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Abstract
Elastic composites containing liquid inclusions exist widely in nature and in engineered systems. The volumetric response 
of liquid inclusions is important in many cases, such as an isolated cell embedded in an extracellular matrix or an oil pocket 
embedded within shale. In this study, we developed a model for describing the volumetric response of an ellipsoidal liquid 
inclusion. Specifically, we investigated the volumetric response of an ellipsoidal liquid inclusion embedded in a three-
dimensional (3D) matrix through an analytical expression of the volumetric response. We performed parametric analysis 
and found that loading along the shortest axis can induce the most volume change, while loading along the longest axis 
can induce the least volume change. We also found that the volumetric response decreases with increasing Poisson ratio 
of the matrix. These results could be used to understand some cell behavior in a 3D matrix, for example, cell alignment 
under mechanical load.
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1  Introduction

Liquid inclusions in a three-dimensional (3D) matrix exist 
widely in nature and in engineered systems, such as in rocks 
[1], soft composites [2, 3], actuators [4], polymer dispersed 
liquid crystal systems [5], and, under certain conditions, 
in biological tissues [6]. In these examples, liquid inclu-
sions are often under mechanical load and their volumetric 
response is important. For instance, the volume response 
of an oil and gas pocket embedded in shale is related to oil 
production. The volumetric response of cells embedded in 
an extracellular matrix (ECM) could play an important role 
in their physiological behaviors [7].

Work in both two-dimensional (2D) and 3D has shown 
that cells fluidize in response to high levels of mechanical 
stretch [8–10]. Over time, cells can rearrange in a way that 
depends on their mechanical microenvironment, which, in 
3D, typically leads to cell realignment in the direction of 
greatest mechanical stretch [11–16]. A key feature of this in 
3D is that they additionally change their mechanical micro-
environment [17]. This remodeling of both cells and ECM 
leads to a matching of cell and ECM stiffness [18]. The mod-
els that underlie these interpretations typically treat cells as 
solids [19]. However, transitions in shape might occur most 
effectively under cyclical loading, as cells best fluidize under 
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these conditions [15]. We therefore explored whether the 
volumetric response of a liquid inclusion might vary with 
the direction of loading in a way that is predictive of cell 
realignment to mechanical stretch in 3D.

Although efforts have been undertaken to understand 
the behaviors of liquid inclusions via experiment [20, 21] 
and simulation [22], these approaches are incapable of 
providing detailed information about the volume response 
of liquid inclusions. To address this, two approaches have 
been developed to deal with liquid inclusions. On one 
hand, based on Eshelby’s work [23] for solid inclusions, 
Shafiro and Kachanov [24] and Chen et al. [25] derived the 
elastic fields of single liquid inclusion embedded within a 
3D matrix. These studies, however, did not give detailed 
analysis of the volumetric response of the liquid inclu-
sion. On the other hand, by stress potential functions, 
Mancarella et al. [26] and Style et al. [27] gave an explicit 
expression to describe the inclusion behaviors. However, 
their model assumed the liquid to be incompressible, 
which may not be true, especially for cells.

In this study, we performed a detailed analysis of the 
volumetric response of an ellipsoidal compressible liq-
uid inclusion embedded within an infinite elastic matrix 
under mechanical loading. We first describe the problem 
and give the volume response of the liquid inclusion by 
Eshelby’s method [23, 28]. We decompose our results to 
give explicit solutions for spherical and spheroidal inclu-
sions. We investigate how the inclusion shape, loading 
type and matrix Poisson ratio influence the inclusion vol-
ume response. Finally, as a demonstration, we relate our 
results with some phenomena in cell mechanics.

2 � Problem statement and solution

Firstly, we consider an ellipsoidal liquid inclusion imbedded in 
an infinite and linear elastic matrix (Fig. 1). The semi-axes of 
the inclusion in the x1, x2, and x3 directions are of lengths a1 , 
a2 , and a3 ( a1 ≥ a2 ≥ a3 ) (Fig. 1). We assume that the initial 
pressure of the liquid is zero, so that the matrix is free of stress 
before far field loading is applied. We further assume that the 
liquid inclusion is sufficiently large so that surface effects at 
the liquid-matrix interface may be neglected. Upon loading, 
according to linear elasticity, the governing equations in the 
matrix are given as

where u , � , and � are the displacement vector field, strain 
tensor field, and stress tensor field in the matrix, respectively, 
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and E (N/m2) and � are Young’s modulus and Poisson ratio 
of the matrix material.

Let the liquid be linearly compressible, namely

where k (N/m2) is the bulk modulus of the liquid, V  and ΔV  
are the initial volume and volume change of the inclusion, 
respectively, and p is the liquid pressure after loading.

We define �∞ as the constant far field matrix strain ten-
sor (Fig. 1). At the interface between the inclusion and the 
matrix, the stress of the matrix is balanced by the liquid 
pressure as

where n is the unit outer normal vector of the interface. 
According to our previous work [25], the volume change 
induced by the far field load can be expressed by

where tr(⋅) is the trace of the second-order tensor, and the 
fourth-rank tensors L1 and L0 are the “stiffness tensors” of 
the liquid and matrix, respectively

S is the Eshelby tensor for the ellipsoidal inclusion, whose 
components can be expressed as
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For special cases including spherical and spheroidal 
inclusions, these integrals can be simplified as explicit 
expressions as follows

Case 1  Sphere ( a1 = a2 = a3 = a)

Case 2  Oblate spheroid ( a1 = a2 > a3)

Case 3  Prolate spheroid ( a1 > a2 = a3)
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3 � Results

1.	 Shear does not affect the volume of an inclusion.

First, we note that the components of S are zero except 
for Siijj and Sijij ( i, j = 1, 2, 3 ). According to Eqs. (4) and (5), 
this means that ΔV

V
= 0 when the far field load �∞ is simple 

shear. In other words, the volume of the liquid inclusion 
does not change under simple shear. Because any load can 
be superposed by combining uni-axial loadings and simple 
shear, we only need to focus on the uni-axial load for the 
investigation of the inclusion volume response.

2.	 Uniaxial stressing affects volumetric behavior of the 
inclusion differently depending upon the direction of 
loading.

We then considered uniaxial far-field loading in the 
direction of one of the major axes of the elliptical inclu-
sions, so that �∞ = 𝜀(1 + 𝜈)

(
ei ⊗ ei

)
− 𝜈𝜀I , where ei is a 

unit vector in the direction of one of the three Cartesian 
axes, and hence one of the directions of the axes of the 
ellipse. 𝜀 > 0 represents stretching and 𝜀 < 0 represents 
compression.

To model the observation that cells and ECM tend to 
match their effective mechanical properties, we focused 
on the case of

where Km = E∕[3(1 − 2�)] is the bulk modulus of the 
matrix. Thus, the effective bulk moduli of both the cell and 
ECM are identical, but the two are fundamentally different 
because the cell is a kind of fluid compared to the ECM.

The fact that the cell is a fluid led to a radically dif-
ferent mechanical response, which depends on the aspect 
ratios a2∕a1 and a3∕a1 of the ellipsoid (Fig. 2). We set 
� = 0.3 in these cases. By comparing the dilatation of the 
ellipsoid to that of the equivalent bulk ECM, we observed 
that loading along the two shorter axes causes the great-
est volume change, while loading along the longest axis 
causes the least volume change. For loading along both 
the longest and intermediate axes, the response is only a 
very weak function of the aspect ratio a2∕a1 , but a much 
stronger function of the aspect ratio a3∕a1 , indicating that 
the smallest dimension dominates the response. Therefore, 
the thinner the ellipsoid is, the greater the response is. For 
loading along the thinnest direction, the dependence on 
aspect ratio is nonlinear and monotonic.

For cases of spheroidal inclusions ( a1 ≈ a2 or a2 ≈ a3 ), 
which are common in biology and geology [29], we 

(11)
k

Km

= 1,

Fig. 1   Schematic of the problem. An ellipsoidal, compressible liq-
uid inclusion embedded within a linear-elastic solid matrix subjected 
to far field load. The axial lengths of the inclusion are a1 , a2 , and a3 
( a1 ≥ a2 ≥ a3 , where a3 is the axial length of the z direction and is not 
marked in the figure). The x, y, and z directions of the Cartesian sys-
tem are parallel with the axes of a1 , a2 , and a3 , respectively
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observed that dilatation decreases with increasing aspect 
ratio with load along the axis of symmetry (Fig. 3). A very 
strong effect on Poisson ratio of the matrix is evident for 
oblate spheroids. For prolate spheroids, there is an asymp-
totic behavior that is independent of Poisson’s ratio.

4 � Discussion

Loading direction causes tremendously different volume 
responses for ellipsoidal inclusions. What does this mean 
for cell alignment in a loaded 3D matrix? Several groups 
found that cells rearrange along the direction of uni-axial 
load [30–32]. Explanations for this, as described in the 

introduction, include certain aspects of stress fiber kinetics 
and stress limits on stress fibers. However, the results pre-
sented here suggest an alternative hypothesis. Given that suffi-
cient loading, and even moderate cyclical loading, can lead to 
the fluidization of cell cytoskeletons, and given that such load-
ing is implicated in cell rearrangements and realignments, it is 
reasonable to explore the possibility that volumetric changes 
are important in cell realignment. This paper contributes 
two relevant results that provide insight. The first is that, for 
the small perturbations of linear elasticity, shear and normal 
strains decouple in volumetric responses of cells, with only 
normal straining contributing to dilatation. The second is that, 
with the exception of cells that are nearly spherical, uniaxial 
load leads to dramatically enhanced dilatation for loadings 
that are not parallel to the long axis of a cell. The upshot of 
this observation is that cell rearrangement might arise from a 
minimization of volume change along the direction of loading.

An additional result of interest is the very strong effect 
of Poisson’s ratio for oblate inclusions. Because Poisson’s 
ratio can be tuned by the regulation of molecules such as 
proteoglycans in a cell’s local microenvironment, this offers 
a tool by which cells can tune their volumetric responses 
through molecular synthesis. Taken together, these observa-
tions suggest a new bio-physical view to understanding cell 
alignment in a 3D matrix.

5 � Conclusion

We investigated the volumetric response of an ellipsoidal 
liquid inclusion embedded in a strained 3D matrix. Our 
analytical expression for this reveals that loading along the 
shortest axis can cause the greatest volume change, while 
loading along the longest axis can cause the least volume 
change. We also find a strong role of Poisson’s ratio. We 
hypothesize that these effects may play a significant role in 
the development of cell shape and polarity.

Fig. 2   Volumetric responses of ellipsoidal, compressible liquid inclusions within matrices that are stretched along each of the cell axes. For all 
panels, 3k(1 − 2�)∕E = 1 and � = 0.3

Fig. 3   Volumetric response of spheroidal inclusions. For prolate 
spheroidal inclusions ( a1 ≥ a2 = a3 ), the aspect ratio is defined as 
a1∕a2 . For oblate spheroidal inclusions ( a1 = a2 ≥ a3 ), the aspect 
ratio is defined as a2∕a3 . The dashed line is the boundary line 
between prolate spheroidal inclusions and oblate spheroidal inclu-
sions. Solid lines with different colors represent different Poisson 
ratios of the matrix. Here, 3k(1 − 2�)∕E = 1



342	 X. Chen et al.

1 3

Acknowledgements  This work was supported by the National Natural 
Science Foundation of China (Grants 11522219 and 11532009), the 
National Institutes of Health (Grant U01EB016422), and the National 
Science Foundation through the Science and Technology Center for 
Engineering Mechanobiology (Grant CMMI 1548571).

References

	 1.	 Giordano, S., Colombo, L.: Effects of the orientational distribution 
of cracks in solids. Phys. Rev. Lett. 98(5), 055503 (2007)

	 2.	 Bartlett, M.D., Fassler, A., Kazem, N., et al.: Stretchable, high-k 
dielectric elastomers through liquid-metal inclusions. Adv. Mater. 
28(19), 3726–3731 (2016)

	 3.	 Owuor, P.S., Hiremath, S., Chipara, A.C., et al.: Nature inspired 
strategy to enhance mechanical properties via liquid reinforce-
ment. Adv. Mater. Interfaces 4(16), 1700240 (2017)

	 4.	 Miriyev, A., Stack, K., Lipson, H.: Soft material for soft actuators. 
Nat. Commun. 8(1), 596 (2017)

	 5.	 Cairns, D.R., Genin, G.M., Wagoner, A.J., et al.: Amplified stain-
rate dependence of deformation in polymer-dispersed liquid-crys-
tal materials. Appl. Phys. Lett. 75(13), 1872–1874 (1999)

	 6.	 Elson, E.L., Genin, G.M.: The role of mechanics in actin stress 
fiber kinetics. Exp. Cell Res. 319(16), 2490–2500 (2013)

	 7.	 Guo, M., Pegoraro, A.F., Mao, A., et al.: Cell volume change 
through water efflux impacts cell stiffness and stem cell fate. 
Proc. Natl. Acad. Sci. USA 114(41), 201705179 (2017)

	 8.	 Chen, C., Krishnan, R., Zhou, E.H., et al.: Fluidization and 
resolidification of the human bladder smooth muscle cell in 
response to transient stretch. PLoS ONE 5(8), e12035 (2010)

	 9.	 Krishnan, R., Park, C.Y., Lin, Y.C., et al.: Reinforcement versus 
fluidization in cytoskeletal mechanoresponsiveness. PLoS ONE 
4(5), e5486 (2009)

	10.	 Lee, S.L., Nekouzadeh, A., Butler, B., et al.: Physically-induced 
cytoskeleton remodeling of cells in three-dimensional culture. 
PLoS ONE 7(12), e45512 (2012)

	11.	 De, R., Safran, S.A.: Dynamical theory of active cellular 
response to external stress. Phys. Rev. E Stat. Nonlinear Soft 
Matter Phys. 78, 031923 (2008)

	12.	 De, R., Zemel, A., Safran, S.A.: Dynamics of cell orientation. 
Nat. Phys. 3(9), 655–659 (2007)

	13.	 Mcgarry, J.P., Fu, J., Yang, M.T., et al.: Simulation of the con-
tractile response of cells on an array of micro-posts. Philos. 
Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 2009(367), 3477–
3497 (1902)

	14.	 Hsu, H.J., Lee, C.F., Kaunas, R.: A dynamic stochastic model 
of frequency-dependent stress fiber alignment induced by cyclic 
stretch. PLoS ONE 4(3), e4853 (2009)

	15.	 Kaunas, R., Hsu, H.J.: A kinematic model of stretch-induced stress 
fiber turnover and reorientation. J. Theor. Biol. 257(2), 320–330 
(2009)

	16.	 Li, Y., Huang, G.Y., Li, M.X., et al.: An approach to quantifying 
3D responses of cells to extreme strain. Sci. Rep. 6, 19550 (2016)

	17.	 Babaei, B., Davarian, A., Lee, S.L., et al.: Remodeling by fibro-
blasts alters the rate-dependent mechanical properties of collagen. 
Acta Biomater. 37, 28–37 (2016)

	18.	 Marquez, J.P., Genin, G.M.: Whole cell mechanics of contractile 
fibroblasts: relations between effective cellular and extracellular 
matrix moduli. Philos. Trans. 2010(368), 635–654 (1912)

	19.	 Marquez, J.P., Genin, G.M., Zahalak, G.I., et al.: The relationship 
between cell and tissue strain in three-dimensional bio-artificial 
tissues. Biophys. J. 88(2), 778–789 (2005)

	20.	 Ducloué, L., Pitois, O., Goyon, J., et al.: Coupling of elasticity to 
capillarity in soft aerated materials. Soft Matter 10(28), 5093–
5098 (2014)

	21.	 Mora, S., Pomeau, Y.: Softening of edges of solids by surface 
tension. J. Phys. Condens. Matter Inst. Phys. J. 27(19), 194112 
(2015)

	22.	 Wang, Y., Henann, D.L.: Finite-element modeling of soft solids 
with liquid inclusions. Extreme Mech. Lett. 9, 147–157 (2016)

	23.	 Eshelby, J.D.: The determination of the elastic field of an ellipsoi-
dal inclusion, and related problems. Proc. R. Soc. Lond. A Math. 
Phys. Eng. Sci. 241(1226), 376–396 (1957)

	24.	 Shafiro, B., Kachanov, M.: Materials with fluid-filled pores of 
various shapes: effective elastic properties and fluid pressure 
polarization. Int. J. Solids Struct. 34(27), 3517–3540 (1997)

	25.	 Chen, X., Li, M.X., Yang, M., et al.: The elastic fields of a com-
pressible liquid inclusion. Extreme Mech. Lett. 22, 122–130 
(2018)

	26.	 Mancarella, F., Style, R.W., Wettlaufer, J.S.: Interfacial tension 
and a three-phase generalized self-consistent theory of non-dilute 
soft composite solids. Soft Matter 12(10), 2744–2750 (2016)

	27.	 Style, R.W., Wettlaufer, J.S., Dufresne, E.R.: Surface tension and 
the mechanics of liquid inclusions in compliant solids. Soft Matter 
11(4), 672–679 (2015)

	28.	 Eshelby, J.: The elastic field outside an ellipsoidal inclusion. Proc. 
R. Soc. Lond. A Math. Phys. Eng. Sci. 252(1271), 561–569 (1959)

	29.	 David, E.C., Zimmerman, R.W.: Compressibility and shear com-
pliance of spheroidal pores: exact derivation via the Eshelby ten-
sor, and asymptotic expressions in limiting cases. Int. J. Solids 
Struct. 48(5), 680–686 (2011)

	30.	 Gauvin, R., Parenteau-Bareil, R., Larouche, D., et al.: Dynamic 
mechanical stimulations induce anisotropy and improve the tensile 
properties of engineered tissues produced without exogenous scaf-
folding. Acta Biomater. 7(9), 3294–3301 (2011)

	31.	 Grenier, G., Remy-Zolghadri, M., Larouche, D., et al.: Tissue reor-
ganization in response to mechanical load increases functionality. 
Tissue Eng. 11(2), 90–100 (2005)

	32.	 Kanda, K., Matsuda, T.: Mechanical stress-induced orientation 
and ultrastructural change of smooth muscle cells cultured in 
three-dimensional collagen lattices. Cell Transpl. 3(6), 481–492 
(1994)


	Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology
	Abstract
	1 Introduction
	2 Problem statement and solution
	3 Results
	4 Discussion
	5 Conclusion
	Acknowledgements 
	References




