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a b s t r a c t

Liquid-like inclusions arising in biomaterials and tissues often have coatings with material properties
that differ from those of both the inclusion and the surrounding matrix. Understanding how these
coatings interact with the inclusion and the surrounding matrix is critical to understanding tissue
function and to developing a class of biomimetic materials. We therefore developed a closed-form
mathematical solution to characterize how the properties of a coating surrounding a spherical liquid-
like inclusion affect the volumetric strain it experiences when the surrounding matrix is loaded
uniaxially. Results show that the coating can amplify or attenuate the volumetric strain within the
liquid inclusion, depending upon the relative properties of the inclusion, coating, and matrix. We used
the solution to study amplification and attenuation of mechanical fields in healthy and diseased tissues,
and found that pathological remodeling of coatings can have a tremendous impact on the mechanical
fields experienced by living cells. Results suggest important roles for coatings surrounding living cells
in tuning the mechanobiology cues transmitted to cells when the tissues that host them are loaded
mechanically.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Many functional units in biology can manifest as liquid-like
nclusions at certain stages of development and remodeling, in-
luding cells within tissues and organelles within cells (Fig. 1).
esponses of these inclusions to mechanical loading of the sur-
ounding matrix are critical to biological function [1–5]. For in-
tance, cells within solid tissues often create a pericellular region
f matrix around them, which can be approximated mechanically
s a coating arising from extracellular matrix (ECM) production
nd remodeling [6], or from contraction of cells such as fibrob-
asts [7,8], smooth muscle cells [8,9], or certain cancer cells [10]

∗ Correspondence to: No. 165, Zhangbadong Road, Xi’an, Shanxi, 710065, PR
hina.
∗∗ Correspondence to: No. 28, Xianning West Road, Xi’an, Shaanxi, 710049, PR
hina.
∗∗ Correspondence to: No. 29, Yudao Street, Nanjing, Jiangsu, 210016, PR
hina.

E-mail addresses: xinchern@126.com (X. Chen), fengxu@xjtu.edu.cn
F. Xu), tjlu@nuaa.edu.cn (T.J. Lu).
ttps://doi.org/10.1016/j.eml.2020.101049
352-4316/© 2020 Elsevier Ltd. All rights reserved.
(Fig. 1). Mechanical properties of the coating and ECM can change
in response to disease, connections to neighboring cells, or fur-
ther remodeling [11–13]. In diseases such as fibrosis and certain
cancers, the coatings of cells can change dramatically from the
healthy phenotype [14,15]. This led us to ask whether a coating
surrounding a cell or group of cells could be tuned by a healthy
cell as a component of homeostatic regulation.

Our approach was to use a continuum model and idealized
system to best understand the scaling laws associated with stiff-
ening and enlarging the coating. The study of coated inclusions
dates back to the work of Walpole [17], which was further devel-
oped to analyze the stress concentration around an inclusion [18–
20]. The model has also been adapted to predict the homogenized
properties of composites containing coated inclusions embedded
in an elastic matrix [21–24], and to design a range of functional
materials [25–27]. The concept of a coated inclusion underlies
the generalized self-consistent method to predict the effective
properties of a composite containing a high volume fraction of
inclusions [28–31]. However, these models are not suitable for
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Fig. 1. Examples of a coated inclusion embedded in a three-dimensional matrix. (a) For a cell in a three-dimensional environment [16], the nucleus, cytoplasm and
extracellular matrix are regarded as the inclusion, coating and matrix, respectively. Some cells can remodel their microenvironments to create a pericellular matrix
coating surrounding them. For instance, (b) chondrocytes [6] and (c) myofibroblasts. (d) Certain tumors are surrounded by dense extracellular matrix proteins [14].
(e) An egg is protected from pressure by a shell; a pericellular coating of proteins can act similarly.
P

∇

the purposes of the present study because they are not applica-
ble to liquid inclusions, and furthermore have not explored the
biomechanics ramifications of the problem.

We therefore developed a mechanical model to investigate
he deformation of coated fluid-filled inclusions in elastic bod-
es. Using the stress potential function method, we derived ex-
licit expressions for the elastic fields and investigated how the
tiffness and thickness of the coating influence the volumet-
ic strain experienced by the inclusion. We then applied the
olution to assess the ways that a coating could be modified
o tune the mechanical fields felt by a cell, and to understand
ow cells, cell aggregates, and subcellular organelles tailor their
oatings in both physiologic and pathophysiologic conditions.
ur results suggest that cells can tailor the degree to which the
echanical stimuli that they experience are amplified or attenu-
ted through tuning of the thickness or stiffness of their protein
oatings.

. Problem statement

Although previous treatments of cells or cell aggregates in
lastic matrices often treat cells as solids [32–34], cells undergo-
ng stretch typically transit to a fluid-like state [35–38]. Cells also
luidize to various degrees under cyclic loading [39,40], and are in
eneral compressible [41]. We therefore studied spherical liquid
nclusions coated with a solid coating embedded in an infinite
lastic matrix (Fig. 2). We show in Section 6 that the effect of the
oating is the same for both liquid and solid inclusions, and then
pply the solution to study a range of tissues.
 a

2

The outer radii of the liquid inclusion and coating are Ri and
Rc , respectively. The coating and the matrix are assumed to be
linear elastic and isotropic with shear modulus Ga (N/m2) and
oisson ratio νa, where a = c for the coating solid and a =

m for the matrix. We also assume the initial pressure of the
liquid is zero so that the matrix is free of stress before far field
loading.

The governing equations in the matrix are:

ε(m)
=

1
2

(
∇u(m)

+ u(m)
∇

)
,

σ(m)
= 2Gm

[
νm

1 − 2νm
tr

(
ε(m)

)
+ ε(m)

]
,

∇ · σ(m)
= 0,

(1)

where u(m), ε(m) and σ(m) are the displacement vector, strain ten-
sor, and stress tensor in the matrix, respectively, and Gm (N/m2)
and νm are the shear modulus and Poisson ratio of the matrix
material, respectively. Those in the coating are

ε(c) =
1
2

(
∇u(c)

+ u(c)
∇

)
,

σ(c) = 2Gc

[
νc

1 − 2νc
tr

(
ε(c)

)
+ ε(c)

]
,

· σ(c) = 0,

(2)

where u(c), ε(c) and σ(c) are the displacement vector, strain tensor
nd stress tensor in the coating, respectively, and G (N/m2)
c
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i

Fig. 2. Mechanical model. We model a spherical liquid inclusion coated with an elastic solid coating embedded in an infinite elastic matrix. The radius of the liquid
inclusion is Ri and the radius of the coating is Rc . The inclusion is a liquid with bulk modulus Ki . The coating and the matrix are assumed to be linear elastic and
sotropic. Their shear modulus and Poisson’s ratio are Gi (N/m2) and νi , where i = c for the coating solid and i = m for the matrix. A uniform far field strain ε∞ is
imposed.
t
n
f
c

and νc are the shear modulus and Poisson ratio of the coating
material, respectively.

The liquid is linearly compressible [42]:

3Ki
∆V
V

= −p, (3)

where Ki (N/m2) is the bulk modulus of the liquid, V and ∆V
are the initial volume and change in volume of the inclusion,
respectively, and p is the liquid pressure after loading.

In the far field, a uniform strain ε∞ is applied

ε(m)
⏐⏐
|x|→∞

= ε∞. (4)

We focus on the solution for uniaxial loading, so that the far field
strain ε∞ can be written as

ε∞ =

⎛⎜⎝ε∞ 0 0

0 −νmε∞ 0

0 0 −νmε∞

⎞⎟⎠ , (5)

where ε∞ > 0 represents stretch and ε∞ < 0 represents
compression. Note that solutions for simple shear and hydrostatic
loading can be derived from this.

At the interface of the liquid inclusion and its coating, force
equilibrium requires

σ(c) · n1 = −pn1, (6)

where n1 is the normal vector of the liquid-coating interface.
Similarly, at the interface of the coating and matrix,

σ(c) · n2 = σ(m)
· n2, (7)

where n2 is the normal vector of the coating-matrix interface. At
the interface of the coating and matrix, displacement continuity
requires:

u(c)
= u(m), (8)

where u(c) and u(m) are the displacement of the coating and
matrix, respectively.

3. Solution of the problem

3.1. The elastic fields of a coated liquid inclusion

In a polar coordinate system (Fig. 2), the general solution to
the above equations can be written by Legendre polynomial-
3

based solutions:

ur =

∞∑
n=0

[
An

rn
n (n + 3 − 4v) −

Bn (n + 1)
rn+2

]
Pn (cos θ)

+

−1∑
n=−∞

[
An

rn
n (n + 3 − 4v) −

Bn (n + 1)
rn+2

]
P−n−1 (cos θ) ,

uθ =

∞∑
n=0

[
An

rn
(−n + 4 − 4v) +

Bn

rn+2

]
∂

∂θ
Pn (cos θ)

+

−1∑
n=−∞

[
An

rn
(−n + 4 − 4v) +

Bn

rn+2

]
∂

∂θ
P−n−1 (cos θ) ,

(9)

where ν is the Poisson ratio of the coating or matrix and Pn(cos θ )
is the Legendre polynomial of rank n. Although there are infinite
erms in the general solution (9), only a finite number of terms is
eeded depending upon the boundary conditions. For example,
or a coated rigid inclusion problem, only the terms related to
os θ and sin θ are needed [43]. For the present solution, a radial
deformation and a deformation with rotational symmetry with
respect to θ are required, so that the displacement fields in the
coating and matrix can be expressed as

u(a)
r = B(a)

1 εr + B(a)
2

R3
i

r2

+
3 cos 2θ + 1

4

[
12viA

(a)
1

r3

R2
i

+ 2A(a)
2 r + 2 (5 − 4vi) A

(a)
3

R3
i

r2

−3A(a)
4

R5
i

r4

]
,

u(a)
θ = −

3 sin 2θ
2

[
(7 − 4vi) A

(a)
1

r3

R2
i

+ A(a)
2 r + 2 (1 − 2vi) A

(a)
3

R3
i

r2

+A(a)
4

R5
i

r4

]
,

(10)
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nd the corresponding stress fields in the coating and matrix can
e expressed as

(a)
rr = 2Gi

{
B(a)
1

1 + νi

1 − 2νi
− 2B(a)

2
R3
i

r3

+
3 cos 2θ + 1

4

[
−6νiA

(a)
1

r2

R2
i

+ 2A(a)
2 − 4 (5 − 4νi) A

(a)
3

R3
i

r3

+12A(a)
4

R5
i

r5

]}
,

(a)
rθ = −3Gi sin 2θ

[
(7 + 2νi) A

(a)
1

r2

R2
i

+ A(a)
2 + 2 (1 + νi) A

(a)
3

R3
i

r3

−4A(a)
4

R5
i

r5

]
,

σ
(a)
θθ =

Gi

2

{[
4(1 + νi)
1 − 2νi

B(a)
1 +

4(1 − νi)
1 − 2νi

R2
i

r2
B(a)
2

]
−6 [5νi + 7 (2 + νi) cos 2θ ] A

(a)
1

r2

R2
i

−2 (−1 + 3 cos 2θ) A(a)
2

+2 (1 − 2νi) (5 + 3 cos 2θ) A(a)
3

R3
i

r3

− (3 + 7 cos 2θ) A(a)
4

R5
i

r5

}
,

(11)

here a = c for the coating solid and a = m for the ma-
trix. A(a)

1 , A(a)
2 , A(a)

3 , A(a)
4 and B(a)

1 , B(a)
2 are coefficients to be deter-

mined from boundary conditions. Values of these coefficients are
presented in the Supplementary Material S1.

For verification, we compare our theoretical solution with
finite element (FE) results. Details can be found in the Supple-
mentary Material S2.

3.2. Tuning of coating properties to those of an inclusion

Because cell volume influences a range of cell physiological
processes [1,44,45], we focus on how volumetric expansion of
cells can be controlled by the properties of a pericellular coating.
Cell volume changes over the course of cell cycle, increasing
during S-phase and decreasing through M-phase [46,47]. At any
phase of the cell cycle, rapid volume changes are possible due to
osmotic pressure perturbations and transmembrane fluid and ion
transport [48]. These volume changes affect protein concentra-
tions and molecular crowding [2,3], and affect cell stiffness [49],
folding and transport of proteins [50], and condensation of chro-
matin [51]. In the following, we focus on the volumetric strain
∆V/V and pressure change p of the liquid inclusion. The spher-
ical liquid inclusion becomes ellipsoidal in response to far field
uniaxial loading. Its linearized volumetric strain can be given by:

1
ε∞

∆V
V

=
1

ε∞

1
4πR3

i /3

{
4π
3

[
Ri + u(c)

r (r = Ri, θ = 0)
]

×

[
Ri + u(c)

r

(
r = Ri, θ =

π

2

)]
×

[
Ri + u(c)

r

(
r = Ri, θ =

π

2

)]
−

4πR3
i

3

}
=

1
ε∞Ri

[
u(c)
r (r = Ri, θ = 0) + u(c)

r

(
r = Ri, θ =

π

2

)
+u(c)

r

(
r = Ri, θ =

π

2

)]
,

(12)
4

where the first term in braces is the inclusion volume after apply-
ing load, and higher order terms are neglected in the derivation
of the latter expression.

By substituting the solution (10), we get the volume change of
the liquid inclusion:
1

ε∞

∆V
V

=
18α3GcGm(1 − νc )(1 − νm)

3 (4Gm + 3Ki)Gc (1 − νc ) +
(
α3 − 1

)
(4Gc + 3Ki) [2 (1 − 2νc )Gm + Gc (1 + νc )]

,

(13)

here α = Rc/Ri. Because 1
ε∞

∆V
V > 0, the volume of the liquid

inclusion increases when the far field load is tensile and decreases
when the far field load is compressive.

Setting Rc/Ri = 1 in Eq. (13) recovers the volume change for
he case of no coating reported by Chen et al. [52]:

1
ε∞

(
∆V
V

)
0

=
6Gm(1 − νm)
4Gm + 3Ki

. (14)

he volumetric tuning achieved by a coating can be described by
he difference of Eqs. (13) and (14): Eq. (15) which is given in
ox I.
A positive difference in Eq. (15) means that the volumetric

train of the inclusion is amplified by the coating, and a negative
ifference means that the volumetric strain of the inclusion is
ttenuated by the coating.
To determine the sign of the difference in Eq. (15), we use the

ulk modulus of the coating

c =
2Gc (1 + νc)

3 (1 − 2νc)
, (16)

and rewrite the exp. (15) as Eq. (17) which is given in Box II.
Because the denominator of the right hand side of exp. (17) is

positive, the sign of exp. (17) depends on the sign of Gc −Gm and
Ki − Kc , i.e.
1

ε∞

∆V
V

−
1

ε∞

(
∆V
V

)
0

⎧⎪⎨⎪⎩
> 0, Kc > Ki,Gc < Gm or Kc < Ki,Gc > Gm

= 0, Kc = Ki orGc = Gm

< 0, Kc < Ki,Gc < Gm or Kc > Ki,Gc > Gm

.

(18)

et us consider a special case to understand (17) and (18) in-
uitively, where the coating and matrix have the same Poisson
atio (so that Gc − Gm have the same sign as Kc − Km). If we
egard the bulk modulus as material stiffness, the volumetric
train is amplified by the coating when the stiffness increases or
ecreases monotonically from the matrix to inclusion. However,
he mechanical signal is attenuated by the coating when it is
ither the stiffest or least stiff of the three materials.
The pressure within the liquid inclusion can be written from

xps. (3) and (13) as:
p

Gmε∞

= −
18α3GcKi(1 − νc )(1 − νm)

3 (4Gm + 3Ki)Gc (1 − νc ) +
(
α3 − 1

)
(4Gc + 3Ki) [2 (1 − 2νc )Gm + Gc (1 + νc )]

,

(19)

here α = Rc/Ri is the ratio of the coating radius to the inclusion
adius. The negative sign represents that the inclusion pressure
ecreases when stretch is applied at far field.
For α = 1, exp. (19) yields the inclusion pressure for the case

f no coating:

p0
= −

6Ki(1 − νm)
. (20)
Gmε∞ 4Gm + 3Ki
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α

Fig. 3. Tuning of mechanical fields within a coated liquid inclusion embedded in a matrix that is loaded in uniaxial tension. Dashed lines represent attenuation
of pressure or dilatation relative to values expected in the absence of a coating; solid lines represent amplification. In these graphs, νc = 0.35, νm = 0.35 and

= Rc/Ri = 2. (a) Dilatation. (b) Hydrostatic pressure.
1
ε∞

∆V
V

−
1

ε∞

(
∆V
V

)
0

=
12

(
α3

− 1
)
(Gc − Gm) [3Ki (1 − 2νc) − 2Gc (1 + νc)]Gm (1 − νm)

(4Gm + 3Ki)
{
3 (4Gm + 3Ki)Gc (1 − νc) +

(
α3 − 1

)
(4Gc + 3Ki) [2 (1 − 2νc)Gm + Gc (1 + νc)]

} .
(15)

Box I.
1
ε∞

∆V
V

−
1

ε∞

(
∆V
V

)
0

=
36

(
α3

− 1
)
(Gc − Gm) (Ki − Kc)Gm (1 − νm) (1 − 2νc)

(4Gm + 3Ki)
{
3 (4Gm + 3Ki)Gc (1 − νc) +

(
α3 − 1

)
(4Gc + 3Ki) [2 (1 − 2νc)Gm + Gc (1 + νc)]

} . (17)

Box II.
|p| − |p0|
Gmε∞

=
36

(
α3

− 1
)
(Gc − Gm) (Ki − Kc) Ki (1 − νm) (1 − 2νc)

(4Gm + 3Ki)
{
3 (4Gm + 3Ki)Gc (1 − νc) +

(
α3 − 1

)
(4Gc + 3Ki) [2 (1 − 2νc)Gm + Gc (1 + νc)]

} . (21)

Box III.
a
l

Then, the effect of coating on inclusion pressure can be expressed
as Eqs. (21) which is given in Box III.

Obviously,

|p| − |p0|
Gmε∞

⎧⎪⎨⎪⎩
> 0, Kc > Ki,Gc < Gm or Kc < Ki,Gc > Gm

= 0, Kc = Ki orGc = Gm

< 0, Kc < Ki,Gc < Gm or Kc > Ki,Gc > Gm

. (22)

Comparing exps. (18) and (22), we observe that the tuning of
pressure by the coating follows the same trends as the tuning of
volumetric strain.

4. Results

The dilatation (change in volume per unit initial volume) and
hydrostatic pressure within a liquid inclusion can be tuned by
altering the mechanical properties and thickness of its coating.
These effects are strongly dependent upon the relative mechani-
cal properties of the inclusion, coating, and matrix, but are only
weakly dependent upon the Poisson ratios of the coating and
5

matrix. In the examples that follow, we chose νc = 0.35 and
νm = 0.35, which are reasonable for biomaterials and tissues,
typically on the order of 0.3–0.5.

The dilatation and hydrostatic pressure in a liquid inclusion
subjected to far uniaxial loading can be amplified, or attenuated,
by the properties of its coating, as predicted by exp. (13) and
exp. (22). As evident in Fig. 3, for α = Rc/Ri = 2, these
quantities depend upon the relative properties of the inclusion,
coating, and matrix. In regions represented by solid lines, the
coating amplifies the response of the inclusion relative to the
dilatation or hydrostatic pressure that would exist in the absence
of a coating; while in regions represented by dashed lines, the
coating attenuates these responses. The inclusion dilatation and
pressure are attenuated when the shear modulus of the coating
is either much greater or smaller than that of the matrix, and
amplified when they have similar magnitude.

The dilatation of the liquid inclusion can also be tailored by
modulating the coating thickness (Fig. 4, with values of Gc/Gm
nd Kc/Ki such that all lines satisfy Ki/Gm = 1), but only over a
imited range of coating thickness. The inclusion is sensitive to the
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Fig. 4. The effect of coating thickness on the volumetric strain of the inclusion. (a) A coating can enhance the amplification or attenuation of mechanical signals
in a fluid filled inclusion. However, the sign of the effect (that is, the amplification or attenuation) depends upon the relative material properties of the inclusion,
coating, and matrix. (Dashed line: no coating; upper region: amplification region; lower region: attenuation). Parameters are chosen such that Ki/Gm = 1 in this
igure. When Rc/Ri ≥ 3, the effect of coating thickness reaches an asymptote. (b) For Rc/Ri = 2, the effect of a coating, as measured by the ratio ε

Rc /Ri=2
V /ε

Rc /Ri=∞

V
see text) is at least 2/3 of the maximum, regardless of the relative stiffnesses of phases. In these figures, νc = 0.35 and νm = 0.35.
t
M
i

p
e

hickness of the coating for coating thicknesses in the range 1 ≤

c/Ri ≤ 2, and reaches an asymptote of insensitivity near Rc/Ri =

. Although the coating could affect the degree of attenuation or
mplification of dilatation, the sign of the effect (that is whether
mplification or attenuation occurs) is determined exclusively by
he relative mechanical properties of the coating.

Note that the asymptotic behavior in terms of coating thick-
ess in Fig. 4 (a) does not mean that the matrix properties become
rrelevant in the limit of a thick coating. To clarify this, we have

lim
→∞

1
ε∞

∆V
V

=
18GcGm(1 − νc)(1 − νm)

(4Gc + 3Ki) [2 (1 − 2νc)Gm + Gc (1 + νc)]
,

r

lim
→∞

1
Gmε∞

∆V
V

=
18Gc(1 − νc)(1 − νm)

(4Gc + 3Ki) [2 (1 − 2νc)Gm + Gc (1 + νc)]
,

ccording to (13). The two expressions above show that the me-
hanical properties of the matrix are important for the volumetric
train in the thick coating limit, no matter what far field stress
r strain is prescribed. The mechanism for this is intuitive: the
orce acting on the coating-matrix boundary, which will affect the
olumetric strain of the inclusion, depends on both the coating
nd the matrix, regardless of the far field stress or strain that is
rescribed.
To explore sensitivity to coating thickness, we studied the case

f the coating thickness equaling the coating radius (Rc/Ri = 2)
nd explored the ratio ∆εα

V/∆ε∞

V , where ∆εα
V is defined as

ε
Rc/Ri
V =

∆V (Rc/Ri)

V
−

(
∆V
V

)
0
, (23)

nd ∆εα=∞

V is defined as

εα=∞

V =
∆V (Rc/Ri = ∞)

V
−

(
∆V
V

)
0
, (24)

e represent the ∆εα
V and ∆ε∞

V in Fig. 4(a). We plot ∆εα=2
V /∆ε∞

V
in Fig. 4(b) for several values of Ki/Gm. All lines pass through
the same point when Gc/Gm = 1, which means that the coating
material is the same as the matrix. The coating effect is at least
2/3 of the maximum when Rc/Ri = 2, independent of the coating
stiffness. Results are similar for the influence of coating thickness
on hydrostatic pressure (see Supplementary material S3).
6

5. Mechanism of mechanical tuning by coating

5.1. Radial stress transmission through the coating

To simplify the solution, we used superposition to replicate
a uniaxial load, and noted that in simple shear, which can be
represented by orthogonal stretch and compression, the inclusion
volume does not change:

σ∞ =

⎛⎜⎝σ∞ 0 0

0 0 0

0 0 0

⎞⎟⎠ =

⎛⎜⎜⎜⎝
σ∞

3
0 0

0
σ∞

3
0

0 0
σ∞

3

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎝
σ∞

3
0 0

0 −
σ∞

3
0

0 0 0

⎞⎟⎟⎠ +

⎛⎜⎜⎝
σ∞

3
0 0

0 0 0

0 0 −
σ∞

3

⎞⎟⎟⎠ (25)

where the latter two terms represent simple shear. Considering
that simple shear does not change the inclusion volume, the
volumetric strain of the inclusion is induced by the radial com-
ponent in the far field load, i.e., the first term in Eq. (25). The
volumetric strain arising from a uniaxial loading is thus the same
as that arising from a uniform radial load. The elastic fields of
the problem under radial load are shown in the Supplementary
Material S4, which are superposed by elastic fields derived in (10)
and (11) and are analogous to those in Saadat et al. [6].

From Eqs. (18) and (22) we observe that the coating effect on
the inclusion volumetric strain vanishes when either Ki = Kc or
Gc = Gm. We will first explain these critical cases. For the case of
Ki = Kc , the inclusion and coating have the same compressibility
and behave like an inclusion with radius Rc and bulk modulus Kc
when uniform radial load is applied. The elastic fields for this case
(Supplementary Material S4) also show this: the stress field in the
coating is uniform and the same as the inclusion. For Gc = Gm,
he coating effect vanishes because, as derived in Supplementary
aterial S4, the elastic fields in the coating and inclusion are

ndependent of coating thickness Rc/Ri, including Rc/Ri = 0.
To explore how dilatation and pressure depend on material

roperties in the solution of Supplementary Material S4, we again
xplored the case of νc = 0.35 and νm = 0.35 and studied a range

of coating shear moduli.
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Fig. 5. Investigation of the coating effects on the inclusion pressure. The inclusion pressure depends on the transmission of radial stress through the coating ((a) and
(b)). (a) represents the case of Ki/Gm = 0.1, and (b) represents the case of Ki/Gm = 10. In these figures, we fix the Poisson ratio of the coating and matrix, νc = 0.35
and νm = 0.35. The blue lines represent the cases of stiff coating (i.e. Kc/Ki = 60, Gc/Gm = 2 in (a), Kc/Ki = 6, Gc/Gm = 20 in (b)). The red lines represent the cases
of soft coating (i.e. Kc/Ki = 0.6, Gc/Gm = 0.02 in (a), Kc/Ki = 0.06, Gc/Gm = 0.2 in (b)). The black lines represent the cases of the coating with amplification effect
(i.e. Kc/Ki = 6, Gc/Gm = 0.2 in (a), Kc/Ki = 0.6, Gc/Gm = 2 in (b)). Green lines represent the case of no coating. According to the value of the green lines in the
inclusion (i.e. r/Ri ≤ 1), we divide two regions. The region above the green line is the amplification region and the region below the green line is the attenuation
region. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
According to the solution in Supplementary Material S4, we
plot the radial stress in the inclusion, coating and matrix in
Fig. 5(a) for Ki/Gm = 0.1 and (b) for Ki/Gm = 10. In these
figures, the blue lines represent the cases of a stiff coating (i.e.
Kc/Ki = 60, Gc/Gm = 2 in (a), and Kc/Ki = 6, Gc/Gm = 20
in (b)). The red lines represent the cases of a soft coating (i.e.
Kc/Ki = 0.6, Gc/Gm = 0.02 in (a), and Kc/Ki = 0.06, Gc/Gm = 0.2
in (b)). The black lines represent the cases of the coating with
amplification effect (i.e. Kc/Ki = 6, Gc/Gm = 0.2 in (a), and
Kc/Ki = 0.6, Gc/Gm = 2 in (b)). Green lines represent the case
of no coating. According to the value of the green lines in the
inclusion (i.e. r/Ri ≤ 1), two regions emerge. The region above
the green line is the amplification region and the region below the
green line is the attenuation region. The dashed lines represent
the limiting cases of a rigid coating and a cavity.

For the case of a stiff inclusion, the radial stress increases
rapidly in the matrix, but decays rapidly in the coating (in the
direction from the matrix to the inclusion). For the case of soft
inclusion, the radial stress decays rapidly in the matrix, and
increases slightly in the coating (in the direction from the matrix
to the inclusion). Cases of both stiff and soft coatings fall in
the attenuation region. However, for the case of a coating with
amplification effect, the radial stress changes monotonously from
the far field to the inclusion. This case falls in the amplification
region.

5.2. Tuning mechanisms

Inspired by the radial stress transmission from the far field to
the inclusion (Fig. 5), we present an intuitive physical explanation
for the attenuation and amplification effects of coating. In this
part, we only state intuitive views. Whether these intuitive views
are correct can be justified by the solution in the Supplementary
Material S4. We note that although the explanation is for extreme
situations, it at least provides us with an intuitive view of the
attenuation and amplification effects of the coating.

We begin with a basic lemma that can be established with
a thought experiment for a non-coated liquid inclusion embed-
ded in a radially loaded infinite or finite solid (Fig. 6(a–b)): the
7

pressure pi within the inclusion will differ from the applied radial
far-field or boundary load, pload, by an amount:

pi − pload

⎧⎪⎨⎪⎩
> 0, Ki > Ks

= 0, Ki = Ks

< 0, Ki < Ks

(26)

with
⏐⏐pi − pload

⏐⏐ increasing with |Ki − Ks|. The argument is clear
by first considering the limiting case of a compliant inclusion,
with properties approaching those of a void (Ki ≪ Ks). Because
the void cannot bear a load, the pressure in the inclusion will be
small compared to the remote pressure, and pi < p∞. For the
case of a relatively rigid inclusion (Ks ≪ Ki), which means that
the liquid deforms less under pressure loading than the solid, an
extra pressure is needed to restrain the frustrated dilatation of
the solid, and pi > p∞. For the case of the liquid having the same
bulk modulus as the solid, the two will have same volumetric
strain under a radial load and will experience a uniform stress
field, pi = p∞. This is evident from the green lines representing
the case of no coating in Fig. 5).

To extend this to understand the mechanics of a coated liquid
inclusion, we provide insight into attenuation and amplification
of pressure and dilatation by a coating surrounding an inclusion
(Fig. 6(c)). We first consider the case of Gc < Gm. In the limit of
Gc so small that the coating can be treated as liquid (Fig. 6(d)),
the problem becomes one of two liquids, with bulk moduliKi and
Kc , within an elastic solid. In this case, the effective bulk modulus
Kci of the composite liquid inclusion satisfies:

Kci

⎧⎪⎨⎪⎩
> Ki, Kc > Ki

= Ki, Kc = Ki

< Ki, Kc < Ki

. (27)

The reference case is the problem that a liquid inclusion with
bulk modulus Ki embedded in the matrix. If same radial load
p∞ is applied to the limit case and reference case (Fig. 6(d)), we
assume the inclusion pressure in the limit case to be pi and in
the reference state to be pi . We compare pi and pi to evaluate
0 0
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f

Fig. 6. Schematic of an intuitive explanation of how tuning can be achieved by a coating. A liquid inclusion with bulk modulus Ki embedded in an infinite (a) or
inite solid (b) with bulk modulus Ks . Radial stress pload is applied on the boundary of the solid, which induces a liquid pressure pi . The difference between pi and
pload depends on the relative value of Ki and Ks . Based on this property as a lemma, we give an intuitive explanation of the amplification and attenuation effect of
the coating for some limit cases. The case to be explained is shown in (c). (d) is the limit case for Gc < Gm , i.e. Gc is so small to be considered as a liquid. (e) is the
limit case for Gc > Gm , i.e. Gm is so small to be considered as a liquid. The tuning role in limit cases (d) and (e) is intuitive based on the lemma shown in (a) and
(b). In these figures, the meshed parts represent solids and unmeshed parts represent liquids.
a
B
o
h

p

f
t
b

p

the coating effect. We should note that pi is also the pressure of
the liquid composite, because the pressure is uniform in a liquid
composite. According to the Lemma stated above, pi > pi0 if
the effective bulk modulus Kci of the mixture is greater than the
bulk modulus Ki of the inclusion, pi = pi0 if the effective bulk
modulus Kci of the composite equals to the bulk modulus Ki of
the inclusion, and pi < pi0 if the effective bulk modulus Kci of the
composite is smaller than the bulk modulus Ki of the inclusion.
According to (27), we have

pi − p0i

⎧⎪⎨⎪⎩
> 0, Kc > Ki

= 0, Kc = Ki

< 0, Kc < Ki

(ifGc < Gm) . (28)

This expression gives an intuitive view of coating effects for the
case of Gc < Gm.

We then consider the case of Gc > Gm. For Gm so small that the
matrix can be treated as a liquid (Fig. 6(e)), the reference state is
the problem of a liquid inclusion with bulk modulus Ki embedded
in a liquid matrix. If same radial load p∞ is applied to the limit
8

case and reference case, we assume the inclusion pressure in
the limit case to be pi and in the reference state to be pi0. We
gain compare pi and pi0 to evaluate the effect of the coating.
ecause the matrix can be treated as a liquid, the load applied
n the coating by the matrix is p∞. According to the lemma, we
ave

i
− p∞

⎧⎪⎨⎪⎩
< 0, Kc > Ki

= 0, Kc = Ki

> 0, Kc < Ki

, (Gc > Gm) (29)

or the limit case. We should also note that pi0 = p∞, because
he pressure is uniform in liquid. Then we have the comparison
etween pi and p∞:

i
− p0i = pi − p∞

⎧⎪⎨⎪⎩
< 0, Kc > Ki

= 0, Kc = Ki , (Gc > Gm) (30)
> 0, Kc < Ki



X. Chen, M. Li, S. Liu et al. Extreme Mechanics Letters 41 (2020) 101049

o
r

T
c

r
u

Fig. 7. Examples of coated inclusions. A coating can amplify or attenuate dilatation experienced by a fluid-filled inclusion. Data (cf. Table S1) interpreted through
ur model suggest that amplification can switch to attenuation in certain pathologies. The first and third quadrants represent attenuation, and the second and fourth
epresent amplification.
his expression gives an intuitive view of coating effects for the
ase of Gc > Gm.

6. Application to coated inclusions in physiology and nature

To explore the entire range of situations expected in biological
applications, we explored distributions of coated liquid inclu-
sions ranging from sparse cells, to cell aggregates, to organelles
within a homogenized cell (Supplementary Material S5). For cell
aggregates, the mechanical fields from neighboring cells can be
expected to interact. There is a rich history in the field of ho-
mogenization theory in addressing these interactions, including
the self-consistent method from micromechanics [53], wherein
the mechanical properties of the matrix are chosen to represent
the effects of neighboring cells. Note that according to the results
of Section 5.1, the volumetric strain of the inclusion is induced
by the radial component in the far field load, no matter the
inclusion is liquid or solid, and that according to the results of the
Supplementary Material S5, the solution for dilatation of solid and
liquid inclusions under radial load are identical, and amplification
or attenuation of volumetric strain is qualitatively determined by
the sign of (Gc − Gm) (Ki − Kc) in both cases, regardless of Poisson
atios of coating and matrix. In this section, we use this rule to
nderstand coated inclusions in nature, with Kc/Ki and Gc/Gm

estimated as in Table S1 (Fig. 7). With the plane of (Kc/Ki,Gc/Gm)
divided into four quadrants, quadrants I and III represent condi-
tions of attenuation, and quadrants II and IV represent conditions
of amplification region.

At the cellular length scale, we begin by considering cells in
connective tissues such as bone, tendon, and cartilage. Tendon
and bone are stiff (G > 100 kPa) compared to the cells that
they contain, which leads to an interesting puzzle: in vitro, the
mechanosensitive osteocytes that are critical to bone homeosta-
sis show responses to strains greater than 5 × 10−3, but these
levels exceed injury thresholds in bone (∼ 3.5 × 10−3) [54].
However, osteocytes are surrounded by a coating of pericellular
9

matrix (PCM) with bulk modulus greater than that of the cells
themselves, and with shear modulus smaller than that of the
matrix [54]. In this case, the placement of osteocytes on Fig. 7
shows that the PCM amplifies mechanical signals. Similar results
occur for PCM surrounding the chondrocyte cells in cartilage
(Fig. 7; see also [6,55]. In both cases, volumetric strain is amplified
by the PCM.

A number of cells remodel their ECM [56], and can further
stiffen their environment by contraction [13,57]. These cells
thereby form a PCM coating. Plotting Kc/Ki and Gc/Gm for a range
of cells (Fig. 7) reveals that certain cancerous cell (‘‘ 1 ’’ in Fig. 7)
differ from fibroblasts, smooth muscle cells, and epithelial cells:
cancer cell PCM attenuates volumetric strain, while those of their
healthy counterparts amplify volumetric strain. Many cancer cell
aggregates are surrounded by collagen coatings, the bulk modulus
and shear modulus of which can be greater than those of the
cancer cell aggregates and matrix (Table S1). On Fig. 7 (numbers
‘‘ 2 ’’ -‘‘ 5 ’’), the evolution from cancer cell to tumor evolution
appears as a process of further attenuation of volumetric strain
of its inclusion, rather like an egg shell insulates an embryo
(Fig. 7), further insulating the cells within the aggregate from
physiological signaling.

Another pathology characterized by our model as progressive
and maladaptive changes to mechanosensation is fibrosis, i.e.,
the formation of excess fibrous connective tissue that is stiffer
than healthy tissues and cells (Table S1). Fibrosis can arise from
scarring and from diseases such as hepatitis C, hypertension,
and chronic inflammation [58–60]. Remodeling of ECM and syn-
thesis of excess ECM proteins occurs in the direct vicinity of
fibroblasts [61,62], and we therefore treat fibroblasts as coated
inclusions. In the context of our visualization in Fig. 7, fibrosis
upsets a delicate balance and causes a shift of tissue proper-
ties to the quadrant in which attenuation occurs. Fibrosis thus
attenuates mechanical signals sensed by fibroblasts.

Glial scars represent another case of formation of a coating
surrounding a cell, this time in the central nervous system [63,
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4]. These coatings arise following injury and interfere with heal-
ng. According to our model, they also attenuate deformation of
eurons (Fig. 7), consistent with the observation of Moeendarbary
t al. that neural regeneration is inhibited by the increasing
ismatch between stiff glial scars and the tissues of the cen-

ral nervous system, which become more compliant following
njury [64].

The model can also be applied to organelles within cells, again
onsidering cells that are rounded in the early stages of exposure
o ECM, or that are constitutively round such as chondrocytes
ithin cartilage. The nucleus of a cell is connected to the ECM by
roteins called the LINC complex that connect to the cytoskele-
on [65]. The nuclear membrane is coated by laminas that can be
lastic or viscoelastic, and that can remodel in response to the cell
icroenvironment and pathology [66–68]. A central question in
echanobiology is how the nucleus senses external mechanical
ignals [69,70]. The whole nucleus (including laminated nuclear
nvelope and nucleoplasm) is 5–10 times stiffer than the cyto-
lasm, and the laminated nuclear envelope has a thickness that
s about 10% the radius of the nucleus [71,72]. Upon treating
he cytoplasm as a coating around the nucleus and estimating
c/Ki = 2.00 × 102

∼ 1.00 × 103 and Gc/Gm = 2, 00 × 102
∼

.00 × 102, Fig. 7 suggests that the lamina insulates the nucleus
rom large deformation. This however changes over cell spread-
ng. Cytoplasm is more compliant than both the nucleus and ECM
n an unspread cell, but develops a stiffness between that of
he nucleus and ECM during cell spreading [16,73]. Plotting this
rocess on Fig. 7 suggests that cell spreading thus enables the
uclei to increasingly ‘‘feel’’ their microenvironments.
Modulating cell volume further enables cells to modulate this

echanosensitivity. The sensitivity to coating size drops dramati-
ally for Rc/Ri ≥ 2 and reaches at least 2/3 of the maximum when
c/Ri = 2, no matter the stiffness of the coating. In other words,
c/Ri = 2 is a cell size that enables tuned pressure transmission
o the nucleus, but at a minimum of volume. This corresponds to
cell nucleus that is about 10% of the volume of a suspended,
nspread cell, which is a characteristic value.

. Conclusions

Our analytical model of the mechanics of a coated liquid inclu-
ion identified a key quantity that determines whether dilatation
s amplified or attenuated by a coating: if (Gc − Gm) (Ki − Kc) >

, the coating amplifies dilatation of the inclusion; if (Gc − Gm)
Ki − Kc) < 0, the coating attenuates dilatation. The thickness
f the coating can accentuate the effect of the coating, but not
hange the effect from amplification to attenuation, and the effect
eaches an asymptote for coatings of thickness more than three
imes the radius of the inclusion.

When studied in the context of our model, data suggested
hat cells, cell aggregates, and subcellular organelles can tune
he mechanical stimuli that they experience by remodeling the
oatings surrounding them. At the level of subcellular organelles,
he nuclear lamina may serve as a coating that either insulates
he nucleus, or, in the case of a 10% nucleus-to-cytoplasm ratio
n the early stages of cell spreading, might amplify mechanical
ues. In healthy cells, these coatings are typically tuned to amplify
olumetric strains; in pathologies including fibrosis and certain
ancers, the coatings that develop around cells and cell aggregates
erve to insulate cells from the mechanical stimuli in their envi-
onment. Results suggest pathways by which these cells might
nsulate themselves from mechanobiological cues that could re-
erse their pathological course, and motivate further study of the
ole of pericellular matrix in the development of pathology.
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