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Abstract
Cells are compressible and can be regarded as a kind of coated liquid inclusion embedded in a three-dimensional elastic
matrix. In the presence of far-field loading, how the coating influences the mechanical response (e.g., volume change)
of the liquid inclusion remains elusive, especially when surface tension effects become significant at cell size level. We
developed a theoretical model to characterize the mechanical amplification or attenuation role of coating on spherical liquid
inclusions, with surface tension and liquid compressibility accounted for. We found that surface tension could increase the
volumetric strain of the inclusion through decreasing its effective bulk modulus. We further found that, when there is a
monotonic stiffness variation (either decreasing or increasing) from matrix via coating to inclusion, the presence of coating
amplified the volumetric strain compared with the case without coating; in the opposite, when there is a non-monotonic
stiffness change from matrix via coating to inclusion, the volumetric strain is attenuated by the coating. The results are
useful for understanding and exploring the mechanobiological sensation of certain types of cell, e.g., osteocytes and cancer
cells.
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1 Introduction

Cells can be regarded as a kind of coated compressible liquid
inclusions in biological bodies [1–3], with the coating regu-
lating the physiological function of the cell when it receives
mechanical signals from cellular microenvironment [4, 5].
For instance, osteocyte cell is surrounded by a coating of
pericellular matrix (PCM), which tends to amplify mechani-
cal signals from cellular microenvironment [6, 7]. For cancer
cell, the abnormal deposition and remodeling of extracellu-
lar matrix (ECM) leads to increased stiffness of the ECM
that forms a coating on cell surface [8]. The stiffened coating
can affect (e.g., attenuate) mechanical signal transduction,
thus crucially influencing the rate and direction of tumor cell
migration [9].

The classical model of a single solid inclusion in an infi-
nite elastic matrix subject to far field loadings was developed
by Eshelby [10], which was extended by Walpole [11] to a
coated inclusion. The Biot model and its various extensions
have been extensively employed to analyze stress concentra-
tion around an inclusion [12–14], predict the homogenized
(effective) properties (elastic moduli, thermal/electrical con-
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ductivity, etc.) of a compositewith coated inclusions [15–18],
and design materials with inhomogeneous microstructures
for specific applications [19–21]. Further, built upon the
model of coated solid inclusion, a variety of generalized
self-consistent methods were proposed to predict the effec-
tive properties of particulate composites or nanocomposites
with high concentration of inclusions [22–26]. For example,
Mancarella et al. [27] used this approach to predict the influ-
ence of surface tension on the effective moduli of composites
embeddedwith incompressible liquid inclusions, while Chen
et al. [3] quantified the effect of liquid compressibility on the
morphology evolution of a liquid inclusion under external
loading. Further, in the absence of surface tension, Chen et al.
[28] studied the amplification and attenuation of mechani-
cal fields in healthy and diseased tissues using the model
of coated liquid inclusion. However, the effect of coating
and liquid compressibility on the inclusion response and,
in particular, the role of surface tension in strain amplifi-
cation/attenuation need to be further investigated.

In the current study, built upon the coated liquid inclusion
model of Chen et al. [28], we propose a mechanical model
to describe the response of coated compressible liquid inclu-
sions with surface tension. We focus on how the mechanical
properties (e.g., stiffness and thickness) of the coating, liquid
compressibility and surface tension influence the volumetric
strain of the liquid inclusion. According to the theoretical
results, the phenomenon of strain amplification/attenuation
by coated inclusions (e.g., osteocytes and cancer cell) is dis-
cussed.

2 Problem statement

Consider a single spherical liquid inclusion coated with a
solid coating embedded in an infinite matrix (Fig. 1). The
inclusion and coating have a radius of Ri and Rc, respectively.
Both the coating and the matrix are assumed to be linear
elastic. Let the shear modulus and Poisson ratio be denoted
as Ga (N·m−2) and νa , with a � c for coating and a � m
for matrix. With the initial pressure of the liquid balanced by
surface tension, the matrix is free of stress before far field
loading is applied.

The governing equations (e.g., geometric, physical and
equilibrium equations) for the matrix are:

ε(m) � 1

2

(
∇u(m) + u(m)∇

)
, (1a)

σ(m) � 2Gm

[
νm

1 − 2νm
tr
(
ε(m)

)
+ ε(m)

]
, (1b)

∇ · σ(m) � 0, (1c)

Fig. 1 Schematic diagram of a coated liquid inclusion. The spherical
liquid inclusion is coated by a spherical coating, and the outside of the
coating is an infinite matrix. The radius of the inclusion and coating are
Ri and Rc respectively. The bulk modulus of the liquid inclusion is Ki ,
and the shear modulus and Poisson’s ratio of the coating and matrix
are Gc, νc and Gm , νm respectively. There is surface tension κγ at the
interface between the inclusion and the coating, where κ is the surface
curvature of the interface, γ is the surface energy density. There exists
a far-field strain ε∞ at infinity of the matrix

where u(m), ε(m) and σ(m) are the displacement, strain and
stress tensors in the matrix, respectively. Similarly, the gov-
erning equations for the coating are:

ε(c) � 1

2

(
∇u(c) + u(c)∇

)
, (2a)

σ(c) � 2Gc

[
νc

1 − 2νc
tr
(
ε(c)

)
+ ε(c)

]
, (2b)

∇ · σ(c) � 0, (2c)

where u(c), ε(c) and σ(c) are the displacement, strain and
stress tensors in the coating.

Let the liquid be linearly compressible [29], namely:

Ki
�V

V0
� −p, (3)

where Ki (N·m−2) is the bulk modulus of the liquid, V0 and
�V are the initial volume and volumetric change of the liquid
inclusion, and p is the liquid pressure after far field loading
is applied.

In the far field, a uniform strain ε∞ is applied, as:

ε(m)
∣∣∣|x|→∞ � ε∞. (4)

To solve the problem of Fig. 1, it is necessary to choose the
form of far field loading in Eq. (4). In general, three types of
far field loading can be selected: uniaxial loading (stretch and
compression), simple shear, and radial loading (i.e., hydro-
static loading).On one hand, only the solution obtained under
uniaxial loading can be used to derive solutions for the other
two loading types. On the other hand, focus of the present
study is placed upon the mechanical states of the inclusion.
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For a liquid inclusion, the most important mechanical states
are its volumetric strain and pressure, and only uniaxial load-
ing and radial loading at far field can change such states.
Therefore, solution of the problem is derived only under uni-
axial loading so that the far field strain ε∞ can be written in
the Cartesian coordinate system, as:

ε∞ �
⎛
⎝

ε∞ 0 0
0 −νmε∞ 0
0 0 −νmε∞

⎞
⎠. (5)

At the interface between the inclusion and its coating, the
surface tension is assumed to be in equilibrium with the ini-
tial liquid pressure in the absence of far field loading. Force
equilibrium then dictates:

p0n0�γ κ0n0, (6)

where p0 is the initial liquid pressure of the liquid inclusion,
n0 is the initial normal vector of the liquid-coating interface,
γ is an isotropic and strain-independent surface tension, and
κ0 is the initial surface curvature.

When there is a load in the far field, force equilibrium
dictates:

σ(c) · n1 � −(p + p0)n1 + γ κn1, (7)

where n1 is the normal vector of the liquid-coating interface
after loading, and κ is the surface curvature after loading. For
a spherical liquid inclusion of radius R, the surface normal
vector n1 and curvature κ can be expressed as [30]:

n1 �
(
1,

uθ

R
− 1

R

∂ur
∂θ

, 0

)
, (8)

κ � 2

R
− 1

R2

(
2ur + cot θ

∂ur
∂θ

+
∂2ur
∂θ2

)
. (9)

At the interface between the coating and the matrix, the force
equilibrium is:

σ(c) · n2 � σ(m) · n2, (10)

where n2 is the normal vector of the interface. In addition,
the displacement field is assumed to be continuous across the
coating-matrix interface such that:

u(c) � u(m). (11)

Here, u(c) and u(m) are the displacement of the coating and
matrix, respectively.

3 Solution of the problem

3.1 Displacement and stress fields in the coating
andmatrix

Built upon our previous work [3], for the present problem
of Fig. 1, the governing equations detailed in the previous
section can be solved, leading to the following displacement
fields in the coating and matrix:

u(a)
r �B(a)

1 εr + B(a)
2

R3
i

r2
+
3 cos(2θ) + 1

4

×
[
12vi A

(a)
1

r3

R2
i

+ 2A(a)
2 r + 2(5 − 4vi )A

(a)
3

R3
i

r2
− 3A(a)

4

R5
i

r4

]
,

(12a)

u(a)
θ � −3 sin(2θ)

2

[
(7 − 4vi )A

(a)
1

r3

R2
i

+ A(a)
2 r

+2(1 − 2vi )A
(a)
3

R3
i

r2
+ A(a)

4

R5
i

r4

]
, (12b)

u(a)
φ � 0, (12c)

where a � c for coating and a � m for matrix. Correspond-
ingly, the stress fields in the coating and the matrix are given
by:

σ (a)
rr � 2Gi

{
B(a)
1

1 + νi

1 − 2νi
− 2B(a)

2

R3
i

r3

+
3 cos(2θ) + 1

4

[
−6νi A

(a)
1

r2

R2
i

+ 2A(a)
2

− 4(5 − 4νi )A
(a)
3

R3
i

r3
+ 12A(a)

4

R5
i

r5

]}
(13a)

σ
(a)
rθ � −3Gi sin(2θ)

[
(7 + 2νi )A

(a)
1

r2

R2
i

+ A(a)
2

+ 2(1 + νi )A
(a)
3

R3
i

r3
− 4A(a)

4

R5
i

r5

]
, (13b)

σ
(a)
θθ � Gi

2

{[
4(1 + νi )

1 − 2νi
B(a)
1 +

4(1 − νi )

1 − 2νi

R2
i

r2
B(a)
2

]

− 6[5νi + 7(2 + νi ) cos(2θ)]A(a)
1

r2

R2
i

− 2[−1 + 3 cos(2θ)]A(a)
2

+ 2(1 − 2νi )[5 + 3 cos(2θ)]A(a)
3

R3
i

r3

−[3 + 7 cos(2θ)]A(a)
4

R5
i

r5

}
, (13c)
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where, again, a � c for coating and a � m for matrix,
and A(a)

1 , A(a)
2 , A(a)

3 , A(a)
4 and B(a)

1 , B(a)
2 are coefficients to

be determined from boundary conditions. Note that surface
tension is involved in the boundary condition of Eq. (7), so it
will affect the both the displacement and stress fields; also,
with Eq. (3), the solutions are affected by the liquid com-
pressibility.

The coefficients in Eq. (13) are determined in Supple-
mentary Material S1, and their values are calculated by the
software Mathematica 9. In Supplementary Material S2, we
demonstrate that the solution of coated liquid inclusions with
surface tension reduces to existing solutions in appropriate
limits, including the solution of Chen et al. [28] for coated
compressible liquid inclusions without surface effects, i.e.,
γ � 0, the solution of Style et al. [30] for incompressible liq-
uid inclusion with surface effects, i.e., Gc � Gm , νc � νm ,

Rc/Ri � 1 and Ki → ∞, and the solution of Chen et al.
[3] for compressible liquid inclusion without surface effects,
i.e., Gc � Gm , νc � νm , Rc/Ri � 1 and γ � 0.

3.2 Volumetric strain of the inclusion

To demonstrate the tuning role of the coating, it is necessary
to clarify which behavior of the compressible liquid inclu-
sion is the most important and needs to be tuned. As most of
the coated inclusions in concern are cells at micro-millimeter
scale, we need to identify the mechanical behaviors of cells
that have significant influences on their physiological pro-
cess. Recently, strong experimental evidences suggest that

cell volume has important influence on cell physiological
process [31–33]. On one hand, cell volume changes over the
course of cell life cycle, increasing as cell plasma membrane
grows and the amount of protein, DNA, and other intracel-
lular material increases [34]. On the other hand, cell volume
can also change on a much more rapid time scale, for exam-
ple, when a cell deforms under external osmotic pressure:
in this case, cell volume changes as a result of fluid trans-

portation through cell membrane [35]. This causes increased
concentration of intracellular material and molecular crowd-
ing [36, 37], causing numerous important consequences such
as increase in stiffness [38], folding and transport of proteins
[39], and condensation of chromatin [40].

In the following, for the coated liquid inclusion of Fig. 1,
we focus on changes in its volumetric strain �V

/
V 0 and

pressure p. Note that, when a far field load is applied, the
spherical liquid inclusion becomes an ellipsoid so that its
linearized volumetric strain can be written as:

1

ε∞
�V

V0
� 1

ε∞Ri

[
u(c)
r (r � Ri , θ � 0)

+ u(c)
r

(
r � Ri , θ � π

2

)
+ u(c)

r

(
r � Ri , θ � π

2

)
.

(14)

Substituting the solution of Eq. (12) into Eq. (14) yields:

1

ε∞
�V

V0
� 18α3GcGm(1 − νc)(1 − νm)

3
(
4Gm + 3Ki − 2 γ

R

)
Gc(1 − νc) +

(
α3 − 1

)(
4Gc + 3Ki − 2 γ

R

)
[2(1 − 2νc)Gm + Gc(1 + νc)]

, (15)

where α � Rc
/
Ri . Note that 1

ε∞ �V
V0

> 0, implying that
the volume of the liquid inclusion increases when the far
field load is stretch and decreases when the far field load is
compression. In the limit when Rc

/
Ri � 1 and γ � 0, the

volumetric strain of the no coating case is obtained:

1

ε∞

(
�V

V0

)

0
� 6Gm(1 − νm)

4Gm + 3Ki
. (16)

This coincides with the existing result [3] for the case of
γ � 0 (no surface tension).

Finally, the tuning role of coating on the volumetric strain
of the liquid inclusion can be explicitly described by:

1

ε∞
�V

V0
− 1

ε∞

(
�V

V0

)

0

�
12

(
α3 − 1

)
(Gc − Gm)

[(
3Ki − 2γ

R

)
(1 − 2νc) − 2Gc(1 + νc)

]
Gm(1 − νm)

(4Gm + 3Ki − 2γ
R )

{
3
(
4Gm + 3Ki − 2γ

R

)
Gc(1 − νc) +

(
α3 − 1

)(
4Gc + 3Ki − 2γ

R

)
[2Gm(1 − 2νc) + Gc(1 + νc)]

} .

(17)

With Eq. (17), a positive differencemeans that the volumetric
strain of the liquid inclusion is amplified by the coating. In
contrast, the volumetric strain of the inclusion is attenuated
by the coating when the difference of Eq. (17) is negative.

To determine the sign of the difference Eq. (17), we make
use the bulk modulus of the coating
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Gc�3Kc(1 − 2νc)

2(1 + νc)
, (18)

and rewrite the difference as:

1

ε∞
�V

V0
− 1

ε∞

(
�V

V0

)

0

�
12

(
α3 − 1

)
(Gc − Gm)

(
3Ki − 2γ

R − 3Kc

)
Gm(1 − 2νc)(1 − νm)

(4Gm + 3Ki − 2γ
R )

{
3
(
4Gm + 3Ki − 2γ

R

)
Gc(1 − νc) +

(
α3 − 1

)(
4Gc + 3Ki − 2γ

R

)
[2Gm(1 − 2νc) + Gc(1 + νc)]

} .

(19)

As the denominator of the right hand side is always positive,
the sign of Eq. (19) depends on the sign of Gc − Gm and
Ki − 2γ

3R − Kc. Thus, the tuning role of the coating can be
designed by tailoring its stiffness (relative to both matrix
and inclusion) and thickness (relative to inclusion) as well as
surface tension.

Intuitively, let the effective bulk modulus of the liquid
inclusion be represented by Ki − 2γ

3R . Then a mechanical
signal is amplified by the coating when the stiffness vari-
ation from the matrix to the inclusion is monotonic (either
increasing or decreasing). Alternatively, the mechanical sig-
nal is attenuated by the coatingwhen stiffness from thematrix
to the inclusion is non-monotonic, i.e., the coating exhibits a
stiffness that is either greater or smaller than both the inclu-
sion and the matrix.

4 Results

Because the Poisson ratio of common biomaterials and tis-
sues falls within the range of 0.3–0.5 [41–43], we choose
νc � 0.35 and νm � 0.35 in the following.

4.1 Influence of coating on volumetric strain
of inclusion

Under far field uniaxial loading, the predicted effects of coat-
ing modulus and thickness on inclusion volumetric strain
are displayed in Fig. 2. The volumetric strain increases first
and then decreases with increasing shear modulus of the
coating, as shown in Fig. 2a. In addition, when the liquid
bulk modulus is smaller than the matrix shear modulus (e.g.,
Ki/Gm � 0.1), the influence of surface tension on inclusion
volumetric strain is obvious. However, when the liquid bulk
modulus is equal to or larger than the matrix shear modulus
(e.g., Ki/Gm � 1 or Ki/Gm � 10), the influence of surface
tension on volumetric strain is basically negligible. Note that,
in Fig. 2a, we used a dimensionless volumetric strain 1

ε∞ �V
V0

to quantify the sensitivity of liquid volumetric strain to far-
field strain.A larger value of 1

ε∞ �V
V0

implies that the inclusion
volumetric strain is more sensitive to the far-field strain. The

case of no coating (Gc � Gm , νc � νm and Rc � Ri ) means
the coating and the matrix are the same material and hence
the coating effect will disappear. The results of Fig. 2a show
that the inclusion volume is insensitive to the far field load
when the shear modulus of the coating is much greater or
smaller than the matrix, as the value of 1

ε∞ �V
V0

is vanishingly
small. In contrast, when the shear modulus of the coating has
a magnitude similar to that the matrix, the inclusion volu-
metric strain may be considerably amplified by the coating
compared with the case of no coating (i.e., Gc/Gm � 1), as
shown in Fig. 2a.

In Fig. 2b, the case of no coating means Rc/Ri � 1, i.e.,
when the thickness of the coating is zero. The intersection
point of the solid line at Rc/Ri � 1 corresponds to the vol-
umetric strain for the case of no coating with surface effect,
while the intersection point of the dotted line at Rc/Ri � 1
corresponds to the volumetric strain for the case of no coat-
ing without surface effect. The lines below the intersection
point mean that the coating attenuates the volumetric strain
of the inclusion, that is, the inclusion volumetric strain is
smaller than the case of no coating, regardless of surface
effect. And this occurs when the coating is either softer or
stiffer than both the matrix and the inclusion, thus satisfying

(Gc − Gm)
(
Ki − 2γ

3R − Kc

)
<0. In sharp contrast, the lines

above intersection point mean that the presence of a coat-
ing amplifies the volumetric strain of the inclusion: that is,
regardless of surface effect, the inclusion volumetric strain is
larger than the case of no coating. This occurs when a contin-
uous stiffness gradient forms from the matrix via the coating

to the inclusion, satisfying (Gc − Gm)
(
Ki − 2γ

3R − Kc

)
>0.

We also observe that, in all the cases considered, the inclu-
sion volume response 1

ε∞ �V
V0

converges to a limit value when

the coating thickness is sufficiently large (i.e., Rc
/
Ri ≥ 3).

When the coating has a moderately large thickness (i.e.,
1 ≤ Rc

/
Ri ≤ 2), its influence on the inclusion volume

response is significant.
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Fig. 2 Effect of modulus and thickness of the coating on volumetric strain of the inclusion. a Inclusion volumetric strain 1
ε∞ �V

V0
plotted as a function

of the relative shear modulus Gc/Gm of the coating, with Rc/Ri � 2, νm � νc � 0.35. Different colored lines represent different relative liquid
compressibility Ki/Gm . Dotted lines represent the case without surface tension (e.g., γ /(RGm ) � 0), and solid lines represent the case with
surface tension (e.g., γ /(RGm ) � 0.1). b Inclusion volumetric strain 1

ε∞ �V
V0

is plotted as a function of the relative thickness Rc/Ri of the coating,
with Ki/Gm � 1, νm � νc � 0.35. Different colored lines represent different values of the relative shear modulus of the coating. Dotted lines
correspond to the case without surface tension, while solid lines correspond to the case with surface tension

4.2 Influence of liquid compressibility
on deformation of inclusion

Under far field uniaxial loading, the displacement of point A
at inclusion-coating interface (Fig. 1) decreases with increas-
ing liquid bulk modulus, as shown in Fig. 3. As surface
tension is increased, this displacement also decreases, which
means the presence of surface tension tends to block the
deformation of point A. In the limit Ki/Gm → ∞ (i.e., the
liquid inclusion becomes incompressible), the present result
tends to that obtained by Mancarella et al. [27]. In the limit
γ /(RGm) → 0 (i.e., surface effect is absent), the present
result reduces to that of Chen et al. [3].

Figure 4 plots the inclusion volumetric strain 1
ε∞ �V

V0
as

a function of dimensionless liquid compressibility Ki/Gm

for selected values of relative shear modulus Gc/Gm and
surface tension. The volumetric strain gradually decreases
with the increase of liquid compressibility, and the change is
small when the compressibility is relatively small or large. In
the limit when the liquid inclusion tends to incompressible,
the volumetric strain becomes negligibly small as expected.
However, the change becomes sharp when the compressibil-
ity is moderately large. From Fig. 4, it can also be seen that
when the shear modulus of the coating is smaller than that of
the matrix, surface tension has a greater influence on volu-
metric strain; in contrast, when the modulus of the coating is
larger than that of the matrix, the influence of surface tension
on volumetric strain can be neglected.

Fig. 3 Effect of liquid compressibility on radial displacement of the
inclusion. The x-axis is the dimensionless liquid compressibility
Ki/Gm , and the y-axis is the radial displacement of the inclusion at
point A u(A)

r /(Riε
∞) under uniaxial tension. Different colored solid

lines represent different values of surface tension. The black dotted
line shows the classic result without surface tension [3]. Orange dotted
horizontal lines on the right indicate surface tension effects on incom-
pressible liquid inclusion [27]. When surface tension tends to zero, the
solid red line is basically coincident with the dotted black line. When
the compressibility of liquid tends to infinity, the results reduce to those
obtained Style et al. [27]

5 Discussion

5.1 Strain attenuation of cancer cell

Fibrous tissue is typically present around a cancer cell
(Fig. 5a), which can be considered as a coating that is
wrapped in healthy tissue. To simplify the model, the cancer
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Fig. 4 Effect of the compressibility of liquid inclusion on its volu-
metric strain. The x-axis is the dimensionless liquid compressibility
Ki/Gm , and the y-axis is the volumetric strain 1

ε∞ �V
V0

. Different colored
lines represent different dimensionless values of relative shear modulus
Gc/Gm . Dotted lines represent the case without surface tension (e.g.,
γ /(RGm ) � 0), and solid lines represent the case with surface tension
(e.g.,γ /(RGm ) � 0.1). Here Rc/Ri � 2, νm � νc � 0.35

cell is treated as a spherical liquid inclusion, the fibrous tis-
sue as a spherical coating, and the normal tissue as an infinite
elastic matrix, as shown schematically in Fig. 5b. Relevant
parameters chosen for the model of coated cancer cell are
listed in Table 1, including a basal set of fixed values as well
as reasonable ranges of variation and sources of data. The
Young’s modulus of normal and pathological liver tissue are
0.6 kPa and 20 kPa, and the Young’s modulus of cancer cell
is 1 kPa (Table 1). The radius of the cell is Ri � 5 μm
and surface energy density of the interface is γ � 0.01 N/m
(Table 1). We assume that the Poisson ratios of the cancer
cell, healthy tissue and fibrous tissue are all fixed at 0.4.
Using these data, we quantified the effect of far-field strain

Table 1 Range of mechanical properties for liver cancer cell model

Symbol Variable Range of data Baseline value

Em (kPa) Young’s modulus
of the liver
normal tissue

0.3–0.6 [48] 0.6

Ec(kPa) Young’s modulus
of the liver
cancer tissue

1.6–20 [48, 49] 20

Ei (kPa) Young’s modulus
of the liver
cancer cell

Fibroblasts~1 [8] 1

Ri (μm) Radius of the f the
mouse
embryonic stem
cells

5 [50] 5

γ (N/m) surface energy
density on the
cell surface

0–0.05 [51] 0.01

on the volumetric strain of liver cancer cell with or without
a coating, as shown in Fig. 5c.

We can see fromFig. 5c that, in the presence of surface ten-
sion, the volumetric strain of cancer cell with coating is about
a third of that of cancer cell without coating. Further, the vol-
umetric strain of the cancer cell increases as surface effect
is increased. This reflects the coating around the cancer cell
would prevent the cell from receiving external mechanical
signals (e.g., signals transmitted via surrounding environ-
ment). Note that surface tension attenuates the volumetric
strain of the inclusion by decreasing its effective bulk modu-
lus Ki − 2γ

3R . Themechanical properties of fibrous tissue (i.e.,
coating in the present study) in specific organs contribute to
the preferential migration, attachment, survival and prolifer-
ation of cancer cells [9, 44–46]. The coating-induced strain
attenuation may be the mechanism underlying such behav-
iors of cancer cells.

Fig. 5 Effect of far-field strain on volumetric strain of liver cancer cells. a Schematic illustration of cancer cell and its surrounding. b Effective
model of cancer cell with coating embedded in tissue. c Effect of far-field strain on volumetric strain of liver cancer cell. The x-axis is the far-field
strain ε∞, which is the tissue strain, and the y-axis is the volumetric strain of the cell. Different colored lines represent different results obtained
with different theories: red lines represent the classical inclusion theory without coating, and blue lines represent the present theory considering
coating. Here, R � 10 μm is assumed in our coating model
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5.2 Strain amplification of osteocyte in bone

Osteocytes exist in bone and are cells that can specifically
secrete a variety of bioactive substances to regulate and
influence the formation and reconstruction of the bone. Exist-
ing studies have shown that osteocytes experience some
form of strain amplification in bone, because the strains that
elicit an osteogenic response would damage the extracellular
matrix (bone) [6]. With reference to Fig. 6, we simplify the
osteocytes model in order to explain strain amplification of
osteocytes using our model of coated liquid inclusions. From
the scanning electron microscopy (SEM) image of Fig. 6a
[47], we can see that osteocyte has numerous protruding
parts, i.e., the cell processes. Further, the osteocyte and its
processes are surrounded by a layer of PCM and, outside
the PCM, there exists a layer of ECM composed of bone.
Based upon these observations, we simplify the osteocyte
model as an inclusion having lots of cell processes embed-
ded in the PCM, as shown schematically in Fig. 6b: the cell is
considered as a spherical compressible liquid inclusion, and
the processes are periodically distributed around the cell. The
cell and its processes are coated by the PCM, which is coated
by the ECM. As the cell scale is at the micron level, surface
tension at the interface between the cell and PCM should be
considered. Further, for simplicity, we assume that the cell
processes, the PCM and part of the ECM in the outside of the
cell body can be homogenized as an effective coating wrap-
ping around the cell, and the effective coating is coated by
infinite ECM, as shown in Fig. 6c.

To analyze the coated inclusion model of osteocytes, we
first need to determine the modulus and Poisson ratio of the
effective coating. In the present study, the effective modulus
and Poisson ratio of the idealized coating shown in Fig. 6c
may be estimated by volume fraction, as:

Gc � φpG p + φPCMGPCM + φECMGECM , (20)

where Gc is the effective shear modulus of the coating, φp,
φPCM and φECM are the volume fractions of the cell pro-

Table 2 Range of mechanical properties for osteocyte cell model

Symbol Variable Range of data Baseline value

Ec,Ep (kPa) Young’s modulus
of the osteocyte
and processes

2.4–4.7 [53] 4.47

νc,νp Poisson’s ratio of
the osteocyte and
processes

0.3–0.496 [54] 0.3

EPCM (kPa) Young’s modulus
of the pericellular
matrix

40–70 [55] 40

νPCM Poisson’s ratio of
the pericellular
matrix

0.4 [6] 0.4

EECM (GPa) Young’s modulus
of the
extracellular
matrix

13.6–25.2 [56] 16

νECM Poisson’s ratio of
the extracellular
matrix

0.25–0.43 [56] 0.38

cesses, the PCM and the ECM, and Gp, GPCM and GECM

are the shear modulus of the cell processes, the PCM and
the ECM, respectively. Using Eq. (20), the data from Table
2 and assuming that φp � 0.1, φPCM�0.5, φECM�0.4 and
Ri � 5 μm according to the 3D reconstruction image of
osteocyte [52], we calculated the effective shear modulus of
its coating to be approximately Gc � 0.4Gm . Similarly, we
estimated the effective Poisson ratio of the coating, νc, to be
0.38. In passing, it should be pointed out that, as the mod-
ulus of the matrix (bone) is too large, the effect of surface
tension on the volumetric strain of the cell can be neglected.
Consequently, we only considered two cases: the model with
coating and the model without coating.

In Fig. 7, we plotted the volumetric strain 1
ε∞ �V

V0
of the

osteocyte as a function of far-field strain ε∞ (i.e., bone strain)
for the two cases considered. According to Verbruggen et al.
[6], disuse bone resorption begins at a bone strain level

Fig. 6 SEM image and schematic illustration of osteocytes. a SEM image of osteocyte (×2500) [47]. The arrow is the cell process. The bar is
10 μm, tilt 30°. b Schematic of osteocyte. c Effective model of osteocyte
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Fig. 7 Effect of far-field strain on osteocytes volumetric strain. The x-axis is the far-field strain ε∞, which is the bone strain, and the y-axis is the
volumetric strain 1

ε∞ �V
V0

of the cell. Different colored lines represent different cell models. The red line is the classical inclusion theory without
coating, and the blue line is the theory considering coating and surface tension. The different colored areas on the x-axis indicate the strain range of
the bone during different intensities of activity. The first black dotted line represents that osteocytes cultured in vitro do not generate a biochemical
response when the strain is less than the value. And an appreciable response occurs when the strain is more than the value of the second black
dotted line. Here R � 5 μm in our coating model

less than 10−3ε; the bones routinely experience mechani-
cal strains between 10−3ε and 2× 10−3ε; vigorous exercise
can generate strains up to 3 × 10−3ε; a strain more than
3.5 × 10−3ε results in bone damage and absorption; and a
strain more than 4 × 10−3ε results in bone fracture (Fig. 7).
When the volumetric strain is small (i.e., below the first
flash line), osteocytes cultured in vitro do not generate a
biochemical response, but an appreciable response occurs
when the volumetric strain becomes larger (i.e., above the
second flash line). In the presence of a uniaxial load at far
field, the volumetric strain response of osteocytewith coating
(blue line) is larger than that without coating (red line): that
is, the coating of osteocyte causes strain amplification. Such
strain amplification of osteocytes is of significance for the
mechanobiological sensation of bone. For typical instance,
osteocytes with coating cangenerate an appreciable response
during vigorous exercise (e.g., running). In sharp contrast, for
osteocytes without coating, there is no appreciable response
to such loading until the bone is fractured, as shown in Fig. 7.

6 Conclusions

We have established a mechanical model for a coated com-
pressible spherical liquid inclusion embedded in infinite
elastic matrix and solved it analytically, with surface tension
effects accounted for. We found that, in the presence of far

field loading, surface tension can decrease the effective bulk
modulus of the liquid inclusion, which leads to an increase of
its volumetric strain compared with the case without surface
tension. Further, we found that whether the volumetric strain
of liquid inclusion will be amplified or attenuated depends
mainly on liquid bulkmodulus, surface tension, coating shear
modulus, andmatrix bulkmodulus. Relative to the case with-
out coating, the volumetric strain is amplified by the coating
if there is a monotonic variation of stiffness from the matrix
via the coating to the inclusion. In the opposite, if there is a
non-monotonic stiffness variation from thematrix, coating to
inclusion, the volumetric strain is attenuated by the coating.
Besides, the model was then used to investigate two common
examples of coated inclusions in biological bodies, i.e., can-
cer cells and osteocytes. Our theoretical results are helpful
for understanding the biological significance of amplification
and attenuation mechanisms of these cells.

In addition to explaining the amplification and attenuation
of far-field strain, our model could explain that the ECM
locally stiffened by a cancer cell can amplify the signal a
cell generates [57]. However, the counterpart of this problem
remains unclear—how this stiffened region influences the
capability of a cell to sense the mechanical signals in its
“neighborhood”. In the simplestmanner, this stiffened region
could be regarded as a layer of stiff coating, thus enabling
a non-monotonic stiffness variation from the matrix, coating
to inclusion. Our results then suggest that this coating could
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amplify the signal generated by a cell, which is consistent
with experimental results [57].

In most of the previous works regarding cell mechano-
signaling, the influence of a cell on the extracellular matrix is
treated as a force boundary [58], or a displacement boundary
[57, 59]. However, the elastic response of what is inside the
cell should play a role. First, the contractility of cell comes
from actin myosin contraction. Forming a layer below the
cell membrane, the actin contracts not only the ECM, but
also the inner part of cell. Second, it has been shown that it
is actually very crowded inside a cell [60], including high
amount of actin, microtubules, intermediate filaments and
etc. Our model suggests that cell elasticity plays a key role
in determining whether or not the signal is amplified. The
model also shows that the influence of this elasticity could
be treated as an equivalent actin contractility. The actin con-
tractility can be regarded as cortical stress [61], which can
be regarded as a special type of surface tension. Besides, our
results suggest that the bulk modulus of the liquid inclusion
(cell) and surface tension can be interconverted.On one hand,
the bulk modulus and the surface tension can be regarded as
the effective bulk modulus; on the other hand, the bulk mod-
ulus could be regarded as a special surface tension, which
can be treated as a force boundary.
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