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A B S T R A C T

With attributes such as high stiffness, high damping and lightweight, laser‐welded corrugated‐core (LASCOR)
sandwich panels with polyurea‐metal laminate (PML) face sheets were envisioned as multifunctional sandwich
constructions to meet the growing needs of loading bearing and vibration/noise suppression. The sensitivity of
vibration damping characteristics of these novel sandwich panels was systematically investigated using a com-
bined finite element‐modal strain energy (FE‐MSE) method, and their superiority over monolithic panels hav-
ing equal mass was highlighted. Subsequently, the fidelity of using the surrogate modeling technique to
approximate the damping loss factor of the sandwich panel was analyzed. Under the principles of cross‐
validation, the orthogonal polynomial model was found to provide the most accurate predictions among four
widely used surrogate models. A high‐efficiency optimization procedure factoring structural stiffness, damping
loss, and weight of the sandwich panel was proposed by coupling the surrogate model and an optimization
algorithm. For single‐objective optimization, the total weight of the optimal sandwich panel decreased by
around 7% compared with that of preliminary design. Meanwhile, the Pareto fronts obtained from multi‐
objective optimizations revealed significant enhancements of both damping loss factor/structural stiffness
and specific damping loss factor/structural stiffness.
1. Introduction

Ultralight all‐metallic sandwich constructions with periodic lattice
cores possess versatile features that are technically important for inno-
vating engineering structures [1]. They not only outperform mono-
lithic/stiffened structures of the same mass in stiffness and strength,
but also provide additional attributes, such as thermal transport [2],
sound insulation/absorption [3], blast/impact resistance [4], anti‐
penetration [5]. With ever‐rising need for passive vibration attenua-
tion, structural damping has drawn burgeoning attention. For exam-
ple, engineering structures (e.g., ship hulls, automotive bodies, pulse
detonation engines, and the like) often serve in a vibration‐rich
environment, which may lead to severe structural damage (induced
by resonant vibration or high cycle fatigue) and even passenger dis-
comfort. However, due to intrinsically low loss factor of most metal
materials [6,7], all‐metallic sandwich constructions do not work well
in passively controlling undesirable external vibration. Thus, how to
enhance the vibration and damping properties of all‐metallic sandwich
structures by modifying their face sheets and cores becomes a
necessity.

Of particular relevance to the current study is the method of
viscoelastic layer treatment [8,9], which has been envisioned as an
effective approach to achieve higher structural damping. To date,
the two most widely‐used configurations are the base/viscoelastic/
State Key
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base laminate with constrained layer damping (CLD) [8] and the vis-
coelastic/base laminate with free layer damping (FLD) [9]. The former
exhibits a greater capacity for vibration attenuation due to transverse
shear deformation of the viscoelastic layer, while the latter almost
relies on both in‐plane extension and compression deformation to dis-
sipate vibration energy [10]. Theoretically, existing modelling efforts
[11], e.g., the Guyader model [12,13], the RKU model [14] and the
Lamb wave model [15], have broadened insights into physical mech-
anisms underlying the CLD treatment. Besides, the vibration and insta-
bility phenomena associated with layered structures could be
accurately investigated via numerical tools [16–20]. More recently,
the CLD treatment was introduced to construct a hybrid face sheet
for all‐composite lattice‐core sandwich structures [21–23]: upon sand-
wiching the fiber‐reinforced composite face sheet with thin viscoelas-
tic layers, the damping and stiffness efficiency of the sandwich
structure was dramatically improved. However, thus far, few studies
concerned the vibration/damping characteristics of all‐metallic sand-
wich panels with 2D/3D lattice truss cores. This deficiency was
squarely addressed in our prior study by replacing the monolithic
metallic face sheets with polyurea‐metal laminate (PML) ones [24].

Upon our recent work [24], novel laser‐welded corrugate‐core
(LASCOR) sandwich panels with polyurea‐metal laminate (PML) face
sheets were fabricated, tested and numerically simulated using the
method of finite element ‐ modal strain energy (FE‐MSE). Results
demonstrated remarkable improvement of damping loss factors, quan-
titatively by as large as 10 times. However, a decline in natural fre-
quencies was also observed, implying undesirable variation of
structural stiffness and weight. In recent years, multifunctional sand-
wich constructions with high stiffness, lightweight and other function-
alities (e.g., vibration damping, heat dissipation, energy absorption)
have become increasingly attractive. To date, previous literatures as
well as our own work have mainly focused on exploring the structural
novelty and damping mechanisms of lattice‐cored sandwich structures,
with little attention devoted to setting up an optimization framework
for simultaneous vibration attenuation and structural stiffness. For
example, while both damping and stiffness efficiency of all‐
composite lattice‐core sandwich structures were accounted for by
Yang et al. [25], they did not carry out the corresponding multi‐
objective optimization; the optimization of Aumjaud et al. [26,27]
focused on vibration damping and added mass of novel DSLJ‐
inserted honeycomb‐core sandwiches, but not structural stiffness.
Therefore, multi‐objective optimization combining stiffness, damping,
and weight of all‐metallic lattice‐core sandwich panels remains
elusive.

Recently, incorporating the technique of surrogate modeling with
optimization algorithms has advanced the applications of multi‐
objective optimal designs [28,29]. On one hand, coupling optimization
algorithm with full numerical simulation usually requires a large
amount of computational effort, burdens a high risk of premature sim-
ulation crash, and thus may be inefficient. On the other hand, deriving
an exact equation to express the highly nonlinear relationship between
a specific design objective and design variables is often difficult. Based
on the principle of sampling estimation, the surrogate modeling tech-
nique is expected to overcome the above two barriers of optimal
designs by bridging design objectives and variables. Nowadays, the
commonly used surrogate models (sometimes also called machine
learning models) include response surface (RS), radial basis function
(RBF), kriging (KRG), orthogonal polynomial (OP), artificial neural
network (ANN), support vector regression (SVR), and so on. For
instance, concerning the optimization of sandwich structures, the RS
model was implemented into the multi‐objective optimal design of
peak force and specific energy absorption for all‐metallic truncated
conical sandwich shells with corrugated cores [30], while the KRG
model was adopted to develop a optimization scheme of blast resis-
tance and structural weight for foam‐core sandwich panels [31].
2

In this work, surrogate modeling was also selected to perform the
multi‐objective, multi‐variable optimization task. The scope was to
provide a comprehensive understanding of novel LASCOR sandwich
panels with PML face sheets: (i) sensitivity of natural frequencies
and damping loss factors to key geometric parameters, (ii) accuracy
of surrogate model for the first damping loss factor, and (iii) multi‐
objective optimization framework of simultaneous vibration attenua-
tion and structural stiffness with key geometric parameters as design
variables. The paper was organized as follows. Section 2 reviewed
briefly experiments carried out in our previous work [24]. Section 3
introduced the numerical simulation principle of FE‐MSE method,
with frequency‐dependent mechanical behaviors of viscoelastic poly-
urea considered. How key geometric parameters affected natural fre-
quencies and damping loss factors of LASCOR sandwich panels with
PML face sheets were systematically investigated in Section 4. The
superiority of such novel panels over monolithic panels having equal
mass was also highlighted. Section 5 analyzed the fidelity of surrogate
model on damping loss factor, and proposed a series of optimization
problems to explore superior performance of structural stiffness and
vibration attenuation.

2. Review of experiments

In a previous study [24], LASCOR sandwich panels with PML face
sheets were proposed and fabricated, and their effectiveness for pas-
sive vibration suppression was systematically estimated. For complete-
ness of the current study, relevant fabrication process and
experimental results were briefly reviewed below.

2.1. Experimental procedure

The fabrication details mainly consisted of four steps, as illustrated
in Fig. 1. Trapezoidal corrugated cores were fabricated firstly using the
stamping process; for enhanced bonding between the corrugated core
and the face sheets, a corrugation platform was introduced as shown in
Fig. 1a. Next, the face sheets and corrugated core were linked together
in sequence via laser welding. Compared with vacuum brazing [4],
laser welding provided a more convenient and efficient assembling
of large‐scale sandwich components for engineering applications.
The as‐fabricated bare corrugated sandwich panel was subsequently
placed into a polymer mould. Uncured polyurea (Qtech‐413, Qingdao
Shamu Advanced Material Co., Ltd.) was sufficiently stirred, and then
poured onto the surface of the sandwich panel promptly. Immediately
after the uncured polyurea uniformly covered the whole surface, an
extra thin metal plate was quickly placed on top of the polyurea layer.
After two weeks of curing at room temperature, LASCOR sandwich
panels with three different types of face sheet were fabricated, and
their geometrical configuration were illustrated in Fig. 2. In compar-
ison with the conventional sandwich panel with monolithic metal face
sheets (i.e., without polyurea coating; Fig. 2a), the proposed LASCOR
sandwich panels have either PML‐A (metal/polyurea/metal laminate)
or PML‐B (polyurea/metal laminate) face sheets (Fig. 2b–d).

The effectiveness of using PML face sheets for passive vibration
suppression of all‐metallic corrugated sandwich panels were measured
via modal vibration tests, as depicted in Fig. 3. Fixed by two rubber
ropes, the specimen was suspended in a steel bracket to simulate
free‐edge boundary condition. The modal testing setup mainly con-
sisted of an impact hammer (Model 086C03, PCB Piezotronics, Inc.),
an accelerometer (Model 333B32, PCB Piezotronics, Inc.), and a mon-
itoring laptop linked with a dynamic analyzer (DongHua Modal Anal-
ysis). The sensitivity, measurement range, and weight of the impact
hammer are 2.25 mV N−1, ±2224 N pk and 0.16 kg, respectively.
Similarly, these parameters of the accelerometer are 10.2 mV m−1

s2, ±490 m s−2 pk and 0.004 kg, respectively. To reduce the experi-
mental error, the weight ratio of the accelerometer and specimen



Fig. 1. Fabrication process of laser-welded corrugated-core (LASCOR) sandwich panel with polyurea-metal laminates (PMLs) as skins: (a) forming corrugated
core, (b) laser welding, (c) forming polyurea layer, and (d) assembling and curing.
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should be as small as possible. With the method of point‐by‐point exci-
tation adopted, both force and acceleration signals were collected and
transferred to the dynamic analyzer, and then processed in the moni-
toring laptop. Therefore, frequency/time response spectrums, natural
frequencies, mode shapes and damping loss factors of each specimen
could be obtained. Detailed theoretical analysis of the modal testing
technique was summarized in our previous study [32].

2.2. Experimental results

Time response spectrums of sandwich panels with PML face sheets
were compared with those without PML face sheets, and the corre-
sponding decay time was preliminarily utilized to assess the effective-
ness of passive vibration suppression. To facilitate visual comparison,
the acceleration signals were normalized by their respective maximum
acceleration values. As shown in Fig. 4a, under the same excitation
force, specimen S‐4 with polyurea coating exhibited a more effective
capacity to passively suppress the acceleration signal compared with
S‐1 without polyurea coating. That is, PML face sheets could dissipate
vibration energy via sufficient viscoelastic deformation of the embed-
ded polyurea layers. Further, the first three damping loss factors were
measured to quantitatively evaluate the intrinsic structural behavior
associated with vibration suppression. As shown in Fig. 4b, the panels
with PML skins achieved remarkable enhancement in damping loss
factors. In particular, specimen S‐6 with uniform distribution of poly-
urea on two skins possessed the highest damping loss factors, more
than 10 times larger than those of S‐1. Physical mechanisms underly-
ing such enhancement were discussed in detail in our previous work
[24]. Moreover, the first three natural frequencies of sandwich panels
with PML face sheets were found to decrease by approximately
10 ~ 20%, depending on the variation of structural flexural stiffness
and total weight.
3. Numerical modeling

3.1. FE-MSE method

In order to predict the vibration damping features of LASCOR sand-
wich panels with PML face sheets, a combined finite element‐modal
3

strain energy (FE‐MSE) method was employed based on the commer-
cial FE code ABAQUS/CAE 2016.

Firstly, we construct the FE models of LASCOR sandwich panels
with PML face sheets with their detailed geometric parameters illus-
trated in Fig. 2. Both the face sheets and the corrugated core were
modeled using the linear 4‐node shell element S4R, while the polyurea
layers were meshed using the linear 8‐node brick element C3D8R.
Upon applying the tie constraints, all the components of the sandwich
panel were perfectly bonded together. Without any boundary condi-
tions applied, the FE models were expected to simulate the actual
edge‐free boundary conditions in our modal tests (Fig. 3). The linear
perturbation step of frequency analysis with Lanczos eigensolver was
conducted to obtain the first three modal characteristics, such as the
natural frequencies and mode shapes. In this step, both the parent
metal (304 stainless steel) and the polyurea material were considered
as linear elastic materials. Input parameters of the former were
obtained from our previous work [24]: mass density
ρs ¼ 7930 kg m�3, Young’s modulus Es ¼ 200 GPa and damping loss
factor ηs ¼ 0:006. As to the viscoelastic polyurea with a mass density
of ρp ¼ 1000 kg m�3, its complex Young’s modulus Ep was expressed
as:

Ep ¼ E0
p þ iE00

p ¼ E0
p 1þ iηp
� � ð1Þ
ηp ¼
E00
p

E0
p

ð2Þ

where ηp represents the damping loss factor of polyurea. The real part
of the complex modulus (storage modulus), E0

p, should be employed in
the FE model [33]. However, both E0

p and ηp exhibited frequency depen-
dency in the testing range, as shown in Fig. 5b‐c. Thus, to improve the
prediction accuracy, the frequency sensitivity of polyurea was taken
into consideration in the current study. The detailed simulation algo-
rithm of the FE‐MSE method was summarized in Fig. 5a, which was
similar to previous studies [34,35]. Note that, the frequency corre-
sponding to the initial storage modulus E0

p0 was set as 1 Hz. Fig. 5b‐c
presented the storage modulus and damping loss factors measured in
1, 10, 50, 100, 150 Hz via dynamic thermomechanical analysis
(DMA) tests. The more detailed DMA observations of the polyurea



Fig. 2. Geometric illustration of as-fabricated sandwich panels: (a) specimen S-1 without polyurea coating, (b) specimen S-4 with single PML-A face sheet, (c)
specimen S-5 with single PML-B face sheet, and (d) specimen S-6 with double PML-A face sheets.

Fig. 3. Modal testing set-up.
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elastomer have already been present in our recent work [24]. Neverthe-
less, the concerned first three natural frequencies might exceed 150 Hz.
Thus, in order to expand the frequency range to 150–1200 Hz, both the
4

Havriliak‐Negami (H‐N) model [36] and the Kelvin‐Voigt (K‐V) model
[37] were introduced to fit the DMA testing data through Levenberg‐
Marquardt algorithm, respectively. The two classical theoretical models
could be expressed as:

E0
p fð Þ ¼ c2 þ

c1 � c2ð Þcos c4tan�1 2πfð Þc3 sin c3π
2ð Þ

1þ 2πfð Þc3 cos c3π
2ð Þ

� �� �

1þ 2 2πfð Þc3cos c3π
2

� �þ 2πfð Þ2c3
� �c4

2
ð3Þ

ηp fð Þ ¼ d1 2πfð Þd3 sin d3π
2

� �
d1 2πfð Þd3cos d3π

2

� �þ d2
ð4Þ

where f is the testing frequency, c1∼c4 are the undetermined coeffi-
cients of the H‐N model, and d1∼d3 are the undetermined coefficients
of the K‐V model. The detailed fitting results were also marked in Fig. 5-
b‐c.

As shown in Fig. 5a, we could obtain a valid natural frequency
upon the iterative FE simulations. Then, the corresponding damping
loss factor was further estimated by means of the modal strain energy
(MSE) method introduced by Johnson and Kienholz [33]. Compared
with directly solving the complex eigenvalues and eigenvectors, the
MSE method only needs to calculate the undamped modes;
corresponding energy distributions can be obtained to determine the



Fig. 4. Experimental results of LASCOR sandwich panels with and without PML face sheets: (a) time response spectrums, (b) damping loss factors, (c) natural
frequencies.

Fig. 5. (a) The simulation algorithm of the FE-MSE method, and the fitting curves of (b) storage modulus and (c) damping loss factor of polyurea as functions of
testing frequency (0–1200 Hz) at room temperature.
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damping characteristics. The basic assumption of the MSE method is
that the damped and undamped mode shapes of a structure are iden-
tical [33], so that the damping loss factor corresponding to the rth

mode can be estimated as:

η rð Þ ¼ ΔU rð Þ

U rð Þ ¼ ∑m
i¼1η

rð Þ
s u rð Þ

s;i þ∑n
j¼1η

rð Þ
p u rð Þ

p;j

∑m
i¼1u

rð Þ
s;i þ∑n

j¼1u
rð Þ
p;j

ð5Þ

where the superscript (r) represents the rth mode, ΔU rð Þ, U rð Þ are the
total stored strain energy and dissipated strain energy, respectively.

u rð Þ
s;i is the stored energy of element i in the metallic sandwich compo-

nent, u rð Þ
p;j is the stored energy of element j in the polyurea layer, while
5

η rð Þ
s and η rð Þ

p are the material loss factors of 304 stainless steel and poly-

urea material corresponding to the rth natural frequency. Further, u rð Þ
s;i

and u rð Þ
p;j can be written as:

u rð Þ
s;i ¼

1
2
∑

Z
Vs;i

σklɛkldV s;i k; l ¼ x; y; zð Þ ð6Þ

u rð Þ
p;j ¼

1
2
∑

Z
Vp;j

σklɛkldVp;j k; l ¼ x; y; zð Þ ð7Þ

where σkl and ɛkl k; l ¼ x; y; zð Þ are the stress and strain component,
respectively. V s;i and Vp;j are separately the volume of element i in
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the metallic sandwich component and the volume of element j in the
polyurea layer. All of these stress and strain information were output
from the final step of the iterative FE simulations. The global coordinate
system x; y; zð Þ attributes to the finite element model, as shown later
in Fig. 7c.

3.2. Mesh convergence

We carried out a mesh convergence study using different mesh
sizes (1.5, 2, 3, 4, 5 mm) in order to determine an optimal mesh size
for FE simulations. Specifically, 20 processors (Intel Xeon Gold 6134,
3.20 GHz) were employed to construct a series of parallel computa-
tion. The first three natural frequencies of the undamped sandwich
panel (i.e., without polyurea coating) thus calculated were displayed
in Fig. 6 a. These natural frequencies appeared to converge as the mesh
size was reduced to be less than 2 mm, and the difference in simulation
results obtained with mesh sizes of 1.5 and 2 mm was not obvious.
However, the FE model with 1.5 mm mesh size took 60% longer to
obtain the first three natural frequencies, as shown in Fig. 6b. Thus,
for balanced computational cost and numerical accuracy, the overall
mesh size of 2 mm was adopted in all subsequent numerical
simulations.

3.3. Validation study

To validate the proposed FE‐MSE method, the first natural frequen-
cies, damping loss factors, and mode shapes obtained from modal tests
were compared with numerical simulation results. As shown in Fig. 7a‐
b, the current simulations provided a reasonable prediction on the
vibration and damping characteristics of LASCOR sandwich panels
with PML face sheets. As an example, the first mode shapes of speci-
men S‐6 consisting of bending and torsional modes were compared
in Fig. 7c. The mode shapes obtained from modal tests agreed well
with those calculated numerically. However, some discrepancies did
exist, especially in the third natural frequencies. According to our pre-
vious analysis [32], the natural frequencies were sensitive to the
boundary condition, the laser welding defects, the corrugation forming
defects, and the like. On the other hand, the structural damping char-
acteristics were associated with the fabrication process, the boundary
condition, and the testing set‐up [22,38]. For instance, the rubber
ropes might cause an extra damping effect but this effect was ignored
in the current simulation. In addition, fabrication defects of laser weld-
ing joints and polyurea layers were not taken into consideration.
Nonetheless, although it was quite difficult to eliminate the above‐
mentioned error sources completely, the present numerical simula-
tions were accurate enough and could be exploited to provide a para-
metric study, as illustrated in the section that follows.
Fig. 6. Influence of mesh size on (a) the first three natural frequencies of sandwich
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4. Parametric study

In this section, a comprehensive parametric investigation on the
vibration damping characteristics of LASCOR sandwich panels with
PML face sheets was carried out to determine the optimization vari-
ables. From the experimental results (Fig. 4), specimen S‐6 with two
symmetric PML‐A face sheets exhibited the best performance in pas-
sive vibration suppression. As the corresponding damping enhance-
ment mechanisms had already been explored [24], the present
parametric study and further multi‐objective optimization focused
upon this panel configuration.

As shown in Fig. 8, the LASCOR sandwich panel had two identical
PML‐A face sheets, each consisting of a base metal layer, a polyurea
layer and a constrained metal layer. The relative density of the corru-
gated core, ρ

�
, was given by:

ρ
� ¼ tc lp þ lc

� �
lp þ lccosθ
� �

tc þ lcsinθð Þ ð8Þ

Key geometric parameters of the sandwich panel included panel
length L, panel width W , base metal layer thickness tfb, constrained
metal layer thickness tfc, polyurea layer thickness tp, corrugated core
thickness tc, height Hc, corrugation member length lc, inclination angle
θ, and plateau length lp. The sandwich panel was assumed to contain
14 unit cells along the x‐axis, and their width along the y‐axis was
fixed at W ¼ 140 mm. Besides, the corrugation plateau was fixed at
lp ¼ 5 mm to ensure good bonding between PML face sheets and corru-
gation core. Under these circumstances, the influences of six indepen-
dent geometric parameters (i.e., tfb, tfc, tp, tc, lc, θ) were systematically
discussed, with their initial designs set as tfb ¼ 0:5 mm, tfc ¼ 0:5 mm,
tp ¼ 3 mm, tc ¼ 0:5 mm, lc ¼ 20 mm and θ ¼ 63�.

4.1. Natural frequencies

Fig. 9 presented the different sensitivities of the first three natural
frequencies to the six key geometric parameters: tfb, tfc, tp, tc, lc, and θ.
With the material properties fixed, each of the geometric parameters
varied uniformly. As depicted in Fig. 9a‐c, the first three natural fre-
quencies were positively correlated with the variation of PML face
sheets, especially for base metal layer thickness tfb (Fig. 9a). By con-
trast, the positive effects of the thickness of polyurea and constrained
metal layers were small, even not obvious. Similarly, as shown in
Fig. 9d–f, variation of the corrugated core also significantly affected
the first natural three frequencies, although different trends were
observed. To be specific, the natural frequencies were positively pro-
portional to tc, θ, but negatively to lc. The factors accounting for such
different trends were discussed in our previous work [32].
panel without polyurea coating and (b) the corresponding computation time.



Fig. 7. Validation analysis of the proposed FE-MSE method: (a) natural frequencies, (b) damping loss factors, and (c) mode shapes.
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In a nutshell, most theoretical models substantiated a common
belief that the natural frequencies of a sandwich structure were deter-
mined by its flexural stiffness, transverse shear stiffness and structural
weight [39]. Based on the first shear deformation theory, Timoshenko
[40] proposed an analytical solution to the first natural frequency of a
prismatic beam with simple supported ends, as:

pm ¼ π2

L2w

ffiffiffiffiffiffiffi
EIg
ρΩ

s
1� 1

2
π2I
L2Ω

1þ E
λΛ

� �	 

ð9Þ

where Λ is the modulus of transverse shear stiffness, λ is a constant rely-
ing upon the shape of beam cross section, Lw is the length of a wave, EI
is the flexural stiffness of the prismatic bar, Ω is the area of the cross
section, and ρ=g is the density of the base material. For a LASCOR sand-
wich panel, its flexural stiffness and shear stiffness were mainly con-
tributed by the PML face sheets and the corrugated core, respectively.
Therefore, based on Eq. (9), enlarging the PML skin thickness increased
the flexural stiffness, and accordingly led to the increase of natural fre-
quencies. Likewise, varying the corrugated core also affected the shear
stiffness, and further changed the natural frequencies.
7

To highlight the superiority of a LACOR sandwich panel over its
monolithic counterpart, a dimensionless frequency parameter was pro-
posed as f=f 0, where f and f 0 were the natural frequencies of the sand-
wich panel and the corresponding monolithic panel having identical
length, width, weight and boundary conditions, respectively. Similar
approach was adopted in our previous studies [32,41]. The thickness
of the monolithic panel, hm, was:

hm ¼ ρ
�
Hc þ 2tfb þ 2t fc þ 2tfc þ

2ρptp
ρs

ð10Þ

where Hc ¼ lcsinθ þ tcð Þ is the thickness of corrugated core. Fig. 10a–c
displayed the numerically calculated influences of geometric parame-
ters (tfb, tfc, tp, tc, lc, θ) on the dimensionless frequencies. The dimen-
sionless frequencies decreased as the thickness of PML face sheets
was increased, indicating that the superiority of sandwich panels over
solid ones peaked under the condition of low mass density. The same
trend of tc was also observed in Fig. 10d. Apart from the results of
Fig. 10a–d, two different variation trends with lc and θ were observed
in Fig. 10e‐f. Note that, the first dimensionless frequency was higher



Fig. 8. Geometric illustration of a LASCOR sandwich panel with two symmetric PML-A face sheets.

Fig. 9. Sensitivity of the first three natural frequencies to key geometric parameters: (a) base metal layer thickness tfb, (b) constrained metal layer thickness t fc, (c)
polyurea layer thickness tp, (d) corrugated core thickness tc, (e) corrugation member length lc and (f) inclination angle θ.
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than the other two, demonstrating that the superiority of sandwich pan-
els was more obvious at low frequencies.

4.2. Damping loss factors

Fig. 11 presented the different sensitivities of the first three damp-
ing loss factors to key geometric parameters (tfb, tfc, tp, tc, lc, θ). Again,
with the material properties fixed, each geometric parameter was var-
ied uniformly. As shown in Fig. 11a–c, the damping loss factors were
8

positively proportional to tfc, tp, but negatively to tfb. That is, for
enhanced passive vibration attenuation, the constrained metal and
polyurea layers should have large thicknesses while keeping the base
metal layer relatively thin. Similar results were discussed in a NASA
report concerning the design of CLD (constrained layer damping)
structures [42]. Based on the theoretical basis of the MSE method
(i.e., Eqs. (5)–(7)), the other three geometric parameters mainly
affected the modal strain energy proportion of each sandwich compo-
nent, thus further changing the damping loss factors (Fig. 12d–f).



Fig. 10. Sensitivity of the first three dimensionless frequencies to key geometric parameters: (a) base metal layer thickness t fb, (b) constrained metal layer
thickness tfc, (c) polyurea layer thickness tp, (d) corrugated core thickness tc, (e) corrugation member length lc and (f) inclination angle θ.
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Similar to natural frequencies, to further highlight the superiority
of LACOR sandwich panels, a dimensionless loss factor parameter
ζ=ζ0 was introduced, ζ and ζ0 being the damping loss factors of the
sandwich panel and the monolithic panel having the same length,
width, weight and boundary conditions. Herein, the damping loss fac-
tor of the monolithic panel was set as 0.006, similar to that used in
numerical simulations. As shown in Fig. 12, the present sandwich
panel significantly outperformed its monolithic counterpart on passive
vibration attenuation, quantitatively by as large as 20 times. In a word,
the results of Figs. 9 and 11 demonstrated that geometric parameters
affected the natural frequencies and damping loss factors in different
manners, especially the PML parameters. It follows that the optimal
geometric parameters of LACOR sandwich panels with PML face sheets
need to be explored for combined structural stiffness, vibration damp-
ing and structural weight.

5. Optimal design

An optimum structure is expected to combine high structural stiff-
ness, high capacity of passive vibration and lightweight. To this end,
the optimal design of LASCOR sandwich panels with two symmetric
PML‐A skins (Fig. 8) for combined vibration damping and structural
stiffness were carried out in this section. Based on the commercially
available mathematics software MATLAB R2019b, the flow chart of
the current optimization was presented in Fig. 13.

5.1. Definition of optimization problem

According to the analysis detailed in Section 4, to demonstrate the
optimization approach, three independent geometric parameters (tfb,
tfc, tp) were identified as the design variables to generate a design
9

space, which were constrained by 0:2 mm < tfb < 1:8 mm,
0:2 mm < tfc < 1:8 mm, and 1 mm < tp < 10 mm. For simplicity, the
other three geometric parameters were fixed at tc ¼ 0:5 mm,
lc ¼ 20 mm and θ ¼ 63�. Note that, the length and width of the sand-
wich panel were L ¼ 28 lp þ lccosθ

� �
and W ¼ 140 mm. Then, two

important parameters were chosen as design objectives to evaluate
the capacity of the sandwich panel for simultaneous vibration attenu-
ation and structural stiffness, i.e., the first damping loss factor η and
the sum of transverse and longitudinal flexural stiffness D. The latter
was written as:

D ¼ Dx þ Dy ð11Þ

Dx ¼ 1
12

L

8Es
1
2 lcsinθ þ tcð Þ þ tfb þ tfc þ tp
� �3 � 1

2 lcsinθ þ tcð Þ þ tfb þ tp
� �3� �

þ8Ep
1
2 lcsinθ þ tcð Þ þ tfb þ tp
� �3 � 1

8 lcsinθ þ tc þ 2tfbð Þ3
� �

þEs lcsinθ þ tc þ 2tfbð Þ3 � lcsinθ þ tcð Þ3
� �

þ CH
22 lcsinθ þ tcð Þ3

0
BBBB@

1
CCCCA
ð12Þ

Dy ¼ 1
12

W

8Es
1
2 lcsinθ þ tcð Þ þ tfb þ tfc þ tp
� �3 � 1

2 lcsinθ þ tcð Þ þ tfb þ tp
� �3� �

þ8Ep
1
2 lcsinθ þ tcð Þ þ tfb þ tp
� �3 � 1

8 lcsinθ þ tc þ 2tfbð Þ3
� �

þEs lcsinθ þ tc þ 2tfbð Þ3 � lcsinθ þ tcð Þ3
� �

þ CH
11 lcsinθ þ tcð Þ3

0
BBBB@

1
CCCCA
ð13Þ

where Dx and Dy are transverse and longitudinal flexural stiffness of the
sandwich panel, while CH

11 and CH
22 are two in‐plane effective elastic

constants of the corrugated core:

CH
11 ¼ Es

1� ν2s
� � tc

lc

� �
cos3θ
sinθ

þ Es

1� ν2s
� � tc

lc

� �3

sinθcosθ ð14Þ



Fig. 11. Sensitivity of the first three damping loss factors to key geometric parameters: (a) base metal layer thickness tfb, (b) constrained metal layer thickness t fc,
(c) polyurea layer thickness tp, (d) corrugated core thickness tc, (e) corrugation member length lc and (f) inclination angle θ.
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CH
22 ¼ ρ

� Es

1� ν2s
� � ð15Þ

Note that, the corrugated core was treated as an equivalent ortho-
tropic core, and its effective elastic stiffness matrix was derived using
the homogenization theory (more details could be found in [43,44]).
The total weight M of the sandwich panel was expressed as:

M ¼ LW 4t f þ ρ
�

lcsinθ þ tcð Þ� �
ρs þ 2tpρp

� � ð16Þ

where ρ
�
is the relative density of corrugated core. However, obtaining

an analytical solution of the other design objective (i.e., first damping
loss factor η) was difficult, due to its highly nonlinear relationship with
the design variables. A surrogate modeling technique was therefore
employed to evaluate η in an approximate way, as detailed in
Section 5.2.

Under these circumstances, three optimization problems were
defined, including one single‐objective problem and two multi‐
objective ones, as shown in Table 1. To highlight the importance of
the present optimization schemes, specimen S‐6 was selected as the
optimization target, with a preliminary design of D0 ¼ 29467 Pa m4,
η0 ¼ 6:634% and M0 ¼ 1:59 kg.

5.2. Surrogate model

5.2.1. Model description
Generally speaking, the vibration damping characteristics of the

LASCOR sandwich panel with PML face sheets is complicated, due to
nonlinear frequency‐dependent energy dissipation of viscoelastic poly-
urea. Surrogate modeling was thus implemented into the optimization
task. In the current study, the feasibility of four surrogate models was
systematically analyzed. Table 2 listed relevant parameters and
10
functions of the four models. The design space was sampled and 60
sampling points were generated using the Optimal Latin Hypercube
(OLH) method, as listed in Table 3. This type of DoE (Design of Exper-
iment) technique spreads sampling points evenly to capture higher
order effects, and the number of sampling points should be greater
than that of design variables [45].
5.2.2. Surrogate accuracy
Following the principle of cross‐validation error analysis [50], sur-

rogate accuracy was identified. That is, a certain number of validation
points were removed from the sampling point set, one at a time. For
each of the removed points, the approximation coefficients were re‐
calculated, and both the actual (FE‐MSE) and predicted (surrogate
model) results were compared. The currently removed point was then
put back into the sampling point set, and the next point was removed.
Note that, 30 validation points were selected randomly from the sam-
pling set in this work. Relative error of the surrogate models was eval-
uated using R‐square (R2), Root‐Mean‐Square‐Error (RMSE),
Maximum‐Absolute‐Percentage‐Error (MAPE), as follows:

R2 ¼ 1� ∑Mv
i¼1 yi � ŷið Þ2

∑Mv
i¼1 yi � y

�
i

� �2 ð17Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Mv

∑
Mv

i¼1
ŷi � yið Þ

s
ð18Þ

MAPE ¼ max
ŷi � yij j
yi

� �
ð19Þ



Fig. 12. Sensitivity of the first three dimensionless loss factors to key geometric parameters: (a) base metal layer thickness t fb, (b) constrained metal layer
thickness tfc, (c) polyurea layer thickness tp, (d) corrugated core thickness tc, (e) corrugation member length lc and (f) inclination angle θ.

Fig. 13. The flow chart of optimization.
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Table 1
Definition of optimization problems.

Case Definition Objective Constraint Variable

I Single-objective min M
0:2 mm < tfb < 1:8 mm
0:2 mm < tfc < 1:8 mm
1 mm < tp < 10 mm
D > D0
η > η0

tfb
tfc
tp

II Multi-objective max D; η

0:2 mm < tfb < 1:8 mm
0:2 mm < tfc < 1:8 mm
1 mm < tp < 10 mm
M < M0

tfb
tfc
tp

III Multi-objective max D=M; η=M
0:2 mm < tfb < 1:8 mm
0:2 mm < tfc < 1:8 mm
1 mm < tp < 10 mm

tfb
tfc
tp

Table 2
Four surrogate models used in this study: parameters and functions.

Surrogate model Approximation function ŷ xð Þ Refs.

Response surface
(RS)

a0 þ∑N
i¼1bixi þ∑N

ij i<jð Þcijxixj þ∑N
i¼1dix

2
i þ∑N

i¼1eix
3
i

[46]

Kriging (KRG) β̂ þ rT xð ÞR�1 y� β̂q
� �

[47]

Radial basis function
(RBF)

∑M
i¼1λiφ r x; xið Þð Þ þ∑N

j¼1cjpj xð Þ [48]

Orthogonal
polynomial (OP)

a0p0 xð Þ þ a1p1 xð Þ þ � � � þ ampm xð Þ ¼ ∑m
i¼1aipi xð Þ [49]
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where yi, y
�
i and ŷi are the actual FE‐MSE value, the average FE‐MSE

value and the surrogate model predicted value at these validation
points, and Mv is the number of validation points.

Fig. 14 compared the cross‐validation results of the four surrogate
models, where the actual and predicted results at the validation points
were placed on a graph. The black line (1:1 line) shown in Fig. 14 rep-
resented perfect agreement of the surrogate model and FE‐MSE
method. The results with the KRG model (Fig. 14b) exhibited the worst
Table 3
Sampling points and FE-MSE predictions at these points.

No. tfb (mm) tfc (mm) tp (mm) η (%)

1 1.312 1.393 1.150 11.682
2 0.254 0.390 4.970 12.306
3 1.529 0.308 9.850 1.928
4 1.258 0.742 6.950 8.852
5 0.688 0.363 3.900 2.762
6 0.580 0.715 5.580 6.002
7 1.447 0.281 2.980 6.059
8 1.556 0.851 8.930 5.724
9 1.719 1.231 4.660 12.172
10 1.339 1.420 3.750 4.400
11 0.715 0.932 3.140 9.120
12 1.285 0.227 7.560 4.083
13 1.068 1.095 8.170 1.765
14 1.231 1.312 6.190 4.207
15 1.502 1.800 2.830 3.204
16 0.634 1.719 4.360 1.619
17 1.692 0.471 7.710 2.255
18 0.308 0.525 7.410 5.043
19 1.664 1.610 8.320 7.205
20 1.746 0.634 3.290 2.599
21 0.336 1.149 2.070 2.690
22 0.498 0.498 9.690 12.909
23 1.393 1.285 9.540 6.896
24 0.986 0.336 1.760 8.548
25 1.095 0.607 3.590 1.777
26 0.553 1.773 8.470 1.916
27 0.444 1.583 1.920 10.195
28 1.583 1.637 5.730 9.360
29 1.420 0.878 4.510 5.685
30 0.363 0.905 8.780 7.837

12
convergence with respect to the 1:1 line. Further, three quantitative
parameters were used to evaluate the accuracy of the surrogate mod-
els. As shown in Fig. 15, the OP model exhibited the best accuracy,
with the highest values of R2 and the lowest value of RMSE and MAPE.
Hence, the following optimization work was carried out based on the
OP model.

5.3. Optimization algorithm

To explore the optimal configuration of the proposed sandwich
panel for simultaneous vibration attenuation and structural stiffness,
the ASA algorithm [51] for single‐objective optimization and the
NSGA‐II algorithm [52] for multi‐objective optimization were
employed. The ASA algorithm is well‐suited for solving highly nonlin-
ear problems with short running analysis codes when finding the glo-
bal optimum becomes more important than a quick improvement of
the design [51]. Key parameters of the algorithm, including the max-
imum number of generated designs, the number of designs for conver-
gence check and the convergence epsilon, were set as 50000, 5, and
1.0 × 10−8, respectively. NSGA‐II is a multi‐objective genetic algo-
No. tfb (mm) tfc (mm) tp (mm) η (%)

31 0.797 1.258 1.310 2.042
32 1.637 1.203 7.250 10.368
33 0.769 0.688 7.860 4.634
34 0.525 0.553 1.610 4.869
35 0.227 1.529 4.200 3.620
36 0.932 0.797 1.000 3.205
37 0.959 0.959 5.270 7.017
38 1.800 1.475 2.530 13.138
39 0.851 0.254 8.630 4.696
40 1.149 1.041 2.680 7.272
41 0.905 1.366 4.050 12.258
42 1.041 1.692 2.370 5.373
43 1.014 0.417 5.880 10.728
44 0.742 1.014 10.000 5.144
45 1.122 1.746 5.120 7.426
46 1.610 1.068 2.220 6.393
47 0.417 1.339 9.080 9.318
48 1.176 0.580 9.240 8.051
49 0.824 1.556 6.800 8.290
50 0.471 1.176 4.810 11.211
51 0.390 1.502 6.640 1.398
52 0.200 0.986 6.490 15.347
53 1.773 0.824 6.030 13.011
54 0.281 0.769 3.440 5.622
55 1.366 0.661 1.460 9.469
56 1.203 1.664 8.020 8.449
57 0.607 0.200 6.340 2.599
58 0.661 1.122 7.100 2.949
59 1.475 0.444 5.420 5.952
60 0.878 1.447 9.390 13.009



Fig. 14. Cross-validation results of four surrogate models: (a) RS model, (b) KRG model, (c) RBF model, and (d) OP model.

Fig. 15. Error analysis of four surrogate models.
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rithm built upon the principle of nondominated sorting and sharing,
which enables finding much better spread of solutions and better con-
vergence near the true Pareto‐optimal front [52]. Key parameters
including the population size, the number of generations, the cross-
over probability, the crossover distribution index and the mutation dis-
tribution index were set as 100, 500, 0.9, 20 and 100, respectively.
13
5.4. Optimization results

5.4.1. Case I
As listed in Table 4, the sandwich panel was optimized to achieve

minimum structural weight while maintaining the same capacity of
vibration attenuation and structural stiffness. In contrast with the ini-
tial design (specimen S‐6), the total mass of the sandwich decreased
from 1.595 kg to 1.484 kg, a drop of ~7%. At the optimum point,
the design variables (tfb, tfb, tp) were identified as tfb ¼ 0:200 mm,
tfc ¼ 0:809 mm and tp ¼ 1:916 mm, implying that the constrained
metal layer should be more or less thicker than the base metal layer
for enhanced performance. To further confirm the accuracy of the sur-
rogate model used in this study, the surrogate based optimum and FE‐
MSE result of the first damping loss factor η were compared. From
Table 4, the prediction of the OP model was only 3.494% higher than
the FE‐MSE analysis, thus demonstrating that the OP model was suffi-
ciently accurate and could provide reliable predictions of the first
damping loss factor.

5.4.2. Case II
This case aimed to achieve optimal performance of structural stiff-

ness and vibration damping at a fixed total mass. The conflict between
two design objectives usually leads to a Pareto front where each point
represents an optimal design in different situations. As shown in
Fig. 16a, the Pareto front of Case II was obtained, and the optimal
results in the Pareto front were fitted to a polynomial expression, as:

D ¼ 1489070� 505529ηþ 58583η2 � 2265η3 ð20Þ



Table 4
Optimal design results of Case I.

Description Parameter Initial design Optimal design

OP model FE-MSE method Error (%)

Objective M (kg) 1.595 1.484 – –

Constraint D (Pa m4) 29467.006 29467.010 – –

η (%) 6.634 7.020 6.783 3.494
Variable tfb (mm) 0.500 0.200 – –

tfc (mm) 0.500 0.809 – –

tp (mm) 3.000 1.916 – –
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where the R‐square of the polynomial fitting was 0.9985. In order to
compare with the preliminary sandwich design, the Pareto front was
processed and redrawn in the form of enhancement ratio. As shown
in Fig. 16b, the two design objectives (i.e., D and η) of the optimal
designs exhibited significant enhancement of 5.849–13.772% and
26.564–43.452%, respectively. A spatial distribution of optimum points
in the design space was also obtained, as shown in Fig. 16c. The design
variables (t fb, tfb, tp) at these points ranged in
0:2 mm < tfb < 0:20011 mm, 0:56951 mm < t fc < 0:81276 mm and
2:85263 mm < tp < 4:78169 mm, respectively. These results suggested
that the base metal layer was expected to be thin, and proper combina-
tion of the constrained metal layer and polyurea layer could lead to a
Fig. 16. Optimal design results of Case II: (a) Pareto front, (b) enhanceme
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more desirable performance. Finally, to verify the accuracy and effec-
tiveness of the present optimization, the FE‐MSE predictions for three
representative points (marked in Fig. 16a) were separately obtained.
Table 5 compared the FE‐MSE predictions with the optimization results
on the first damping loss factor η.

5.4.3. Case III
Exploring a higher structural efficiency of flexural stiffness and

vibration damping continues to be technically important for designing
multi‐functional lightweight sandwich structures. Therefore, this case
chose the specific flexural stiffness D=M and the specific damping loss
factor η=M as design objectives. Similar to case II, a Pareto front was
nt ratio of Pareto front, and (c) spatial distribution of optimum points.



Table 5
Comparison between FE-MSE predictions and optimization solutions of Case II.

Specimen tfb (mm) tfc (mm) tp (mm) M (kg) D (Pa m4) η (%)

OP model FE-MSE method Error (%)

Point 1 0.200 0.813 2.853 1.590 33525.392 8.397 8.287 1.330
Point 2 0.200 0.696 3.780 1.590 31190.462 9.517 9.401 1.235
Point 3 0.200 0.570 4.782 1.590 32914.002 9.088 8.988 1.109

Fig. 17. Optimal design results of Case III: (a) Pareto front, (b) enhancement ratio of Pareto front, and (c) spatial distribution of optimum points.

Table 6
Comparison between FE-MSE predictions and optimization solutions of Case III.

Specimen tfb (mm) tfc (mm) tp (mm) D=M (Pa m4 kg−1) η=M (% kg−1)

OP model FE-MSE method Error (%)

Point 1 0.200 1.800 10.000 50521.952 5.279 5.424 −2.673
Point 2 0.200 0.759 9.173 28513.468 6.199 6.031 2.786
Point 3 0.200 1.440 10.000 44397.150 5.708 5.913 −3.467
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obtained (Fig. 17a), which was then compared with the preliminary
design (Fig. 17b). Optimal designs in the Pareto front could be fitted
by a polynomial given by:

D
M

¼ 6408790� 3382900
η

M

� �
þ 601640

η

M

� �2
� 35794

η

M

� �3
ð21Þ
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where the R‐square of the polynomial fitting was 0.9933. As shown in
Fig. 17b, the two design objectives (i.e, D=M and η=M) of the optimal
designs achieved a remarkable increase of 53.789–173.63% and
26.927–49.046%, respectively. Fig. 17c displayed the corresponding
spatial distribution of design variables in the Pareto front, as
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0:2 mm < tfb < 0:20021 mm, 0:75913 mm < t fc < 1:8 mm and
9:17278 mm < tp < 10 mm. Finally, to verify the accuracy and effec-
tiveness of the present optimization, the FE‐MSE predictions for three
representative points (marked in Fig. 17a) were separately carried
out. Table 6 compared the FE‐MSE predictions with the optimization
results on the specific damping loss factor η=M.

6. Concluding remarks

With focus placed upon laser‐welded corrugated‐core (LASCOR)
sandwich panels with polyurea‐metal laminate face sheets (PML) face
sheets, this study aimed to reveal the sensitivity of the vibration damp-
ing characteristics and propose a multi‐objective optimization frame-
work factoring vibration attenuation, structural stiffness and total
weight of these novel multifunctional sandwich constructions. For
enhanced calculation efficiency, surrogate modeling was validated
and implemented into the optimization procedure. Main findings were
summarized as follows.

(i) The natural frequencies and damping loss factors of the sand-
wich panels displayed different sensitivities to key geometric
parameters, and significantly outperformed monolithic panels
of equal mass.

(ii) Under the principles of cross‐validation, the orthogonal polyno-
mial (OP) model provided the most accurate approximation for
damping loss factors.

(iii) Upon coupling the surrogate model with the optimization algo-
rithm, a high‐efficiency multi‐objective optimization frame-
work factoring stiffness, damping and weight of LASCOR
sandwich panels with PML face sheets was proposed.

(iv) For single‐objective optimization, the structural weight of the
optimized sandwich panel decreased by around 7% in contrast
with the initial design. For multi‐objective optimizations, the
Pareto fronts revealed significant enhancement in both the
damping loss factor/structural stiffness and specific damping
loss factor/structural stiffness.
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