Y3 + Y4β + Y5β
2

where

α =
Rc

Ri
, β =

Gc

Gm

Y3 = (α − 1)(1 − νm)[2(1 + νc)(5 − 6νc) + α(1 + α)(1 − 20νc + 24ν2c ) + α3(1 + α)(11 − 40νc + 24ν2c ) + 4α5(2 − 3νc)(7 − 8νc)]

Y4 = 2(1 + νc)(10 − 11νm − 11νc + 12νmνc) − 9α(1 − νm)(1 + 2νc − 4ν2c )

+ 10α3(1 − νm)(1 − 2νc) + α5(35 − 43νm − 98νc + 118νmνc) + 72ν2c − 84νmν
2
c ) + 2α6(1 − νm)(1 + νc)(7 − 8νc)

Y5 = 2(α5 − 1)(5 − 6νm)(1 − νc)(1 + νc)

W0 = (−1 + νc)[−2(1 + νc)(−5 + 6νc) + 5α3(1 − 2νc) + 9α5(5 − 12νc + 8ν2c )]

W1 = 2(1 + νc)(10 − 11νm − 11νc + 12νmνc) + 5α3(−1 + νm)(−1 + 2νc) + α5(35 − 43νm − 98νc + 118νmνc + 72ν2c − 84νmν
2
c )

W2 = 2(−1 + α)(1 + α + α2 + α3 + α4)(−5 + 6νm)(−1 + νc)(1 + νc)
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Appendix B: Degradation details of the coated inclusion
translation problem
In this appendix, we will reduce the coated inclusion translation

problem to the classical Robin problem in the appropriate limits,
including coating with no material mismatch (νc= νm, Gc=Gm)
and coating with no thickness (Rc/Ri= 1).
Case 1: Coating with no material mismatch (νc= νm, Gc=Gm or

νc= νm, β = 1).

(i) Bonded sphere-coating interface
In this case, upon calculating directly the coefficients

appearing in Appendix A, we arrive at

lim
β�1,νc�νm

A(c)
0 = 0

lim
β�1,νc�νm

A(c)
1 = 0

lim
β�1,νc�νm

A(c)
2 =

3URi

2(5 − 6νm)

lim
β�1,νc�νm

A(c)
3 =

UR3
i

2(5 − 6νm)

lim
β�1,νc�νm

A(m)
2 =

3URi

2(5 − 6νm)

lim
β�1,νc�νm

A(m)
3 =

UR3
i

2(5 − 6νm)

which are identical to the solutions presented in Refs.
[12,14,21].

(ii) Frictionless sphere-coating interface
Direct calculation for the coefficients inAppendixA leads to

lim
β�1,νc�νm

B(c)
0 = 0

lim
β�1,νc�νm

B(c)
1 = 0

lim
β�1,νc�νm

B(c)
2 =

3URi

2(7 − 8νm)

lim
β�1,νc�νm

B(c)
3 =

UR3
i (−1 + 2νm)
2(7 − 8νm)

lim
β�1,νc�νm

B(m)
2 =

3URi

2(7 − 8νm)

lim
β�1,νc�νm

B(m)
3 =

UR3
i (−1 + 2νm)
2(7 − 8νm)

which is the same as the solution presented in Ref. [14].

Case 2: Coating with no thickness (Rc/Ri= 1 or α = 1).

(i) Bonded sphere-coating interface.
In the limit α = 1, it follows from Appendix A that

lim
α�1

A(c)
0 =

U{5(−1 + β) + (5 − 6β)νm + νc[6 − 5β + 6(−1 + β)νm]}
β(−1 + νc)(−5 + 6νm)

lim
α�1

A(c)
1 = 0

lim
α�1

A(c)
2 = −

3URi(−1 + νm)
2β(−1 + νc)(−5 + 6νm)

lim
α�1

A(c)
3 = −

UR3
i (−1 + νm)

2β(−1 + νc)(−5 + 6νm)

lim
α�1

A(m)
2 =

3URi

2(5 − 6νm)

lim
α�1

A(m)
3 =

UR3
i

2(5 − 6νm)

which are the same as the solutions presented in Refs.
[12,14,21].

(ii) Frictionless sphere-coating interface
In the limit α = 1, it follows from Appendix A that

lim
α�1

B(c)
0 =

U{6(−1 + β) + (6 − 7β)νm + νc[6 − 5β + 6(−1 + β)νm]}
β(−1 + νc)(−7 + 8νm)

lim
α�1

B(c)
1 =

3U(−1 + β)(−1 + νm)

10βR2
i (−1 + νc)(−7 + 8νm)

lim
α�1

B(c)
2 = −

3URi(−1 + νm)
2β(−1 + νc)(−7 + 8νm)

lim
α�1

B(c)
3 =

UR3
i [3 + 2β + 2(−6 + β)νc](−1 + νm)

10β(−1 + νc)(−7 + 8νm)

lim
α�1

B(m)
2 =

3URi

2(−7 + 8νm)

lim
α�1

B(m)
3 =

UR3
i (−1 + 2νm)

2(−7 + 8νm)

Because the thickness of the coating approaches zero, it is
sufficient to focus on the solution in the matrix. This reduced
solution in the matrix is the same as the solution given in
Ref. [14].
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