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A B S T R A C T

Fiber reinforced composites are widely accepted as efficient alternatives for designing light-weight and high-
performance structures, yet theoretical prediction of failure for such composites is still a challenging task with
uncertainties and controversies. In this work, a new physically-based failure analysis framework is proposed to
predict both intralaminar failure onset and strengths for composite laminates under general stress states, with
interactive and coupling effects of stresses fully considered. The in situ strengths are introduced using the sim-
plified fracture mechanics-based approximation formula where the constraining effects of both the adjacent plies
and embedded laminar thickness are considered. The proposed framework is validated by comparing predictions
with existing experimental data. Both initial and final failure envelopes are well predicted for unidirectional and
multi-directional laminates under multiaxial loads. Stress-strain responses are also well captured, further illus-
trating the influence of in situ strengths on failure initiation.

1. Introduction

Fiber reinforced composites are widely accepted as efficient alter-
natives of conventional metal materials for designing structures with
light weight and high performance. With the cost reduced by advanced
manufacturing techniques, carbon and glass fiber reinforced plastics
(CFRP, GFRP) are highly demanded in a wide range of industries ran-
ging from aerospace, naval vehicles, auto-mobile and civil construction
to mention a few. However, at present, composite laminated structures
are generally over-designed to ensure reliable structural performance,
as theoretical predictive models of damage and failure mechanisms in
composites have not been fully established yet and are still under de-
velopment. Uncertainties and controversies remain despite of large ef-
forts devoted to this subject [1–13].

During the continuous development of failure criteria for composite
laminates in the last thirty years, two main divisions are classified,
namely, non-physically based and physically based criteria. Initiated by
von Mises stress theory of isotropic materials, a composite laminate is
considered as a single orthotropic material in non-physically based

criteria. They are usually formulated in uniform polynomials [3,14], so
that local failure mechanisms are not considered under combined stress
states, thus enhancing the efficiency in damage tolerance assessment
during the preliminary design stage of composite structures. On the
other hand, the physically based criteria are generally formulated with
separated expressions, accounting for different failure mechanisms. For
this reason, more detailed information of local damage can be provided.
Specifically, intralaminar failure of composite laminates can be mainly
divided into longitudinal failure (e.g., fiber rupture and kinking) and
transverse or inter-fiber failure which is mostly initiated by matrix
cracking.

Hashin [1,15] initiated the work on physical based failure criteria
and introduced interactive criteria to directly determine the failure
modes for unidirectional (UD) laminates. Most successive failure the-
ories more or less referred to Hashin’s work, but the stress interactions
do not always correlate well with experimental data, especially for
transverse matrix failure [3,16]. On the basis of Mohr-Coulomb fracture
theory and existing knowledge on damage mechanisms, Puck and co-
authors [2,17] proposed the concept of fracture plane and fracture

https://doi.org/10.1016/j.compstruct.2020.112125
Received 22 December 2019; Received in revised form 20 February 2020; Accepted 24 February 2020

⁎ Corresponding author at: State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016
Nanjing, China.

E-mail address: tjlu@nuaa.edu.cn (T.J. Lu).

Composite Structures 241 (2020) 112125

Available online 26 February 2020
0263-8223/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/02638223
https://www.elsevier.com/locate/compstruct
https://doi.org/10.1016/j.compstruct.2020.112125
https://doi.org/10.1016/j.compstruct.2020.112125
mailto:tjlu@nuaa.edu.cn
https://doi.org/10.1016/j.compstruct.2020.112125
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2020.112125&domain=pdf


angle to particularly deal with transverse compression failure. During
the three times of World-Wide Failure Exercises (WWFE), the fracture
plane concept was highly recommended by many researchers for pre-
dicting inter-fiber failure of laminates under combined stresses
[3–5,18]. Davila et al. [7] further developed a novel analysis frame-
work for predicting the intralaminar failure of UD laminates based on
Hashin’s interactive stress theory and Puck’s fracture plane concept.

Given that the initial geometric configurations of laminates are thin
and slender, the plane stress hypothesis has been extensively employed.
However, three dimensional stress states are more practically applied
where the out-of-plane stresses play an important role in failure in-
itiation of laminated structures [6,19]. This is due to the fact that
general stress states are quite common in multi-directional engineering
structures having geometric discontinuities, e.g., free edges, open holes
and inserts, asymmetric stiffened and sandwich panels. On the other
hand, the basic linear form of Puck’s theory was preferred to establish
failure analysis strategies. Nevertheless, further investigations showed
that the predicted strengths using the linear form were generally
greater than experimental data, especially for the case under high
compressive load [4]. To handle these general stress states and lim-
itations, improvements and extensions in failure modeling frameworks
were further advanced, with additional consideration on material
properties and geometric information using the concept of fracture
plane [12,20].

It should be mentioned that most recent failure models adopted the
maximum stress or strain criterion to address fiber tensile failure due to
its simplicity and applicability. However, its prediction accuracy was
still controversial under certain combined stress states [5,21]. Recently,
researchers from Imperial College London and KU Leuven initiated a
project, called the Fiber Break Models for Designing novel composite
microstructures and applications (FibreMoD), to further study the ten-
sile response of UD laminates and benchmark the positive and negative
points of several tensile failure criteria [22–25]. In terms of the in situ
effects in failure predictions, the laminar transverse tensile and in-plane
shear strengths were simply multiplied by specific coefficients in
WWFE-II [18]. Nevertheless, this approximation was too aggressive for
the outermost laminar where no constraint existed at the free side. This
could lead to invalid failure predictions of multi-directional laminates.
Herein, a general theoretical formulation for in situ strengths is de-
manded, with full consideration of the constraining effect of adjacent
plies and the embedded laminar thickness.

From the literature review, it is seen that the progression on theo-
retical predictive models of damage and failure mechanisms for com-
posites is clear from past researches, however, this has been scattered
over numerous papers. Therefore, in the current study, the important
development on the theoretical predictive models is firstly summarized
and discussed. As reliable theoretical predictive models for composites
under general loadings are still in the development stage, the other
objective of the present investigation is to develop a physically-based
failure analysis framework to predict the intralaminar failure onset and
strengths for composite laminates under general stress states. Under
multiaxial loading, interactive and coupling effects of stresses are
carefully considered. The in situ strengths are introduced into the failure
model using the simplified fracture mechanics-based approximation
formula, with the constraining effects of both adjacent plies and em-
bedded laminar thickness considered. A fiber kinking formulation is
established with initial manufacturing defects considered for laminates
used in practical engineering. To predict the strengths, a simplified
degradation scheme of material properties is further proposed, differing
various failure modes. Validations are then conducted on both uni-
directional and multi-directional laminates subjected to uniaxial and
multiaxial loads. Finally, relevant discussions and conclusions are
drawn.

2. Longitudinal tension failure modeling

Under uniaxial tension, the simple maximum stress failure criterion
is commonly used to predict the tensile strength of UD laminates.
However, under complex loading, it is still controversial whether this
criterion can accurately predict fiber rupture, since neither super-
position nor coupling of stresses are included in the criterion [5,21,26].
Hashin [1,15] suggested that the shearing behavior in fiber tension
failure should be carefully considered. With fiber tension failure as-
sumed as the interaction of normal and shear stresses on the fracture
surface, the quadratic superimposition formulation is proposed, as fol-
lows:

⎜ ⎟⎜ ⎟⎜ ⎟= ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

= ⩾f σ
X

τ
S

τ
S

σ1, ( 0)t a a
11

T

2
12

12

2
13

13

2

11
(1)

where XT is the tensile strength in the fiber direction, S a
12and S a

13 re-
present the axial shear strengths against fracture across the fibres due to
pure shear stress, and ft is the tensile failure factor.

Comparison of failure envelopes of the quadratic Hashin criterion
and the maximum stress criterion is shown in Fig. 1. The experimental
data were obtained from CFRP laminates (T300/BSL914C) under
combined longitudinal tension and in-plane shearing from the WWFE-I
[27]. The material properties are illustrated in Table 1. It can be seen
that the quadratic criterion correlates well with data points for

>σ X/ 0.511 T , namely, the combined shearing and tension condition
supporting an interaction of normal and shear stress. On the other hand,
the simple maximum stress criterion can only give a good prediction for
greater values of σ X/11 T (near 1.0), namely, near pure tension. This in-
dicates that the interaction of stresses needs to be carefully considered,
and the quadratic criterion gives better predictions for multiaxial stress
states. It is worth noting that data enclosed by an ellipse, shown in
Fig. 1, represent the matrix shear failure and thus are excluded for the
verification of the fiber rupture failure criterion.

11 TX

12
12a S Matrix shear failure

Fig. 1. Failure envelopes of −σ τ11 12 regarding different tension failure criteria
with experimental data from the WWFE-I [27].

Table 1
Mechanical properties of T300/BSL914C unidirectional laminates [27].

E11 =E E22 33 =G G12 13 G23 =ν ν12 13 ν23 βfr
0 /°

138 GPa 11 GPa 5.5 GPa 5.58 GPa 0.28 0.06 53

XT XC YT YC =S S12 13 S23 =S Sa a
12 13

1500 MPa 900 MPa 27 MPa 200 MPa 80 MPa 70 MPa 130 MPa
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3. Inter-fiber failure modeling

On the basis of Mohr-Coulomb fracture theory and existing knowl-
edge on damage mechanisms, Puck and co-authors [2,17] proposed the
concept of fracture plane. In the case of brittle matrix fracture or inter-
fiber failure (IFF) of laminates, a fracture plane parallel to the fiber
direction is formed. It is assumed that normal and shear tractions acting
on a fracture plane cause the failure. Fig. 2 illustrates the fracture plane
and local coordinates as well as tractions acting on the plane. The angle
between the fracture plane and thickness direction is defined as the
fracture angle, βfr . Regarding the stress states and fracture angle, the IFF
is categorized into three different fracture modes as shown in Fig. 3. For
normal tension or low level of compression interacting with shearing,
the fracture plane is perpendicular to the loading direction with

= ∘β 0fr , namely, Mode A and B. This further supports Hashin’s inter-
action formulations. For a higher level of transverse compression (Mode
C), the fracture plane is inclined increasingly with the value of σ τ| / |22 12 .
Furthermore, it was noted in tests that fracture occurred in the inclined
plane = ∘β 57fr , instead of the plane where maximum shear stress was
located (± ∘45 ), for CFRP unidirectional laminates under transverse
compression [6,17]. This can be explained by the fact that the com-
pressive stress and friction on the potential fracture plane cause the
shift of the inclined angle. This phenomenon further consolidates the
concept of fracture plane in Puck’s failure criteria. The basic form for
inter-fiber failure initiation in light of Puck’s theory is given as follows:
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where σ τ,n nl and τnt are the tractions on the potential fracture plane as
shown in Fig. 2, pnl and pnt are the inclination parameters of contour
lines of the fracture body [28] that are used for representing the friction
effects on the fracture plane, Rnl and Rnt are the in-plane and transverse
fracture resistance of the fracture plane, while +Rn stands for the tension
fracture resistance. IFFT and IFFC represent the inter-fiber tension and

compression, respectively.
These tractions on the fracture plane appearing in Eq. (2) can be

derived from stresses in material coordinates 1-2-3 using Eq. (3), as:
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Fracture resistance can be determined using material strength ob-
tained at the corresponding single stress state. For uniaxial transverse
tension ( >σ 022 ) or pure in-plane shear (τ12), the formed fracture plane
is parallel to the principle material direction, so that the fracture angle
is settled as = ∘β 0fr (only σ22 is applied) or = ∘β 90fr (only τ12 is applied).
Therefore, +Rn and Rnl can be determined by transverse tension and in-
plane shear strengths (YT and S12), namely,
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However, Rnt cannot be directly obtained. For a UD CFRP under the
single stress of τ23, the fracture angle is approximately ∘45 [29], not the
same as the one where τ23 acts alone. Therefore, one cannot simply use
the transverse shear strength S23 to represent the transverse fracture
resistance Rnt . The inclined fracture plane indicates that the failure is
caused by normal tension, which can additionally be derived from Eq.
(3) with >σ 0n . Given that shearing behavior contributes much more to
the failure of UD laminates under transverse compression [2,29], uni-
axial transverse compression can be used to determine Rnt .

For a single stress state <σ 022 , the tractions on the fracture plane
can be obtained using Eq. (3) where =τ 0nl . Then the IFF initiation
criterion can be simplified as:

+ = <τ p σ R σ, 0nt nt n nt n (5)

Furthermore, the stress states of transverse compression (direction-
2) failure on the fracture plane can be illustrated in the form of Mohr
circle, with Eq. (5) represented by the failure envelope lfe as shown in
Fig. 4. The Mohr circle of pure transverse compression is tangent to the
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Fig. 2. Fracture plane of inter-fiber failure.
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Fig. 3. Inter-fiber failure modes under combined transverse and shear stresses ( −σ τ22 12).
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failure envelope lfe at point A where the stress state satisfies the failure
initiation criterion. This reveals the relationship between the inclina-
tion parameter pnt and the fracture angle βfr

0 , which is

= − = −p α βtan cot2nt fr0
0

(6)

Along with stress states at point A, submitting Eqs. (3) and (6) into
Eq. (5), one can derive Rnt as follows:

+ = ⇒ =Y β β Y β β R R Y βcos sin cot2 cos 2 cotfr fr fr fr nt nt frC
0 0

C
0 2 0

C
0

(7)

And pnl is simply estimated using Eq. (8), as

=p R
R
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Further investigations show that the predicted strengths using the
basic form (Eq. (5)) is generally greater than experimental data espe-
cially when high compression traction ( <σ 0n ) acts on the potential
fracture plane. Corrections are made by Puck and co-authors [17],
namely,
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The main difference between the two formulations lies in the de-
scription of the Mohr-Coulomb fracture behavior. In Eq. (5), the ef-
fective shear fracture resistance ( − −R p σ R p σ,nl nl n nt nt n) increases lin-
early with the normal traction σn while parabolic relation is represented
in Eq. (9). Fig. 5 illustrates the Mohr circle to determine the fracture
parameters in the parabolic form. Therefore, the fracture resistance
parameters can be derived in an analogous way as the case of the linear
failure criteria presented above, as:
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The inclination parameters are determined using the following
equations:

= + =⊥

⊥

⊥⊥

⊥⊥

⊥

⊥

p

R
p
R

ψ
p
R

ψ i t ccos sin , ,ψ
i

ψ
A

i

A

i

A
2 ||

||

2

(14)

=
+

=
+

ψ
τ

τ τ
ψ

τ
τ τ

cos , sinnt

nt nl

nl

nt nl

2
2

2 2
2

2

2 2 (15)

For typical brittle CFRP/epoxy and GFRP/epoxy UD laminates, the
values of inclination parameters are recommended as listed in Table 2.
Recently, Gu and Chen [30] pointed out that the inclination parameters
slightly varied from brittle to ductile materials. In their extended
models of Puck’s theory, the predictions were in good agreement with
experimental data particularly for UD composite laminates with high
Y Y/C Tratios. As the difference between the parabolic and extended
models is quite small, the parabolic model is preferred in this work
while the inclination parameters are slightly updated according to the
results in [30].

3.1. In situ strength effect

The in situ strength effect refers to the fact that the strengths of a
single laminar embedded in multi-directional laminates are higher than
those of unidirectional laminates obtained by classic material tests. This
is because crack initiation and propagation in a single laminar are de-
layed by adjacent plies with different properties like ply thickness or ply
angles. Existing results show that the in situ effect should be carefully
taken into account, especially for transverse tension and in-plane shear
strengths [31–34].

With novel experimental design and data reduction techniques, the
mechanism of in situ strength effect has been well studied and explained
with more experimental data and observations revealed [35–37]. A
variety of theoretical analysis models have been proposed to quantify
the effects, which were subsequently applied in numerical studies to
predict the in situ [6,9,38–40].

Chang and Lessard [33] introduced an empirical formula for cal-
culating the in situ transverse tension and in-plane shear strengths with
several fitting parameters obtained using the reverse method. With
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Fig. 4. Schematic illustration of Mohr circle for determining the fracture resistance Rnt in linear inter-fiber failure criteria.
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amounts of experimental data on specific material systems and layups,
simple multiple values of the corresponding strengths have been re-
commended to represent in situ strengths [41,42]. Wang and Karihaloo
[34,35] advanced a general theoretical solution for in situ strengths
based on fracture mechanics, with full consideration on the con-
straining effect of adjacent plies. Recently, Dong et al. [39] promoted
the solution to more CFRP laminates for further validating its feasibility
and reliability. Camanho et al. [9] studied the influence of embedded
laminar thickness and extended the original solution. For both accuracy
and simplicity, the in situ strengths in this work are calculated using the
solution proposed by [39], given by:

⎧
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where Y is
T and S is

12are the in situ transverse tension and in-plane shear
strengths, and {A, B, C, D} are fitting parameters determined by the
layups. Wang and Karihaloo [34] discussed the most applied layups and
the likely values of {A, B, C, D}. The values {1.7, 3.4 4.0 1.0} were
recommended when experimental data were absent. N is the number of
plies in the calculated unidirectional laminar, representing the size ef-
fect of the thickness. f θ(Δ )t and f θ(Δ )s denote the constraining effects of
adjacent plies, which are determined as:
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where =θ i u dΔ ( , )i is the ply angle difference between the calculated
laminar and the very neighboring upper or lower one.

3.2. Determination of fracture angle

From Eqs. (3) and (9), the failure is determined by the fracture angle
in addition to the stress states. Mathematically, the maximum value of

the left part of Eq. (9) corresponds to the potential fracture plane and
angle, given by:

= ∈ − ∘ ∘f β f σ σ τ τ τ β β( ) max[ ( , , , , , )], ( [ 90 , 90 ])IFF fr IFF 22 33 12 13 23 (18)

where fIFF is the failure index representing the left part of Eq. (9).
Enumeration algorithm was firstly introduced to determine

βfr[2,17]. This leads to testing all the angles individually at an interval
of ∘1 , with a high computational effort. To reduce testing points, Davila
et al. [7] and Pinho et al. [6] estimated the potential fracture angle
using trial angles and drawing trial failure envelopes. Golden section
search algorithm (GSSA) was further introduced and extended to sig-
nificantly improve the computational efficiency [29,43,44].

In GSSA, one unknown point is generated by two known points,
with the distance satisfying the golden section rule as schematically
illustrated in Fig. 6. For a stress state, β f β( , ( ))IFF1 1 and β f β( , ( ))IFF2 2 are
two preset points, then two new points (β β,3 4) can be determined as:
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In case >f β f β( ) ( )IFF IFF3 4 , the new search sub-range is located at
β β[ , ]2 3 , otherwise β β[ , ]1 4 . After several search trials, a parabola can be
constructed as the target function to reduce iterations and searching
time [29], yielding
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Fig. 5. The schematic illustration of Mohr circle for determining the fracture resistance Rnt in parabolic inter-fiber failure criteria.

Table 2
Inclination parameters of CFRP/epoxy UD laminates [17,28,30].

Material system
⊥⊥pt

⊥⊥pc
⊥pt

|| ⊥pc
||

CFRP/epoxy 0.25–0.325 0.25–0.325 0.35 0.3
GFRP/epoxy 0.20–0.25 0.20–0.25 0.3 0.25

IFF frf

1IFFf

2IFFf
3IFFf

4IFF af

1 3 24

1IFF frf

4IFF bf

Fig. 6. Schematic golden section search algorithm.
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where β β[ , ]a b is the sub-range after several trials and βcis the golden
section point. By searching the maximum of Eq. (20), the potential
fracture angle βfr can be determined, as:

≈ −
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4. Longitudinal compression failure modeling

Compressive loading on aeronautical composites structures usually
leads to kinking failure and matrix splitting within the kink bands,
especially for CFRP and GFRP laminates with thin fibers and high fiber
volume fractions (40%-60%) [45]. Rosen [46] firstly proposed the
kinking strength model based on fiber micro-buckling. However, the
model provided the upper limit of compression strengths, with pre-
dictions 2–4 times larger than experimental results. Argon [47] then
considered matrix shear strength along with fiber misalignment in the
kinking model. Schultheisz and Waas [8] concluded from amounts of
experimental data that localized micro-defects (e.g. fiber misalignment
and matrix cracking) mostly contributed to the formation of kink bands.
Subsequently, 2D and 3D kinking models were proposed based on dif-
ferent failure criteria [6,7,12,48]. In this work, the kinking model is
established on the basis of Argon’s approach [47] and successive de-
velopments by Davila et al. [7] and Pinho et al. [6].

4.1. Fiber kinking model

Fiber misalignment and localized matrix failure lead to the forma-
tion of kinking bands. It is of great significance to obtain tractions on
the fracture plane similar to those of inter-fiber failure. Different co-
ordinate systems used in the proposed fiber kinking model are illu-
strated in Fig. 7. − −1 2 3 is the material coordinate system where axis-
1 denotes fiber direction, with axis-2 and axis-3 representing the
transverse and thickness directions as shown in Fig. 7(a). The co-
ordinate system of kinking plane is denoted by − −k k k1 2 3. It is
transformed by rotating − −1 2 3 around axis-1 with an angle φ.
Fig. 7(b) schematically illustrates fiber misalignment in the kinking
plane with the kinking angle θ. − −m m m1 2 3 is the local misalignment
coordinate system of kinking fibers. Similarly, − −m m m1 2 3 is obtained
by rotating − −k k k1 2 3 around axis-k3 with kinking angle θ. The local
matrix fracture plane is demonstrated in Fig. 7(c) where the fracture
angle is denoted by αfr

kink. The transformation of stresses is as follows:

= =σ φ σ φ σ θ σ θR R R R( ) [ ( )] , ( ) [ ( )]k k f k m m k mT T (22)

where φR ( )k and θR ( )m are the transformation matrices defined as:
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Hence, stresses at − −1 2 3 system can be projected into
− −m m m1 2 3 and further onto the matrix fracture plane, which gives
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Then the local matrix failure is determined using inter-fiber failure
criteria with applied kinking stresses, as:
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(25)

4.2. Solution for kinking band parameters

From the formulation of fiber kinking model, the determination of
angle parameters (ϕ θ, ) is crucial to predict the longitudinal compres-
sion failure.

During the crack formation, fiber defects result in shear stiffness
decreasing in the kink bands.The out-of-plane shear stress (τ k

23) on the
kinking plane is assumed to be zero. In fact, if ≠τ 0k

23 , fibers would
keep deflecting perpendicular to the kinking plane, contradicting the
current configuration [6]. From Eq. (23), the kinking plane angle φ can
be derived as,

⎜ ⎟= ⎛

⎝ −
⎞

⎠
φ

τ
σ σ

1
2

arctan
2 f

f f
23

22 33 (26)

Relation between fiber misalignment angle (θ) and shear strain in
the local misalignment plane (γm

12 ) is shown in Fig. 8, as:

= +θ
τ
τ

γ θ
| |

( )
m

m
m12

12
12 0

(27)

where τ τ/| |m m
12 12 denotes the consideration on directions of initial mis-

alignment angle, namely, ± θ0. γm
12 can be determined by the shear

strain-stress constitutive relationship, which can be briefly expressed
as:

=τ f γ( )m m
12 12 (28)

Therefore, at a general 3D stress state, combining the off-axis stress
transformation in Eq. (23), gives,

= − − + −f γ θ θ σ σ θ θ τ( ) sin( )cos( )( ) (cos ( ) sin ( ))| |m k k k
12 11 22

2 2
12 (29)

1k
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1

n
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(a) Material coordinates (b) Kinking plane coordinates (c) Fiber misalignment coordinates

Fig. 7. Schematic illustration of coordinates in the kinking band.
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For sufficiently small values of θ, Eq. (29) can be approximated as,

≈ − − +f γ σ σ θ τ( ) ( ) | |m k k k
12 11 22 12 (30)

Specifically, for linear shear response, shear strain in the local
misalignment plane γm

12 can be simplified as,

=
+

+ −
−γ

θ G τ
G σ σ

θ
| |m

k

k k12
0 12 12

12 11 22
0

(31)

On the other hand, with nonlinear shear response taken into ac-
count, the Newton-Raphson iteration method is applied to solve Eq.
(30) with the additional mathematical condition, as:

∂
∂

= − − −
f γ

γ
σ σ θ τ θ

( )
( )cos2 2 | | sin2

m

m
k k k12

12
11 22 12

(32)

5. Degradation scheme of material properties

At a stress state, in case that one of the failure criteria is satisfied as
stated in previous sections, the corresponding material property is
supposed to be degraded in order to characterize the decrease of
structural load bearing capacity. The left hand terms of Eqs. (1), (9),
(25) are denoted as =f i t IFFT IFFC kink, ( , , , )i . The degradation differs
for different failure modes and is listed below.

(1) Fiber tension failure. The failure caused by fiber breakage is gen-
erally instantaneous and catastrophic, leading to massive loss in
load bearing capacity. Therefore, when fiber tension failure is
triggered, all the in-plane mechanical properties are simply de-
graded to zero, i.e.,

→E E G v{ , , , } {0, 0, 0, 0}.ft11 22 12 12 (33)

(2) Inter-fiber failures. In case that the normal traction on the fracture
plane is non-negative ( ≥σ 0n ), inter-fiber tensile failure (IFFT) oc-
curs. The fracture plane is usually perpendicular to the loading
direction, causing an crack to remain open. It leads to a certain
degradation in the transverse elastic and in-plane shear modulus as
well as the Poisson’s ratio, expressed as:

→E G v η E η G η v{ , , } { , , }.IFFT IFFT IFFT IFFT22 12 12 22 12 12 (34)

On the other hand, for inter-fiber compression failure (IFFC), the
fracture plane remains close with a sliding tendency. As the com-
pressive load increases, the closed crack surface still has the cap-
ability to transmit lateral compressive loads through crack contact.
Hence, only the shear elastic modulus is degraded as demonstrated
in Eq. (35),

→E G v E η G v{ , , } { , , }.IFFC IFFC22 12 12 22 12 12 (35)

where =η i T C, ( , )IFFi are the degradation index of the inter-fiber
failure. The initial value of ηIFFi is set as 1.0 indicating no damage.
When the failure criterion is triggered, ηIFFi is assigned to a value
between 0.0 and 1.0.

(3) Fiber kinking failure. In case that kink bands are formed, the cor-
responding laminar can hardly carry any load since amounts of
fiber misalignments and localized matrix failures exist in the kink
bands. Therefore, all the in-plane mechanical properties are simply
degraded to zero, namely,

→E E G v{ , , , } {0, 0, 0, 0}.ft11 22 12 12 (36)

From the physical significance of failure envelopes, a laminar
should be ensured to remain at the critical status after property
degradation. In other words, the failure factors should stay at one in
case of failure criteria satisfied, namely, =f 1.0i . This further in-
dicates that the degradation indexes (ηi) of different failure modes
should be defined as functions of the corresponding fi. However, in
numerical iterations of failure analysis, an increase of stresses may
result in higher values of the left hand terms in failure criteria. To
distinguish from the physical definition of failure factors, the values
of the left hand terms in the failure criteria are denoted as the trial
stress factors fE i, . Corresponding stresses in the current configura-
tion are trial stresses. Furthermore, the function of ηi and fE i, de-
fined in [2] is introduced in this work to characterize the failure
process, as:

= = ⩾η f i IFFT IFFC f1/ ( , ), 1i E i E, (37)

6. Verification and discussion

Fig. 9 presents the predicted −σ τ22 12 failure envelopes of glass- and
carbon-fiber reinforced unidirectional (UD) laminates, namely, E-Glass/
LY556 [27], AS4/55A [49], T800/3900 [50] and AS4/3501 [51]. The
material properties are listed in Table 3. It is observed that the present
predictions correlates well with existing experimental data.

Both the experimental data and theoretical predictions show that
the maximum shear stress τ12increases with increasing σ| |22 at low level
of transverse compression. This indicates that transverse compression
can inhibit shearing damage to a certain extent. In this case, in-plane
shear failure occurs mainly in UD laminates with the fracture angle
located between ∘0 and ∘40 [7]. For higher transverse compression
( >σ X| | 0.7 C22 ), shearing effect is less on the failure, and the UD

0

(a) Initial configuration

012
m

(b) Deformed configuration
Fig. 8. Relation between the fiber misalignment angle and shear strain.

22 / MPa

12
/M

Pa

Fig. 9. −σ τ22 12 failure envelopes of unidirectional laminates made of different
composite materials.
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laminates fail mostly in compressive behavior. The proposed model
captures this phenomenon, further validating its feasibility.

Hinton et al. [27] reported experimental data of T300/BLS914C UD
laminates under combined loading status −σ τ11 12. The mechanical
properties T300/BLS914C are listed in Table 1.

Fig. 10 shows a good agreement between the predicted failure en-
velope and experimental data points. It should be mentioned that in-
plane shear nonlinearity is taken into account by using the cubic spline
interpolation function [52]. In the case of high level tension
( ≥σ 1000 MPa11 ), shearing behavior has less influence on fracture
mode. The quadratic Hashin criterion provides well-fitted predictions,
with test data points distributed around both sides of the failure en-
velope. Similar to transverse compression, for low levels of σ| |11 (e.g.
− < <σ400 MPa 0 MPa11 ), fiber compression slightly enhances the
shear fracture resistance. Both the predictions and test data capture this
phenomenon as shown in Fig. 10. This finding may be further applied to
prestressed composite structures in engineering applications. Regarding
the pure shearing state ( =σ 011 ), it is noted that a high dispersion of
data points is observed in Fig. 10. It has been suggested that experi-
mental errors caused the higher values of some data in comparison to
the shear strength [3,12]. For this consideration, no special emphasis is
given in this study. Accordingly, it can be concluded that the proposed
model can give a satisfactory prediction of the combined −σ τ11 12
failure.

The predicted bi-axial −σ σ11 22 failure envelope of E-Glass/MY750
UD laminates is illustrated in Fig. 11. Experimental data were employed
in WWFE [3,27]. Relevant mechanical properties of E-Glass/MY750 can
be found in Table 4.

As can be noted in Fig. 11, the four interaction points of the failure

envelope and −σ σ11 22) axes exactly correspond to the four basic
strengths X X Y Y, , ,T C T C obtained from tests. In the fourth quadrant,
however, the test data are more conservative than the predictions. This
may be attributed to the fact of that experimental data were obtained
by ± ∘5 rather than ∘0 UD laminates. In the second and third quadrants,
the failure envelope shows that longitudinal compression slightly re-
duces the transverse tension and compression resistance, though few
test data were obtained from the combined loading. On the other hand,
the predictions fit well with experimental results in the first quadrant in
bi-axial tension. To further examine the proposed model, more tests
should be performed in the future.

Soden et al. [16] presented several experimental tests of multi-di-
rectional composite laminates under uniaxial and biaxial loads in
WWFE. Some of experimental results are employed in this work to
further validate the proposed model as shown in Figs. 12 and 13.

Fig. 12 displays the strain-stress responses of orthogonal E-Glass/
MY750 laminates ([0/90]s) under uniaxial tension. Predictions with and
without consideringin situ strengths are both demonstrated. In general,
a good agreement of the strain-stress curves is observed between the
prediction and test data, regardless of the consideration of in situ
strengths. And both predictions capture initial failure in the ∘90 layer,
indicating that in situ effects have little influence on the loading path.
However, the initial failure stress predicted by the model without in situ
strengths is only 80 MPa, which is notably lower than the test result
(159 MPa). With the in situ strength accounted for, the predicted initial
failure stress is 150 MPa, correlating well with the test result as shown
in Fig. 12 and Table 5.

In the case of biaxial tension ( −σ σx y), the strain-stress responses for
quasi-isotropic AS4/3501 laminates ( ±[90/ 45/0]s) are illustrated in
Fig. 13. Similarly, compared to that using the basic strengths, the initial
failure stress predicted using the in situ strengths is closer to the test
result, with a deviation of 8.8% as is seen in Table 5. This proves the
importance of considering in situ strengths in failure analysis. The
consistency of the predicted strain-stress responses with experimental
data points after initial failure further validates the feasibility of the

Table 3
Material properties of investigated composites in terms of −σ τ22 12 failure en-
velopes [49,27,50,51].

E-Glass/LY556 AS4/55A T800/3900 AS4/3501

E11/GPa 54 120 175 126
E22/GPa 18 12 10 11
ν12 0.28 0.28 0.30 0.28
G12/GPa 5.8 6.5 5.2 6.6
XT/MPa 1140 1950 2000 2323
XC/MPa 570 1480 1500 1200
YT/MPa 35 50 60 60
YC/MPa 114 200 201 200
S12/MPa 72 79 100 74

βfr
0 /° 53 53 53 53

12
/M

Pa

11 / MPa

Fig. 10. −σ τ11 12 failure envelope of T300/BLS914C unidirectional laminates.

11 / MPa

22
/M

Pa

Fig. 11. −σ σ11 22 failure envelope of E-Glass/MY750 unidirectional laminates.

Table 4
Mechanical properties of E-Glass/MY750 unidirectional laminates [16].

E11 E22 G12 ν12 βfr
0

46 GPa 16 GPa 5.83 GPa 0.28 ∘53
XT XC YT YC S12
1280 MPa 800 MPa 40 Mpa 145 MPa 73 MPa
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proposed material degradation scheme.
Fig. 14 illustrates both the initial and final failure envelopes of a

angle-ply laminate ( ±[ 55]s), with experimental data taken from [16]. A
good agreement is observed between the predicted final failure en-
velope and experimental data, indicating once again the reliability of
the proposed failure model. It is noted that the angle-ply laminate is
easier to fail under biaxial tension and compression ( <σ σ/ 0x y ), com-
pared to its uniaxial strengths as shown in the second and fourth
quadrants of Fig. 14. On the other hand, both the predictions and ex-
perimental data in the first and third quadrants show that biaxial ten-
sion and biaxial compression enhance both the uniaxial tension and
compression fracture resistance of the angle-ply laminate.

Particularly for biaxial compression in the third quadrant, the pre-
dicted failure envelope provides conservative results relative to some of

the test data (e.g. < −σ 300 MPax ). This might be the result of that the
fiber volume fraction of biaxial compression specimens (68%) was not
consistent with that of biaxial tension ones (60%) in tests [3]. And the
material properties used in the present failure model are based on those
of unidirectional laminates with the fiber volume fraction fixed at 60%
in accordance with the literature [16].

7. Conclusions

In this work, a physically-based failure analysis framework is pro-
posed to predict the intralaminar failure and strengths for composite
laminates, including fiber tension, inter-fiber failure (IFF) and fiber
kinking failure. In 3D stress states, superposition and coupling effects
are carefully considered for multiaxial loads. The in situ strengths are
introduced into the failure model using fracture mechanics-based ap-
proximation formula. The size effect of embedded laminar thickness
and the constraining effects of adjacent plies are taken into account
simultaneously. For CFRP and GFRP laminates with thin fibers and high
fiber volume fractions (40%-60%), a longitudinal fiber kinking model is
established with initial manufacturing defects considered. To char-
acterize the decrease of load bearing capacity and final failure, a sim-
plified degradation scheme of material properties is proposed, differing
from different failure modes.

Predicted failure envelopes of various laminates under multiaxial
loads are illustrated, like unidirectional (UD), orthogonal, quasi-iso-
tropic and angle-ply laminates. Good agreement is observed comparing
the predicted initial and final failure envelopes with experimental data.
From both experimental data and predictions, it is further found that
slight compression could enhance the in-plane shear fracture resistance
of UD laminates, whereas biaxial tension and biaxial compression en-
hance the uniaxial tension and compression strengths of angle-ply la-
minates.

The influence of in situ strengths on initial failure stress and strain-
stress responses is discussed in detail. Results show that predictions
obtained using basic strengths considerably underestimated the initial

/ %

xy

1/ 0x y

/M
Pa

x

Fig. 12. Strain-stress responses of [0/90]s E-Glass/MY750 laminates under
uniaxial tension.

/ %

x y

1/ 2x y

/M
Pa

y

Fig. 13. Strain-stress responses of ±[90/ 45/0]s AS4/3501 laminates under
combined −σ σx y.

Table 5
In situ effects on initial failure stresses.

Experiments without in situ effects with in situ effects

[0/90]s E-Glass/MY750 159 MPa 80 MPa (−49.6%) 150 MPa (−5.6%)
±[90/ 45/0]s AS4/3501 439 MPa 260 MPa (−40.7%) 400 MPa (−8.8 %)

/ MPay

/M
Pa

x

Fig. 14. Failure envelopes of ±[ 55]s E-Glass/MY750 laminates under combined
−σ σx y.
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failure stress while the model with in situ effects considered give a good
agreement with test data. Strain-stress responses are well captured and
consistent with experimental data. This further validates the feasibility
of the proposed material degradation scheme. On the other hand, Like
most failure theories for fiber-reinforced composite laminates, this
proposed framework does not consider the possible interfacial failure
mode although the contribution of all stresses to intralaminar are ad-
dressed. Interlaminar delamination and fiber-matrix debonding may
take place following transverse cracking or fibre breakage. However,
we have not taken the interface effect into consideration in current
model and thus we cannot exactly show how it affects the results in this
paper. The work of improving the model would be done in the future.
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