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Abstract: A combined theoretical and numerical study is carried out to quantify the 

influence of material properties (e..g, real part and loss factor of Young’s modulus, 

material density) and geometrical parameters (e.g., layer thickness, height of hole) on 
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the sound absorption performance of an underwater rubber layer containing 

periodically distributed axial holes. A theoretical modal is developed based on the 

method of transfer matrix as well as the concept of equivalent layering of holes with 

variable cross-section. Numerical simulations with the method of finite elements are 

subsequently carried out to validate the theoretical model, with good agreement 

achieved. Physical mechanisms underlying the enhanced acoustic performance of the 

anechoic layer as a result of introducing the periodic holes are explored in terms of the 

generated transverse waves and the high order mode of vibration. The results presented 

are helpful for designing high-performance underwater acoustic layers with 

periodically distributed cavities by tailoring relevant material properties and 

geometrical parameters.  

Keywords: Composite anechoic layer; Periodic holes; Sound absorption; Analytical 

modeling; Finite element simulation 

1. Introduction 

The acoustic absorption property is an important functionality of various composite 

materials/structures, which can be tailored via the reasonable design of their micro-structure and 

macro-geometry [1-4]. As a typical composite material or structure, the underwater anechoic 

layer is usually made up of a rubber matrix containing periodically distributed holes, which 

possesses excellent acoustic absorption performance in underwater environments. Early research 

on underwater sound attenuation dated from the theoretical study of oscillations and wave 

propagation in solid media with inner holes [5-7]. Thereafter, two types of resonance mechanism 

were identified [8,9] for Alberich anechoic layer, which is a viscoelastic medium containing short 

cylindrical holes. One is the radial motion of the hole wall and the other is the drum-like 

oscillations of the cover layer. 

 Modern anechoic layers typically have the structure of multilayers, or can be equivalent to 

multilayered coatings. Consequently, theoretical modeling of such anechoic layers usually calls 

for the transfer matrix method to establish the acoustic relationship between the two sides of the 

layer. For typical instance, Cervenka et al. [10] deduced the transfer matrix of a multilayered 

structure where each layer can be either liquid or solid, so that the acoustic performance of the 

structure could be efficiently evaluated [11]. Nowadays, gradually varied axial holes such as 
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conical and horn holes are often adopted to enhance the sound absorption performance of 

underwater anechoic layers. Built upon the model of wave propagation in cylindrical tube [12] as 

well as the equivalent model of layering for gradually varied axial holes [13], the sound 

properties of such anechoic layers can be theoretically characterized using the transfer matrix 

method. Moreover, the underwater acoustic performance of the anechoic layers attached with rib-

stiffened plate was theoretically investigated by the well-developed elasticity models [14-16], 

which considered the effect of the periodical rib-stiffeners. Besides the above mentioned 

theoretical analyses, the numerical method of finite elements (FE) has also been developed to 

calculate the acoustic performance of anechoic layers. For instance, based on FE simulations, 

Hennion et al. [17] and Easwaran et al. [18] investigated the scattering and reflection 

characteristics of anechoic layers containing doubly periodic holes, while Panigrahi et al. [19] 

compared anechoic coatings with different sizes of air channels (holes) adhered on the same side 

or different sides of a steel plate.  

 Although there exist numerous theoretical and numerical researches on the underwater 

sound absorption of composite anechoic layers, comprehensive studies on the influence of 

material properties and geometrical parameters on the acoustic performance of an composite 

anechoic layer containing gradually varied axial holes are scarce. Further, the absorption 

mechanism for waterborne sound in composite anechoic layers containing periodically 

distributed holes needs to be further explored, which is of vital importance for the design of the 

microstructure of the composite anechoic layers toward to superior underwater acoustic 

absorption. This paper aims to address these issues using a combined approach of theoretical 

analysis and numerical (FE) calculation.  

2. Theoretical model 

Figure 1(a) displays the cross-sectional configuration and working condition of a 

representative underwater anechoic layer containing periodically distributed holes, which is 

adhered to a steel plate. The lateral size of the whole structure including the anechoic layer and 

the steel plate is assumed to be infinite. The mediums at the two sides of the anechoic layer-steel 

plate structure are air and water, respectively, both considered to be spatially semi-infinite. When 

a normally incident plane sound wave propagates from the far field in the water into the anechoic 

layer, the wave is attenuated. As the steel plate is supposed to be a rigid back, the wave 

completely reflects back, eventually into the water. 
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 For simplicity, regular triangular arrangement of the holes in the anechoic layer is adopted, 

as shown in Fig. 1(b). Due to periodical distribution of the holes, only a single cell with 

hexagonal perimeter needs to be extracted for further study. However, the hexagonal unit cell is 

difficult to be analyzed theoretically. To overcome the difficulty, a simplification method is 

introduced in Fig. 1(c). With no deformation of the hole, the external morphology of the unit cell 

is assumed to transform from the original hexagonal shape to a cylindrical one, with the volume 

unchanged. As a result, the gradually varying axial hole may be taken as equivalent to a cluster of 

shallow cylindrical holes for which analytical solution can be obtained. The analytical solution 

will be accurate enough so long as the segments of Fig. 1(c) are divided densely enough. Figure 2 

depicts one such segment, i.e., a cylindrical pipe. Due to axial symmetry, the cylindrical 

coordinate system rOz  is adopted. The inner and outer radii of the pipe are denoted as a  and b  

and the length as l . 

  The anechoic layer is made up of rubber, which is a linear viscoelastic material. For the case 

of harmonic incident wave, the vibrating governing equation can be written in the same form as 

that of an elastic material [20]: 

  , ,i jj j ji iu u u        (1) 

where u  is the displacement,   and   are the Lame constants, and   is the density of rubber. 

As usual, the summation convention is implied. For rubber,    and   are complex numbers 

while   is a real number. 

 The displacement vector u  can be written in a decomposition form, as [20]: 

   u ξ  (2) 

where   is a scalar potential function and ξ  is a vector potential function. The former is related 

to longitudinal wave while the latter is related to transverse wave. In consideration of the axial 

symmetry, there is no circumferential component of the transverse wave and so does the second 

term of u . Thus, the vector potential function ξ  can be degenerated to a scalar potential function 

 . 

 Equations (2) is satisfied by the Helmholtz equations, 

 
 
 

2 2
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where 1K  and 2K  are the longitudinal wavenumber and the transverse wavenumber, respectively.  

 The solution of equations (3) can be written as (time-depending term omitted for brevity): 

 
   
   

i
1 0 1 2 0 1

i
3 0 2 4 0 2

J Y e

J Y e

kz

kz

C k r C k r

C k r C k r





   
   

 (4) 

where 1C  to 4C  are four undetermined coefficients; k  is the axial wavenumber; 2 2
1 1k K k   

and 2 2
2 2k K k   are the radial wavenumbers of longitudinal wave and transverse wave, 

respectively; and  0J  and  0Y  are the Bessel functions of the first kind and the second kind, 

respectively. 

 In the cylindrical coordinate system, the radial component of displacement, ru , and the axial 

component of displacement, zu , have the following expressions: 
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 (5) 

  According to equations (4) and (5) as well as the geometric equations and constitutive 

relation, the relation between the three variables, ru , r  and rz , and the four undetermined 

coefficients, 1C  to 4C , can be expressed as: 
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          

 (6) 

where r  is the normal stress and rz  is the shear stress. Expressions of the twelve elements in 

the coefficient matrix of (7) are presented in the Appendix. 

 Consider next the boundary conditions for the cylindrical pipe of Fig. 2 Due to periodical 

arrangement of holes in the anechoic layer, the interface between two adjacent cells - which is 

also the outer boundary of each cell - should comply with the symmetric boundary condition. 

Besides, since the impedance of air (i.e., medium in the hole) is far less than that of rubber (i.e., 

matrix material of the anechoic layer), the inner boundary of each cell can be considered as a free 

interface. Therefore, the boundary conditions are given by: 
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 (8) 

 Upon substituting (8) into (6), the equations for 1C  to 4C  are obtained, as: 

 

       
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   

              

0  (9) 

where a  and b  in the parentheses represent the value of r  in each element. 

 For equation (9) to have a non-zero solution, the determinant of its coefficient matrix must 

equal to zero. The axial wavenumbers can thence be solved; while only the lowest order 

wavenumber k  are considered here, because it has the most significant influence on the sound 

absorption performance of the cylindrical pipe (Fig. 2) in low frequencies [13]. In this way, the 

transfer matrix shown in Eq. (10) then can be used. If the considered frequency is too high, 

higher order wavenumbers need to be considered, but the transfer matrix will be not feasible. 

 To proceed further, each segment containing a cylindrical hole (Fig. 2) is taken as equivalent 

to a homogeneous material with corresponding effective parameters. For the i th segment, its 

effective wavenumber is equal to the axial wavenumber, notated as ik , while its effective density 

is the volumetric average value, notated as i . Once this is done, the transfer matrix method can 

be adopted to establish the relation between the two sides of the anechoic layer that contains say a 

total of n such segments.  

 Let the interface between the anechoic layer and the water medium denote the front interface 

of the anechoic layer, and let the interface between the anechoic layer and the steel plate denote 

the back interface. The transfer matrix of the ith segment has thence the following expression, 

 

   
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T  (10) 

where il  is the thickness of the ith segment. The total transfer matrix of the anechoic layer 

becomes therefore: 
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 11 12

121 22

n

i
i

T T

T T 

 
  
 

T T  (11) 

 In accordance with the transfer matrix method, the acoustic pressure and vibration velocity 

at the front interface, fp  and fv , and those at the back interface, bp  and bv , can be related by T , 

as: 

 11 12

21 22

f b b

f b b

p p pT T

v v vT T

      
       

     
T  (12) 

 Since the steel plate is considered rigid, the impedance of the back interface b b bZ p v   . 

Thus, according to (12), 

 11

21

f
f

f

p T
Z

v T
   (13) 

 Finally, due to the relation between the reflection coefficient and the acoustic impedance, as 

well as energy conservation, the sound absorption coefficient   of the anechoic layer is obtained 

as: 

 

2

1 f w w

f w w

Z c

Z c







 


 (14) 

where w  and wc  are the density and sound speed of water, respectively. 

3. Results and discussion: parameter studies 

3.1   Geometric and material parameters of anechoic layer 

 To characterize the acoustic performance of the anechoic layer and explore the underlying 

sound absorption mechanisms based on the theoretical model developed in the previous section, 

the parameters that are varied include: rubber density, real part of Young's modulus, loss factor of 

Young's modulus, thickness of anechoic layer, and height of bore hole. To this end, two different 

types of hole – cylindrical bore and conical bore – are considered, as illustrated in Fig. 3, with 

fixed geometrical parameters as: radius of unit cell 15 mmar  ; cylinder 4 mmp  ; cone 3 mmp  ; 

cone 7 mmq  .  

 Table 1 lists relevant material and geometric parameters of anechoic layers considered in the 

present study, in which the parameters with only one value are the fixed ones while those with 

three values will be varied in the calculations presented below. Values with an asterisk are the 
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default ones, which means that when one parameter is discussed (varied), the remaining 

parameters take default values. 

3.2   Effect of rubber density 

 The effect of rubber density on sound absorption is quantified in Fig. 4 for both cylindrical 

and conical holes. Their corresponding homogenous layers containing no holes are also plotted 

for demonstrating the effective frequency range of perforating holes in rubber. In addition to 

sound absorption curves calculated using the present theoretical model, the curves calculated 

directly by FEM (finite element method) with COMSOL are included for comparison. In the 

numerical simulations, the rubber domain is simulated by the "Elastic waves" physical field in 

COMSOL while the air domain in the hole as well as the external water domain are simulated by 

the "Pressure acoustics" physical field in COMSOL. The “Acoustic-structure boundary” is set 

between the fluid and rubber to ensure the continuity of the particle acceleration and sound 

pressure in the normal direction of the boundary, as below:  

 

1
( )t d tt

c

A t

p

p


 

        
 


n q n u

F n

 (15) 

where ttu  is the particle acceleration, n  is the unit vector of surface normal, tp  is the total sound 

pressure, AF  is the load (force per unit area) experienced by the structure, dq  is the dipole source. 

 Here, the considered frequency range is considered below 10kHz, because the low 

frequency sound absorption performance of the anechoic layers is of great concern for 

underwater sound propagation. The results of Fig. 4 (as well as those presented in Figs.5 to 8) 

demonstrate that excellent agreement between theoretical prediction and FEM simulation is 

achieved before 5 kHz, while small deviations exist at higher frequencies because only the lowest 

order axial wavenumber is considered for each divided cylindrical pipe as mentioned above. 

Although these deviations slowly become larger at higher frequencies, the theoretical results can 

also give good predictions and right curve tendencies. 

 As shown in Fig. 4, two absorption peaks exist within the studied frequency range for both 

the cylindrical hole case and conical hole case. These two cases also have similar curve 

tendencies. For the default cylindrical hole case, the first absorption peak is at 2 kHz with a 

relatively lower peak coefficient reaching 0.42; while the second peak is at about 8.9 kHz with a 

relatively higher peak coefficient nearly reaching 1. For the default conical hole case, its two 
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peaks (the first at 1.4 kHz and the second at 8.5 kHz) are both earlier than those of the default 

cylindrical hole case. This is because the conical case has a larger hole volume, which means its 

structural stiffness is smaller, leading to lower resonance absorption peaks, especially for the first 

peak in a relatively lower frequency range, i.e. the stiffness region where the absorption 

performance is mainly influenced by the stiffness.  

 In Fig. 4, comparing the anechoic layers containing holes with the corresponding 

homogenous layers, it is found that the homogenous layer has a relatively smooth absorption 

curve like a homogenous porous material for air-borne sound absorption, the perforating holes in 

homogenous rubber layers improves the absorption performance at relatively low and high 

frequency region in the studied frequency range. For the default cylindrical case, its absorption 

performance is enhanced within 0-3 kHz and 7-10 kHz. Although an absorption decline occurs in 

middle frequency range, the average absorption coefficient in the whole studied frequency range 

is obviously improved. This phenomenon is in some degree like perforating holes in high 

resistivity homogenous porous materials to form double porosity materials [21], which are both 

contributed to the improvement of the acoustic impedance matching between the absorbing 

material and the surrounding media.  

 As to the effects of rubber density on the absorption performance of anechoic layers, when 

rubber density is varied, the absorption curves of Fig. 4(a) for cylindrical holes exhibit similar 

variation trend as those of Fig. 4 (b) for conical holes. Take Fig. 4(a) for example. When rubber 

density is increased, the absorption coefficient remains almost unchanged from 0 to about 1 kHz, 

increases slightly from about 1 to 5 kHz, and obviously increases from about 5 to 8 kHz. As 

mentioned above, the low-frequency (stiffness region) absorption performance is mainly 

influenced by the structural stiffness, and barely influenced by mass, i.e. density. With the 

frequency increasing, density’s influences grow, and a larger mass brings the vibration mode (i.e. 

the second peak here) towards lower frequencies. Thus, within the frequency range considered in 

the present study, rubber density has significant influence on sound absorption only at middle and 

high frequencies.  

3.3   Effect of the real part of rubber Young's modulus 

 Figure 5 displays the effect of the real part of the rubber Young's modulus on the acoustic 

performance of the anechoic layer. Different with the effect of rubber density, the real part of the 

Young's modulus influences the absorption curve from the initial frequencies. As the real part of 
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Young's modulus is increased, the absorption coefficient slightly decreases before about 1.5 kHz. 

Then, from about 2 to 5 kHz, enhanced absorption is observed; while, beyond about 6 kHz, the 

absorption is significantly deteriorated. At high frequencies, the crests of the curves are almost at 

the same level. In general, as the real part of Young's modulus is increased, the stiffness of 

anechoic layers increases and induces the vibration modes’ absorption peaks as well as the whole 

absorption curve moving to higher frequencies. As shown in Fig. 5, for the three cylindrical cases, 

as the real part of the Young's modulus increases, the first peak frequency ranges from about 1.5 

to 2.5 kHz, and the second peak frequency ranges from about 8 to 10 kHz; for the three conical 

cases, the first peak frequency ranges from about 1 to 1.8 kHz, and the second peak frequency 

ranges from about 7.5 to 9.5 kHz. Moreover, it is worth noting that although deceasing the real 

part of the rubber Young's modulus can bring the whole absorption curve towards lower 

frequencies, the first absorption peak and first absorption valley both become lower. In addition, 

for the homogenous rubber layers containing no holes, a smaller Young's modulus case has a 

better absorption performance at lower frequencies (0-5 kHz here) but a worse performance at 

higher frequencies (5-10 kHz here). 

3.4   Effect of the loss factor of rubber Young's modulus 

 Besides the real part, the Young's modulus of a viscoelastic material has another component, 

the loss factor. The effect of the loss factor on sound absorption is presented in Fig. 6 for both 

hole types. It is apparent that, as the loss factor is increased (from 0.17 to 0.29), the absorption 

curve has a prominent broadband enhancement between 0.5 kHz to about 6.5 kHz; although the 

first peak frequency is almost unchanged, the peak coefficient increases from about 0.33 to 0.5 

for both the cylindrical cases and conical cases. At higher frequencies (> 7 kHz), however, the 

loss factor has considerably diminished influence.  

 The loss factor is the ratio of the imaginary part of rubber Young's modulus to its real part. 

The real part is also known as the storage modulus of rubber, while the imaginary part represents 

the loss modulus of rubber. Because in this section the loss factor is the only variable, which 

means the real part is fixed, the imaginary part increases as the loss factor is increased. Increasing 

the loss factor will therefore directly increase the energy dissipation capacity of the rubber 

material itself. That is, the mechanical energy of sound wave's vibration is increasingly converted 

into heat via viscoelastic dissipation, increasing thus the absorption coefficient. This is also the 

reason of absorption enhancement for homogenous layers containing no holes. Moreover, as 
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shown in Fig. 6, the loss factor has the largest influence on anechoic layers’ sound absorption at 

the peak frequency, which is consist with the common sense: damping has the largest influence 

around the resonance frequency where is often called damping region. While for the second peak, 

as the absorption coefficient has almost reached 1, the damping’s effect is not obvious. 

3.5   Effect of rubber layer thickness 

 Apart from material parameters, geometric parameters also play a significant role in the 

acoustic performance of an anechoic layer. In this section, the effect of rubber layer thickness is 

both theoretically predicted and numerically calculated, as shown in Fig. 7. As the thickness is 

increased from 50 mm to 90 mm, the absorption curve rises at all the frequencies, especially in 

two particular bands. The first band ranges from about 1 to 2 kHz, covering the first crest of the 

curve. The second band ranges from about 4 to 8 kHz, during which the absorption coefficient 

rises from the trough to the second crest of the curve. The enhancement in sound absorption at all 

the frequencies is easily understandable, because the amount of rubber material available for 

sound energy absorption increases when the anechoic layer is thickened. 

3.6   Effect of hole height 

 With the thickness of anechoic layer fixed, the influence of hole height on sound absorption 

is shown in Fig. 8 for both cylindrical and conical holes. As the hole height is increased from 

20 mm to 40 mm, the absorption peaks move to low frequencies, but meanwhile with a lower 

first peak and valley. The absorption coefficient increases mildly at frequencies less than about 

1.5 kHz, decreases in the frequency band from about 2 to 5.5 kHz, and exhibits a huge growth 

after about 8 kHz.  

 It is seen from Fig. 8 that the effect of hole height is most distinct at high frequencies. 

Further, increasing the hole height shifts the absorption curve towards lower frequencies, which 

is contrary to that caused by increasing the real part of Young's modulus, but the reason might be 

similar: as the hole height is increased, the total stiffness of the anechoic layer decreases, so that 

the curve as a whole tends to move towards the direction of low frequencies.  

4. Absorption mechanisms of underwater anechoic layer with inner holes 

 To reveal the physical mechanisms underlying sound absorption, the numerically simulated 

displacement contours in the rubber domain containing periodic cylindrical holes are presented 

below for selected frequencies. For normal incident sound, the longitudinal wave and the 

transverse wave are independent along the axial direction and the radial direction, respectively. In 
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contrast, in the case of conical and horn holes, the longitudinal and transverse waves are coupled 

with each other along the axial and radial directions. Thus, cylindrical holes can better reveal the 

influence of longitudinal and transverse waves upon sound absorption. 

For convenience, unit stimulation is adopted in the simulation, which means that the initial 

incidence sound pressure is 1 Pa. Fig. 9 and Fig. 10 display the displacement contours in rubber 

domain with different thicknesses of anechoic layer and different hole heights, respectively. Note 

that the sound incidence wave propagates from the bottom (water domain) of each cell and the 

upper surface of each cell is fixed to the steel plate. It can be seen from these displacement 

contours that radial displacement in rubber only exists in the region containing the cylindrical 

hole: that is, there is no radial displacement in the rubber domain without any hole. Since the 

radial displacement stands for the vibration amplitude of the transverse wave, the present results 

testify that it is the existence of the hole that generates the transverse wave. Moreover, in 

viscoelastic materials like rubber, the energy dissipation capacity of the transverse wave is 

stronger than that of the longitudinal wave. Therefore, the presence of holes, be it cylindrical or 

conical, leads to enhanced dissipation of acoustic energy in the rubber layer.  

  At low frequencies, the vibration of rubber in each cell is in the low order mode. From Fig. 

9(a) and Fig. 10(a), the axial displacement are seen to vary almost exclusively along the axial 

direction, and at the same time, the radial displacement varies almost exclusively along the radial 

direction. Whereas, at high frequencies, the vibration in each cell is in the high order mode. As 

shown in Fig. 9(b) and Fig. 10(b), the axial and radial displacement vary not only along the axial 

direction but also along the radial direction. However, the axial displacement contours of Fig.9(b) 

and Fig. 10(b) demonstrate that the axial high order mode only exists in the region containing the 

cylindrical hole. In the region without the presence of any hole, the vibration is still in the low 

order mode, although it occurs at high frequencies. Hence, it is the presence of holes that 

generates the high order mode of vibration, enhancing further the dissipation of acoustic energy. 

 Furthermore, the energy dissipation is strongly related with the rubber deformation gradient 

distribution, because the larger deformation gradient means larger friction energy dissipation. 

From this point of view, the sound absorption performance of these anechoic layers can be 

evaluated by the displacement distributions shown in Figs. 9 and 10. As seen from Fig. 9, the 

rubber deformation distributions near the hole for different thickness cases are similar at the same 

frequency, in such case, a larger volume with no holes will cause more energy dissipation, 
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therefore the anechoic layer of 90mm thickness always has the best sound absorption 

performance among the three cases, as shown in Fig. 7. As seen from Fig. 10(a), at the frequency 

of 4kHz, the deformation gradient has the relationship: the 20mm case larger than the 30mm 

cause and larger than the 40mm case, which leads to the same trends of the sound absorption 

performance in Fig. 8(a). Also, in Fig. 10(b), at the frequency of 9kHz, the deformation gradient 

has the relationship: the 40mm case larger than the 30mm cause and larger than the 20mm case, 

correspondingly, the sound absorption performance has the same trends in Fig. 8(b). 

5. Conclusions 

 A combined theoretical and numerical study is carried out to quantify the influence of 

material and geometric parameters on the sound absorption performance of underwater rubber 

layers containing periodically distributed axial holes. Physical mechanisms underlying the 

enhanced performance of the anechoic layer as a result of introducing the periodic holes are also 

explored. The main conclusions drawn are: (1) Within the frequency range considered, increasing 

the density of rubber enhances sound absorption at middle and high frequencies (from 4 kHz to 

10 kHz), whereas it has little difference on the sound absorption at relatively low frequencies (< 4 

kHz). (2) Increasing the real part of rubber Young's modulus shifts the absorption curve as a 

whole towards higher frequencies. (3) Increasing the loss factor of rubber Young's modulus leads 

to prominent broadband absorption enhancement at relatively low and middle frequencies 

(between 0.5 kHz to about 6.5 kHz). (4) Increasing the thickness of rubber layer enhances sound 

absorption at all frequencies, especially at low frequencies and high frequencies. (5) Increasing 

the height of axial holes shifts the absorption curve towards lower frequencies, which is just 

opposite to that caused by increasing the real part of Young's modulus. (6) The presence of 

periodically distributed axial holes generates transverse wave as well as high order mode of 

vibration in the rubber layer, thus beneficial for sound energy dissipation. The results presented 

in this study are helpful for designing high-performance underwater acoustic layers with 

periodically distributed cavities by tailoring the material properties and geometrical parameters of 

the layer. 
Equation Section (Next) 

Appendix 

 Explicit expressions of the twelve elements in the coefficient matrix of Eq. (6) are: 
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  11 1 1 1JM k k r   (A1) 

  12 1 1 1YM k k r   (A2) 

  13 2 1 2i JM kk k r   (A3) 

  14 2 1 2i YM kk k r   (A4) 

      2 2 2 1
21 1 1 0 1 1 1

2
2 J J

k
M k k k k r k r

r

         (A5) 

      2 2 2 1
22 1 1 0 1 1 1

2
2 Y Y

k
M k k k k r k r

r

         (A6) 

    23 2 2 0 2 1 2

1
2i J JM k k k k r k r

r
      

 (A7) 

    24 2 2 0 2 1 2

1
2i Y YM k k k k r k r

r
      

 (A8) 

  31 1 1 12i JM k k k r   (A9) 

  32 1 1 12i YM k k k r   (A10) 

    2 2
33 2 2 1 2JM k k k k r   (A11) 

    2 2
34 2 2 1 2YM k k k k r   (A12) 
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List of figure captions 

Fig. 1 (Color online) Schematic of a underwater anechoic layer: (a) cross-sectional configuration 

and working condition; (b) spatial distribution of holes; (c) equivalence of unit cell 

Fig. 2 (Color online) Acoustic cylindrical pipe 

Fig. 3 (Color online) Anechoic layer with (a) cylindrical hole and (b) conical hole 

Fig. 4 (Color online) Effect of rubber density on sound absorption: (a) cylindrical hole; 

(b) conical hole 

Fig. 5 (Color online) Effect of the real part of rubber Young's modulus on sound absorption: 

(a) cylindrical hole; (b) conical hole 

Fig. 6 (Color online) Effect of the loss factor of Young's modulus on sound absorption: (a) 

cylindrical hole; (b) conical hole 

Fig. 7 (Color online) Effect of anechoic layer thickness on sound absorption: (a) cylindrical hole; 

(b) conical hole 

Fig. 8 (Color online) Effect of hole height on sound absorption: (a) cylindrical hole; (b) conical 

hole 

Fig. 9 (Color online) Displacement contours in rubber layer with different thicknesses at: 

(a) 1.5 kHz (unit: 1110 m ); (b) 6 kHz (unit: 1210 m ) 

Fig. 10 (Color online) Displacement contours in rubber layer with different hole heights at: 

(a) 4 kHz (unit: 1110 m ); (b) 9 kHz (unit: 1110 m ) 
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Table 1 

Parameter Symbol Unit 
Values 

value 1 value 2 value 3

Density of rubber  -3kg m 900 1100* 1300 

Real part of Young's modulus of rubber E  810 Pa  1.1 1.4* 1.7 

Loss factor of Young's modulus of rubber E 1 0.17 0.23* 0.29 

Thickness of anechoic layer al mm  50* 70 90 

Height of hole hl  mm  20 30 40* 

Poisson ratio of rubber  1 0.49 

Density of air air -3kg m 1.21 

Density of water w -3kg m 998 

Sound speed of water wc -1m s 1483 
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