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A B S T R A C T   

Liquid-filled capillary tubes are common structures in nature and engineering fields, which often function via 
vibration. Although liquid-solid interfacial tension plays important roles in the vibration behavior of the liquid- 
filled capillary tube, it remains elusive how the interfacial tension influences the natural frequency of capillary 
tube vibration. To address this, we developed a theory of beam-string structure to analyze the influence of liquid- 
solid interfacial tension on the vibration of a liquid-filled capillary cantilever. We used glass capillary tubes as a 
demo and experimentally validated the theory, where the reduced liquid-solid interfacial tension in a capillary 
tube decreases the natural frequencies of small-order modes. We then performed theoretical analysis and found 
that the change of elastocapillarity number, slenderness ratio and inner/outer radius ratio of capillary tubes 
enables: in higher order modes, a nonmonotonic change of natural frequency due to mode transformation be-
tween a beam and string; for lower order modes, decrease in the natural frequency to zero (increase from zero) 
due to mode disappearance (appearance). The developed theory would provide guidelines for high-accuracy 
design of capillary sensors.   

1. Introduction 

Capillary tubes filled with different liquids and of different sizes are 
commonly found in nature (e.g. trichome (Liu et al., 2017; Zhou et al., 
2017)) and engineering (e.g. microchannel resonator in MEMS (Belar-
dinelli et al., 2017; Burg and Manalis, 2003)). The vibration of 
liquid-filled capillary structures plays significant roles in some of their 
functions and applications. For instance, the Arabidopsis thaliana leaf 
trichome is a complex liquid-filled capillary structure with branches, 
playing the roles of an active mechanosensory switch (Zhou et al., 2017) 
and acoustic antennae (Liu et al., 2017) through vibration. The sus-
pended microchannel resonators are often used to characterize the mass, 
size of particles and cells in fluid (Bryan et al., 2013; Burg and Manalis, 
2003; Godin et al., 2007). Microchannel resonators are also used to 
characterize the density (Kim et al., 2012; Najmzadeh et al., 2007) and 

viscosity (Khan et al., 2013; Lee et al., 2012) of fluid based on the 
vibrational properties of the device. Therefore, it is of great importance 
to understand the vibration behaviors of liquid-filled capillary structures 
for the application of capillary sensors. 

When the characteristic size of a structure decreases to microns or 
nanometers, the role of surface/interface tension becomes increasingly 
obvious in its mechanical behavior due to the increasing ratio of sur-
face/interface area and volume (Sharma et al., 2003; Wang and Feng, 
2007; Xia et al., 2011). For a microscale structure (i.e., capillary tube), 
the role of liquid-solid interfacial tension on its vibration cannot be 
neglected. Some theoretical studies have been performed focusing on 
the vibration of beams (Marur and Prathap, 2005; Nandwana and Maiti, 
1997) and liquid-filled pipes (no interfacial effect accounted for) 
(Gonçalves and Batista, 1988; Hatfield et al., 1982; Ting and Hosseini-
pour, 1983). Numerical simulations based on finite element method 
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(FEM) have also been used to analyze the harmonic response and 
amplitude of capillary tubes without considering the interfacial effect 
(Gao et al., 2008; Hu et al., 1999). The effect of liquid-solid interfacial 
tension on the natural frequency of capillary tube vibration has not been 
thoroughly explored yet. 

In this study, we developed a general theoretical model to under-
stand the effect of liquid-solid interfacial tension on the natural fre-
quency of a capillary tube. To verify the theory, we used glass capillary 
tubes as a demo and experimentally recorded the vibration of cantilever 
capillary tubes filled with solutions containing different concentrations 
of cleanser. The liquid-solid interfacial tension can be tuned by changing 
the concentrations of the cleanser and the effects of liquid-solid inter-
facial tension on vibration can be measured with a laser displacement 
sensor. With this validated model, we investigated the change of natural 
frequency with elastocapillarity number (dimensionless interfacial ten-
sion), slenderness ratio and inner/outer radius ratio of the capillary 
tube. The developed theory would provide guidelines for design of 
capillary sensors. 

2. Theoretical analysis 

2.1. Vibration theory of a liquid-filled capillary tube 

Due to liquid-glass interfacial tension, the capillary tube may be 
regarded as the superposition of a cantilever beam and a string (i.e. 
beam-string structure). Fig. 1a shows the cross-section of the capillary 
and a micro-segment of the capillary with interfacial tension (γsl). Based 
on the vibration theories of Euler-Bernoulli beam (Timoshenko, 1983) 
and string (Carrier, 1945; Keller, 1959), the deflection of the capillary 
tube (u) is governed by: 

� a2∂4u
∂x4 þ b2∂2u

∂x2 ¼
∂2u
∂t2 (1)  

where a ¼
ffiffiffiffi
EI
ρA

q
and b ¼

ffiffiffiffi
T

ρA

q
; T ¼ 2πriγsl is the “string tension”; EI is the 

flexural rigidity of capillary tube; E is the Young’s modulus and I ¼

π
4 ðr

4
o � r4

i Þ is the moment of inertia, in which ri and ro are inner and outer 

radius of the tube; ρ ¼ ρsolid þ
Aliquid
Asolid

ρliquid is the effective density of liquid- 
filled capillary tube; ρsolid and ρliquid are the density of the tube and liquid 
in it, respectively. A ¼ πðr2

o � r2
i Þ is the cross-sectional area of capillary 

tube, in fact A ¼ Asolid; Aliquid is the cross-sectional area of the solution; 
γsl is the interfacial tension between the tube and liquid. 

We consider that the capillary tube is fixed on one end and free on 
the other end, as: 
8
><

>:

uð0; tÞ ¼ 0;
∂u
∂x
jx¼0 ¼ 0;

∂2u
∂x2 jx¼l ¼ 0;

�

EI
∂3u
∂x3 þ T

∂u
∂x

�

jx¼l ¼ 0

ujt¼0 ¼ 0; utjt¼0 ¼ 0
(2)  

where l is the length of capillary tube. Solving Eq. (1) with the method of 
variables separation and the boundary conditions of Eq. (2), we can 
obtain the following eigen equation of capillary tube vibration: 
�
�
�
�
�
�
�

0 1
α 0

0 1
β 0

0 0
A41 A42

A33 A34
A43 A44

�
�
�
�
�
�
�

¼ 0 (3)  

where A33 ¼ β½αsinðαlÞ þ βshðβlÞ�; A34 ¼ α2cosðαlÞþ β2chðβlÞ; A41 ¼ �

EIα3cosðαlÞþ TαcosðαlÞ; A42 ¼ EIα3sinðαlÞ � TαsinðαlÞ; A43 ¼

EIβ3chðβlÞ þ TβchðβlÞ; A44 ¼ EIβ3shðβlÞ þ TβshðβlÞ. α and β are functions 
of angular frequency ω, as: 
8
>>>>><

>>>>>:

α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ 4a2ω2

p
� b2

2a2

s

β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ 4a2ω2

p
þ b2

2a2

s (4) 

Upon substituting Eq. (4) into Eq. (3), the angular frequency of 
capillary tube ω can be solved with a numerical method. The dimen-
sionless frequency (ω=ωo) can be expressed using the dimensionless 
parameters of slenderness ratio (l=ro), inner/outer radius ratio (ri=ro) 
and elastocapillarity number (γsl=Ero) (see Supplementary Materials for 

the details). Here, the scaled frequency ωo ¼
1
R

ffiffi
E
ρ

q
denotes the natural 

frequency of a solid beam with unit slenderness ratio but without 
interfacial tension (see Supplementary Materials for the details). The 
slenderness ratio, the inner/outer radius ratio and the elastocapillarity 
number can reflect the size effect of the capillary tube. 

2.2. Frequency ratio of a beam to a string (FRBS) 

Based on the analysis above, the capillary tube can be considered as a 
complex structure of beam and string. Thus, there are two extreme sit-
uations: pure beam and pure string. Based on classical vibration theories 
(Carrier, 1945; Keller, 1959; Timoshenko, 1983), the natural fre-
quencies of a cantilever Euler-Bernoulli beam are given by: 

wbeam¼ β2
i

ffiffiffiffiffiffi
EI
ρA

s

(5)  

The boundary condition is 

uð0; tÞ¼ 0;
∂u
∂x
jx¼0¼ 0;

∂2u
∂x2 jx¼l ¼ 0;

�

EI
∂3u
∂x3

�

jx¼l ¼ 0  

where βil ¼ f1:8751;4:6941;7:8548;10:9955; 14:1372;…g are the 
roots of cosðβilÞchðβilÞ ¼ � 1. 

The natural frequencies of a one-end fixed string are: 

wstring¼
ð2iþ 1Þπ

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πriγsl

ρA

s

(6) 

Fig. 1. (Color online) (a) A section and micro segment of a capillary tube with 
interfacial tension (γsl); (b) Experimental setting-up. Capillary tube is fixed on a 
piezoelectric patch clamped by a steel trap, which is fixed on a magnet base. 
Laser displacement sensor is used to detect the y-displacement at the free end of 
the capillary tube. 
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And the boundary condition is: uð0; tÞ ¼ 0;
�

∂u
∂x

�

jx¼l ¼ 0. 

We defined the frequency ratio of a beam to a string (FRBS), as: 

ϕ¼
wbeam

wstring
¼

2lroβ2
i

ð2iþ 1Þπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � η4Þ

ηλ

s

(7)  

where η ¼ ri=ro, λ ¼ γsl=Ero. Note that ϕ is also proportional to a= b, 
reflecting the relative roles of the beam and the string in capillary tube 
vibration. The vibration of capillary tube is more like that of a string 
when ϕ is near zero. In contrary, the vibration of capillary tube is more 
like that of a beam when ϕ is much larger than 1. For a simply supported 

beam, Eq. (7) becomes: ϕ ¼ iπro
l

ffiffiffiffiffiffiffiffiffiffiffi
ð1� η4Þ

ηλ

q

. 

3. Experimental methods 

3.1. Experimental set-up for vibration measurement of liquid-filled 
capillary tube 

We used a liquid-filled cantilever capillary tube to characterize the 
vibration behavior (Fig. 1b). We used two types of capillary tubes. 
Capillary tube I has a length of 100 mm and inner and outer diameters of 
0.58 mm and 1 mm, respectively. Capillary tube II has a length of 100 
mm and inside and outer diameters of 0.86 mm and 1.5 mm, respec-
tively. We used glass tubes as an experimental demo to study capillary 
structures because the properties of glass are well known and it is 
convenient for experimental design of variables control. The y-direction 
displacement of the end of each capillary tube was detected using a laser 
displacement sensor (Micro-Epsilon, ILD2300), in which the laser power 
is less than 1mW. The chirp signal was used to drive tube vibration, 
which contains a large range of mode frequencies. In the experiment, we 
used the chirp signal with the frequency range of 20–1000 Hz (i.e., 
sweeping from 20 Hz to 1000 Hz), which can easily detect the natural 
frequencies in this range. Since each experiment with a certain interfa-
cial tension took 30s, the heating effect of the laser on the liquid is 
negligible (increase of temperature less than 0.1 �C) and thus has little 
influence on the interfacial tension and density of liquid. One end of the 
capillary tube was attached to a piezoelectric patch driver and the other 
end is free. The piezoelectric patch is clamped on a steel trap that was 
attached to a magnetic base. In order to prevent the liquid in the tube 
from evaporating or flowing out, we used a layer of wax to fill both end 
of the tube. To verify the measurement approaches, we compared the 
spectrum map from experiment and simulation of an empty capillary 
tube (Fig. S4). The frequencies corresponding to the peaks in the spec-
trum map of simulation agree well with the experimental results, sug-
gesting the present experimental approaches could well characterize the 
vibration behavior of capillary tubes. 

3.2. Solution preparation 

To explore the effect of interfacial tension (between glass and water) 
on the vibration of liquid-filled capillary tubes, a series of solutions with 
different surface tensions are needed. Cleanser (lower surfactant con-
centration) is commonly adopted to prepare solutions with proper 
concentrations, which is easily accessible and has little effect on other 
properties except surface tension. We thus prepared a series of water- 
based solutions with different volume fractions of cleanser (surfac-
tants, water solvent, softening water and so on): 0, 0.1%, 0.2%, 0.3%, 
0.4%, 0.5%, 0.8%, 1%. 

3.3. Contact angle measurement 

Measurement of contact angle is a common method to characterize 
the surface energy of a solution. We used glass slides (similar material 
and surface toughness with the capillary tubes) to measure the contact 

angle of liquid drops. We pipetted 1 μL of the prepared solutions onto the 
glass slide. Then, under an ultra-depth of field microscope (Keyence, 
VHX-5000), we took side-view pictures of the drop and measured the 
contact angles for solutions having different volume fractions of cleanser 
(Fig. S2a). 

The surface tension of pure water at 25 �C is 71.96 mN/m (Vargaftik 
et al., 1983). According to the Young-Laplace equation (γs ¼ γlcosθþ γsl) 
and the Young-Good-Girifalco equation (γsl ¼ γsþ γl � 2 ffiffiffiffiffiffiffiγsγl

p ) (Girifalco 
and Good, 1957; Good and Girifalco, 1960), the surface tension (γl) and 
solid-liquid interfacial tension (γsl) can be calculated (Fig. S1, S2b&c, 
where γs is the surface tension of glass. When increasing volume fraction 
of cleanser, both γl and γsl decrease, approaching eventually a constant 
value. Fig. S2b&c show that in the range of 0–0.4%, surface tension and 
interfacial tension change obviously. Based on these results, the solu-
tions with 0–0.4% cleanser were used for the present experiments. 

4. Results and discussion 

4.1. Validation of the theory 

To study the effect of interfacial tension on the transverse vibration 
(y-direction) of the cantilever capillary tube, we used solutions with 
varying volume fractions of cleanser: 0, 0.1%, 0.2%, 0.3% and 0.4%, so 
that both the surface and interfacial tension display obvious changes. 
We used fast Fourier transform (FFT) to analyze the transverse vibration 
of the capillary tube in frequency domain. 

As the volume fraction of cleanser is changed, the spectrum maps of 
liquid-filled capillary in transverse vibration show similar changes: the 
frequencies of peaks decrease with increasing cleanser volume fraction 
(Fig. 2a&b). That is because reducing the interfacial tension causes the 
natural frequency of each mode to decrease. Comparing the liquid-filled 
capillary tubes I and II in transverse vibration, we find that the spectrum 
map of capillary II (with smaller inside diameter) changes more obvi-
ously. We also found that when increasing the volume fraction of 
cleanser in solutions, the frequency of peak 2 changes little in capillary 
tube I (insert in Fig. 2a), but decreases more obviously within several 
Hertz in capillary tube II (insert in Fig. 2b). This result suggests the effect 
of interfacial tension on capillary vibration is size-dependent. 

To verify the theoretical model, we compared the spectrum maps 
(Fig. 2a&b) between theory and experiment. The natural frequencies in 
theory and experiment agree well with each other (Fig. 2c). In theory, 
the effective Young’s modulus is Eeff ¼ 1 GPa, which is smaller than that 
of glass due to non-ideal fixed support (the cooper sheet is far from 
rigid). Except some modes that are not captured in measurement, the 
spectrum maps of the vibration in y direction agree well with the esti-
mated results (Fig. 2a&b). The modes that are not captured in this di-
rection can be detected in other directions. For instance, for tube II, the 
1st and 4th order mode can be captured in z direction (Fig. S5). The 
measured natural frequencies of tube II agree well with the theoretical 
results (Fig. 2c), in which the 1st and 4th order modes are detected in z 
direction, while others are in y direction. 

4.2. Influence of slenderness ratio 

The dimensionless natural frequency (ω=ωo) of the liquid-filled 
capillary tube decreases with slenderness ratio (l=ro) and tends to zero 
when the slenderness ratio gets larger (Fig. 3a). Larger slenderness ratio 
means larger length or smaller radius (e.g., tends to zero) of the capillary 
tube. For the complex beam-string structure, larger length leads to 
smaller natural frequency of both the beam and string (Eqs. (5) and (6)). 
When the outer radius of the tube tends to zero, based on Eq. (1), a→0 
and b→∞, and hence the solution of (1) is in the form uðx; tÞ ¼ ðpx þ
qÞϕðtÞ. Thus, the natural frequency tends to zero. That is, the natural 
frequency of liquid-filled capillary tube vibration decreases and tends to 
zero when the tube becomes slender. 
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4.3. Influence of elastocapillarity number 

For the first-order mode of vibration, the dimensionless natural fre-
quency decreases with increasing elastocapillarity number and finally 
disappears at a certain elastocapillarity number ðγsl =Eroe10� 5Þ

(Fig. 3b). That is because the capillary tube vibrates more like a string 
when elastocapillarity number is large. For a one-end fixed string, the 
energy/amplitude of low frequency decreases with the increase of 

characteristic parameter b (¼
ffiffiffiffi
T

ρA

q
), which is positively correlated with 

elastocapillarity number. Thus, the mode with low frequency disappears 
when the elastocapillarity number is large enough. 

For the second-order mode of vibration, with the increase of inter-
facial tension (S 5.1) or the decrease of Young’s modulus (S 5.2)/outer 
radius (S 5.3), the dimensionless natural frequency firstly decreases and 
then increases, which is attributed to mode transformation: when the 
interfacial tension is small or the Young’s modulus/outer radius is large 
(ϕ≫1), the capillary tube mainly vibrates with the mode of a beam; in 
contrast, when increasing the interfacial tension or decreasing the 
Young’s modulus/outer radius (ϕ→0), the capillary tube mainly vibrates 
with the mode of a string. Except for the first two modes, with the in-
crease of elastocapillarity number, the dimensionless natural fre-
quencies increase (Fig. 3b). For higher modes, nonmonotonous variation 
of normalized natural frequencies does not occur in the present range of 
elastocapillarity number, for mode transformation needs larger elasto-
capillarity number for the higher order modes. 

4.4. Influence of inner/outer radius ratio 

Except for the first-order mode, as the inner/outer radius ratio (ri=ro) 
of a capillary tube is increased to near unity, the natural frequencies first 
decrease and then increase to certain values of the natural frequency of 
an equivalent string having the same length and tension (Fig. 3c). That is 
because mode transformation from beam to string appears when the 
inner/outer radius ratio is near 1 (ϕ→0). In the other range of the inner/ 
outer radius ratio, the natural frequency first increases from the natural 
frequency of a beam of capillary tube without interfacial tension and 
then slightly decreases, because the natural frequency of the beam first 
increases and then decreases. For the first-order mode, the normalized 
natural frequency disappears at a certain inner/outer radius ratio 
(ri=roe0:25; Fig. 3c). That is because the capillary tube vibrates more like 
a string when the inner/outer radius ratio is large. For a one-end fixed 
string, the energy/amplitude of low frequency decreases with the in-

crease of characteristic parameter b (¼
ffiffiffiffi
T

ρA

q
), which is positively 

correlated with inner/outer radius ratio. Thus, the mode with low fre-
quency disappears when the inner/outer radius ratio is large enough. 

We presented the phase diagram of mode 1 with elastocapillarity 
number (γsl=Ero) vs. inner/outer radius ratio (ri=ro) (Fig. 3d). With large 
elastocapillarity number and inner/outer radius ratio, mode 1 disap-
pears. With the increase of slenderness ratio (l=ro), the phase boundary 
shifts down, namely, there is more space of mode 1 disappearance. The 

phase boundary can be fitted as 
�

γsl
Ero

��
ri
ro

��
l
ro

�2
¼ 0:2161. 

In reality, when the first-order mode disappears, the natural fre-
quency for each-order mode will be replaced by that of one-order-higher 
mode. Practically, the natural frequency for each-order mode will jump 
up. In contrary, when a new mode appears, the natural frequency for 
each-order mode will be replaced by that of one-order-lower mode, and 
the natural frequency for each-order mode will jump down. 

5. Conclusion 

We experimentally and theoretically studied the vibration behaviors 
of a liquid-filled capillary tube. We experimentally found that reducing 
the interfacial tension of the filling liquid decreases the natural fre-
quencies of small-order modes. A theory of beam-string structure was 
developed to analyze the effects of elastocapillarity number, slenderness 

Fig. 2. (Color online) Comparison of spectrum map of capillary tube I (a) and II 
(b) between theory and experiment. (a) Frequencies of peak 1 and 2 are ~30 Hz 
and 270 Hz. (b) Frequencies of peak 1, 2 and 3 are ~30 Hz, 160 Hz and 650 Hz. 
(c) Comparison of natural frequency of capillary tube II between theory and 
experiment. The effective Young’s modulus Eeff ¼ 1 GPa. The 1st and 4th modes 
are detected in z direction experimentally, while other modes are detected in 
y direction. 

Fig. 3. (Color online) Effect of (a) slenderness ratio (l=ro), (b) elastocapillarity 
number (γsl=Ero) and (c) inner/outer radius ratio (ri=ro) on the dimensionless 
natural frequencies (ω=ωo) of liquid-filled capillary tube vibration. (a) ri=ro ¼

0:58, γsl=Ero ¼ 2� 10� 5; (b) ri=ro ¼ 0:58, l=ro ¼ 200; (c) l=ro ¼ 200, γsl=Ero ¼

2� 10� 5. (d) Phase diagram of mode 1 with elastocapillarity number (λ) vs. 
inner/outer radius ratio (ri=ro). 

S. Liu et al.                                                                                                                                                                                                                                       



Journal of the Mechanical Behavior of Biomedical Materials 106 (2020) 103745

5

ratio and inner/outer radius ratio on the vibration of the liquid-filled 
capillary cantilever beam. We introduced the frequency ratio of a 
beam to a string to understand the mode transformation between a beam 
and string. It was found that for higher order modes, nonmonotonic 
change of natural frequency is caused by mode transformation between 
the beam and the string; for lower order modes, the natural frequency 
decreases to zero (increases from zero) is attributed to mode disap-
pearance (appearance). The study provides a framework to comprehend 
the vibration behaviors of capillary-elastic structures and guidelines for 
high-accuracy capillary sensors, such as microchannel resonators. 

Although the properties of glass and cleanser are different from most 
of natural and engineering materials (e.g., surface tension coefficient, 
Young modulus, density), in the proposed theory, the parameters and 
characteristic equation of natural frequency are in dimensionless form, 
which can be generalized to capillary-tube-like structures with different 
kinds of fluids such as biological capillary tubes (e.g., trichomes) and 
microchannel resonators in MEMS with different properties according to 
similarity principle. 

Our theoretical model can be used to quantify the natural frequencies 
and predict the changes (e.g., monotonicity, mode appearance and 
disappearance) of the natural frequencies when the geometrical pa-
rameters (e.g., slenderness ratio l=ro and inner/outer radius ratio ri= ro) 
and mechanical parameters (e.g., elastocapillarity number γsl= Ero) are 
tuned. Since there are many liquid-filled capillary tubes that vibrate, our 
result can provide guidance in both the understanding of natural phe-
nomena and design in engineering. On the one hand, the results can be 
used to rebuild structures to achieve certain natural frequencies such as 
the energy capture of capillary structures and improve the sensitivity of 
microchannel resonators by changing the structure; on the other hand, 
the results can be used to design structures to avoid resonance of certain 
frequencies such as precision instruments. 
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