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ABSTRACT
A theoretical model is developed to quantify the influence of surface roughness on sound propagation in porous materials containing rough
tubes by extending the Johnson–Champoux–Allard–Lafarge (JCAL) model. The five transport parameters of the JCAL model, including
the viscous permeability, thermal permeability, tortuosity, viscous characteristic length, and thermal characteristic length, are calculated by
modeling the rough tubes in the porous material as parallel rough tubes having idealized sinusoidal morphologies. The transport parameters
obtained using the proposed model are validated by full finite element simulations. Based on these transport parameters, the sound absorption
coefficient of the porous material containing idealized rough tubes is calculated, which agrees well with the FE result. The roughness effect
is investigated by comparing sound absorption performance between parallel smooth tubes and parallel rough tubes. The existence of tube
roughness weakens the thermal effect but dramatically strengthens the viscous effect in sound energy dissipation, resulting in enhanced sound
absorption. This work provides fundamental insights on how surface roughness affects the acoustic performance of sound-absorbing porous
materials.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0017710., s

I. INTRODUCTION

Sound propagation in a porous medium is a typical fluid
mechanics problem relating to physical properties of the fluid and
thermal properties of the medium as sound energy is dissipated
mainly via viscous and heat losses. To address these properties,
a simple way is to regard the porous medium as a series of uni-
formly distributed cylindrical tubes parallel to each other, enabling
the determination of these properties theoretically. Based on this
simplified model, Kirchhoff1 and Rayleigh2 presented exact solu-
tions for sound propagation in uniform circular tubes by tak-
ing the effects of both air viscosity and thermal conductivity into
consideration. Although Kirchhoff’s theory is fully theoretical and

characterizes the sound absorbing performance of cylindrical tubes
precisely, the intrinsic physical equations are unnecessarily compli-
cated for many practical applications. More applicable solutions3–6

were latterly proposed by separately treating the viscous effect and
the thermal effect, with the complex density and compressibility
functions found to be responsible for these two effects. To extend
the models for circular tubes to non-circular tubes, the concept of
shape factor was introduced to quantify the influence of tubes having
arbitrary cross sections.7,8 Upon introducing the concept of tortuos-
ity, static flow resistivity, and porosity, sound propagation in porous
materials can be characterized using the parallel circular tube model,
which is actually a simple but valid way to avoid the randomness of
typical porous materials.9
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Theoretical models are powerful for understanding the physi-
cal mechanisms underlying sound propagation in a series of parallel
smooth tubes. However, the widely applied smooth tube assumption
is not sufficiently accurate to evaluate the sound absorbing perfor-
mance of many porous materials. The surface roughness of the tubes
significantly affects fluid flow in a porous material and hence can-
not be ignored when considering sound propagation. How surface
roughness influences the in-tube fluid flow has been investigated for
years. For example, Colebrook et al.10–12 and Nikuradse et al.10–12

conducted detailed experimental and theoretical research studies on
the influence of uniform surface roughness and Reynolds number
on fluid flow in rough pipes. They demonstrated that the effect of
surface roughness can be divided into different regions and pro-
posed several empirical formulas to quantify the roughness effect.
Based on these experimental and theoretical works, Moody13 plotted
a diagram (i.e., the Moody chart) of the relationship among rela-
tive roughness, Reynolds number, and Darcy friction factor, useful
in industrial applications. However, these studies only considered
relatively low relative roughness (i.e., <5%), which means that the
conclusions cannot be directly applied when the relative roughness
exceeds 5%. For cases of high relative roughness or high Reynolds
number, a series of theoretical and numerical research studies were
carried out to calculate the fluid field in a rough pipe by assum-
ing a periodic structure upon the boundary of the pipe.14–23 These
studies led to an important conclusion that the existence of wall
roughness on laminar and incompressible flow in pipes increases
the pressure drop and static flow resistivity. More recently, upon
modeling the surface roughness as a sinusoidal type, we investi-
gated fully developed steady laminar flow in circular pipes and
obtained analytical solution of flow field using the perturbation the-
ory by regarding the surface roughness as a disturbance on the pipe
boundary.24

Although fluid flow inside a rough pipe has been studied both
theoretically and experimentally, few works exist on sound propa-
gation in porous materials containing rough tubes. A feasible way
to characterize the sound absorption performance of a porous mate-
rial is describing its equivalent fluid properties by all means, which
requires determining relevant viscous and thermal parameters of
the material. Based on this approach, Ren et al.25 proposed a semi-
analytical model for sound propagation in sintered metal fiber mate-
rials and quantified the influence of temperature on sound absorp-
tion. For a porous material with idealized rough pores, Yang et al.26

presented an analytical model to predict its permeability by con-
structing a three-dimensional (3D) cubic unit cell that has cylindri-
cal micro-rods synthesized on cell walls. Liu et al.27 experimentally
demonstrated that the copper fiber sintered sheets with a rough sur-
face exhibited better sound absorption performance compared with
those with a smooth surface. However, to clearly describe the influ-
ence of roughened surface on sound propagation in porous mate-
rials, a full investigation needs to be performed. To this end, in
the current study, we develop a theoretical model to quantify the
influence of surface roughness on sound propagation by describing
the porous material with the Johnson–Champoux–Allard–Lafarge
(JCAL) model. The JCAL model is a widely used equivalent fluid
model suitable for all kinds of porous materials. With the rough-
ened pore surfaces idealized as the sinusoidal type, the viscous
and thermal parameters of the porous material are derived analyti-
cally, thus enabling to calculate its equivalent density and equivalent

modulus and hence its sound absorption coefficient. Other types
of surface roughness, for example, triangular, rectangular, and ran-
dom morphologies,27 can also be studied by expanding the mor-
phology function into a series of sinusoidal functions.24 For valida-
tion, a full 3D finite element (FE) model is established. The results
obtained in the present paper are helpful for tailoring the pore mor-
phologies of porous materials to achieve superior acoustic property.
Though the theoretical model in this paper is based on idealized
sinusoidal pore morphologies of porous materials, the results of
this paper can provide fundamental insights on how surface rough-
ness affects the acoustic performance of sound-absorbing porous
materials.

II. THEORETICAL MODEL
When sound propagates in a porous material sample, its sound

absorption performance is strongly affected by surface roughness
of the pores, for its static flow resistivity and tortuosity depend
on surface roughness. Theoretically, sound absorption can be char-
acterized by incorporating the semi-phenomenological model of
Johnson–Champoux–Allard–Lafarge (JCAL) and the dependence
of equivalent fluid parameters of the porous material upon sur-
face roughness. The JCAL model28 describes sound propagation in
the porous material based on two equivalent fluid properties, the
equivalent density ρeq(ω) and the equivalent bulk modulus Keq(ω),

ρeq(ω) =
α∞ρ0

ϕ

⎡⎢⎢⎢⎢⎢⎣
1 +

μϕ
jωρ0α∞

¿
ÁÁÀ1 + j

4α2∞k̂2
0ωρ0

μϕ2Λ2

⎤⎥⎥⎥⎥⎥⎦
,

Keq(ω) =
γP0

ϕ
/
⎧⎪⎪⎨⎪⎪⎩
γ − (γ − 1)/

⎡⎢⎢⎢⎣
1 − j ϕκ

k̂′0Cpρ0ω

×

¿
ÁÁÀ1 + j

4k̂′20 Cpρ0ω
κΛ′2ϕ2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (1)

where the static density is ρ0 = 1.23 kg m−3, the dynamic viscos-
ity is μ = 1.84 × 10−5 Pa s, the specific heat capacity at constant
pressure is Cp = 1006 J kg−1 K−1, the specific heat ratio is γ = 1.4,
and the heat conductivity of air is κ = 0.025 W m−1 K−1, which are
all independent of surface roughness; ϕ is the porosity, j =

√
−1 is

the imaginary unit, and ω is the angular frequency of sound waves.
In contrast, the transport parameters (i.e., viscous permeability k̂0,
thermal permeability k̂′0, tortuosity α∞, viscous characteristic length
Λ, and thermal characteristic length Λ′) are all closely related to sur-
face roughness. As described in Eq. (1), the viscous and thermal
interactions between the air and the solid skeleton of the porous
material affect the equivalent fluid properties, which makes the
static density ρ0 and modulus γP0 of air convert into the frequency-
dependent equivalent fluid properties ρeq(ω) and Keq(ω). Once these
equivalent fluid properties are determined, the sound absorption
performance of the porous material can be deduced by analyzing its
characteristic impedance and propagation constant.

To address the equivalent fluid properties ρeq(ω) and Keq(ω),
the transport parameters, k̂0, k̂′0, α∞, Λ, and Λ′, need to be deter-
mined first. With reference to Fig. 1, the parallel rough tube model
is adopted to calculate the transport parameters of the porous mate-
rial having idealized sinusoidal pores. Let D be the mean diameter of
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FIG. 1. Schematic of the parallel rough tube model for the porous material: (a) parallel rough tube model, (b) one unit cell, (c) half section cut view, and (d) two-dimensional
view of one rough tube.

the rough tube, and let e and b be the amplitude and wavelength of
the sinusoidal roughness. The radius of the rough tube (i.e., r) varies
with the position (i.e., x) changes, and it can be expressed as

r(x) = D[1
2
− ε cos(βx̃)], (2)

where ε = e/D is the relative roughness to quantify the amplitude of
the roughness, β = 2πD/b is the wave number to describe the inten-
sity of the roughness, and x̃ = x/D is the dimensionless position.
According to the definition of viscous dynamic permeability,29 the
viscous permeability k̂0 is actually the limit of viscous dynamic per-
meability when ω tends to zero. So, the surface dependent viscous
permeability can be described as

k̂0 = lim
ω→0

μϕ
jωρeq(ω)

. (3)

From the definition of flow resistivity, the viscous permeability k̂0
can be expressed as a function of the flow resistivity of the porous
material σm,

k̂0 =
μ
σm

. (4)

Because the parallel tubes are distributed uniformly, σm can be deter-
mined form the flow resistivity of a single rough tube σt as σm
= σt/ϕ. Regarding the sinusoidal roughness as a disturbance of the
tube boundary, Song et al.24 calculated the flow resistivity of a rough
tube using the perturbation theory as

σt =
32μ
D2

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
(6ε2 + 1)
(1 − 4ε2)3.5 −

1
(1 − 2ε)4

⎞
⎠

2e−
1

5π β

1 + e−
1

5π β
+

1
(1 − 2ε)4

⎫⎪⎪⎬⎪⎪⎭
, (5)

where 32μ/D2 denotes the flow resistivity of a smooth circular tube
of diameter D. From Eq. (5), one can find that the flow resistivity
of a rough tube is significantly greater than its smooth counterpart.
Similarly, upon using the perturbation method, the tortuosity of the
rough tube α∞ can be determined by30

α∞ = 1 +
ε2β2[(J2

0(β/2) − J2
1(β/2))]

2J2
1(β/2)

, (6)

where J0(⋅) is the modified Bessel function of the first kind and zeroth
order and J1(⋅) is the modified Bessel function of the first kind and
first order.

The viscous characteristic length of a porous material Λ, which
actually describes the hydraulic radius of the porous material, is
derived in the limit of high frequencies where the viscous boundary
layer becomes extremely thin, and the fluid in the porous material
can be regarded as an ideal inviscid fluid as

2
Λ
= ∫A

v2
i (rw)dA

∫V v2
i (r)dV

. (7)

For a static flow of inviscid fluid in the porous medium, vi(rw) is
the fluid velocity at the position coordinates rw on the pore surface,
and the integration in the numerator is over surface A of the pore
in the representative elementary volume. vi(r) is the velocity of fluid
at the position coordinates r inside the pores, and the integration
in the denominator is over the volume V of the pore. Here, the vis-
cous characteristic length, representing the hydraulic radius of the
porous material, can be calculated using its relationship with flow
resistivity as31
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Λ = (8μα∞
σmϕ

)
1/2

. (8)

Similarity, the thermal characteristic length of the porous mate-
rial Λ′, which greatly influences the equivalent bulk modulus of the
porous medium, as shown in Eq. (1), is given by

2
Λ′
= ∫A

dA

∫V dV
. (9)

The integral in the numerator is performed over the pore surface
A in the representative elementary volume, and the denominator is
performed over the volume V of the pore, with respect to Eq. (7);
there is no weighting by the squared velocity. For the case of a rough
tube in the sinusoidal shape, as shown in Fig. 1, the integral over the
pore surface A can be expressed as

∫
A
dA = ∫ 2πr(x)

√
1 + r′2(x)dx, (10)

while the integral over the pore volume V can be expressed as

∫
V
dV = ∫ πr2(x)dx, (11)

where the position related radius is described by Eq. (2).
The thermal permeability k̂′0 has been defined by Lafarge et al.32

It is a complex parameter relating the pressure time derivative to
mean temperature. Champoux and Allard33 proposed a simple yet
accurate expression that relates thermal permeability to porosity ϕ
and thermal characteristic length Λ′ as

k̂′0 =
ϕΛ′2

8
. (12)

This expression is adopted in the current study.
Hitherto, the five transport parameters, k̂0, k̂′0, α∞, Λ, and Λ′,

are all determined directly using structural (morphological) parame-
ters of the porous material, i.e., porosity ϕ, relative roughness ε, and
wave number β. The equivalent density ρeq(ω) and the equivalent
bulk modulus Keq(ω) of the porous material can be calculated by
substituting the five transport parameters into the JCAL model, i.e.,
Eq. (1). To analyze the sound absorbing performance, the character-
istic impedance Zm(ω) and the propagation constant km(ω) of the
porous material are determined by

Zm(ω) =
√
ρeq(ω)Keq(ω),

km(ω) = jω
√
ρeq(ω)/Keq(ω).

(13)

For a rigid-backed porous material (with thickness h), the surface
impedance is given by

Zs(ω) = Zm(ω) coth(km(ω) ⋅ h). (14)

Finally, the sound absorption coefficient of the porous material
containing rough tubes can be expressed as

α = 1 − ∣Zs − Z0

Zs + Z0
∣
2
, (15)

where Z0 = ρ0c0 is the characteristic impedance of air.

III. NUMERICAL MODEL
The full 3D finite element model is developed to validate the

above theoretical model. To this end, the multi-scale asymptotic
method31,34 is applied to calculate the transport parameters of the
porous material. In the model, three sets of equations, namely, the
viscous flow equations, the inertial flow equations, and the thermal
conduction equations, need to be solved independently.

When the frequency of the sound wave is close to 0, the motion
of fluid is dominated by the viscosity of the fluid. Under the external
excitation of a pressure gradient g, the microscopic velocity vm and
the sound pressure pm in the fluid domain Ωf must satisfy the static
Stokes equation as

μΔvm = ∇pm + g in Ωf, (16)

∇ ⋅ vm = 0 in Ωf. (17)

At the solid–fluid interfaces ∂Ωsf, no-slip boundary conditions are
adopted as

vm = 0 on ∂Ωsf. (18)

According to Darcy’s law, the microscopic velocity vm is related
to the viscous permeability vector k0 as vm = −|g|k0/μ. In addition, a
scalar pressure field is defined as q0 = −pm/|g|. Then, the static Stokes
equation and the no-slip free boundary conditions are transformed
into the following forms:

Δk0 = ∇q0 − e in Ωf, (19)

∇ ⋅ k0 = 0 in Ωf, (20)

k0 = 0 on ∂Ωsf, (21)

where e is an unit vector along the direction of pressure gradient g.
The viscosity permeability k̂0 can be calculated as

k̂0 = ϕ⟨km0 ⟩, (22)

where km0 is the component of k0 along the propagation direction of
sound wave and the operator ⟨ ⟩ indicates a volume average over the
fluid domain.

As the frequency of the sound wave approaches infinity, the vis-
cosity of fluid becomes negligible. When the fluid passes through the
porous material, its motion is dominated by inertial effects. In this
case, the fluid flow problem is equivalent to the problem of electrical
conductivity of a conductive fluid within the insulating skeleton of a
porous material,35–37 as:

E = e′ −∇q in Ωf, (23)

∇ ⋅ E = 0 in Ωf, (24)

where the unit vector e′ is the externally applied macroscopic electric
field, E is the local electric field,−∇q is the disturbance term of E, and
n is the normal vector on the fluid–solid interface. The walls of the
skeleton satisfy the insulation boundary condition as

E ⋅ n = 0 on ∂Ωsf. (25)
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Once the local electric field is determined, the tortuosity α∞, the vis-
cous characteristic length Λ, and the thermal characteristic length
Λ′ can be obtained as follows:

α∞ =
⟨E ⋅ E⟩
⟨E⟩ ⋅ ⟨E⟩ , (26)

Λ = 2
∫Ωf

E ⋅ EdV

∫∂Ωsf
E ⋅ EdS

, (27)

Λ′ = 2
∫Ωf

dV

∫∂Ωsf
dS

. (28)

When the sound wave propagates in a fluid, the fluctuation of
sound pressure causes compression/expansion of the fluid, resulting
in fluctuation of fluid temperature T. The temperature field in the
fluid domain is controlled by the heat conduction equation. Because
the thermal conductivity of the fluid (such as air) is generally far
less than that of the solid skeleton of porous materials, the isother-
mal boundary condition is adopted at fluid–solid interfaces. The
governing equations together with the boundary condition are

κΔT − iωCpρ0T = − iωP in Ωf, (29)

T = 0 on ∂Ωsf, (30)

where κ is the thermal conductivity of the fluid, Cp is the specific heat
at constant pressure, and P is the fluid pressure. With the thermal
dynamic permeability denoted by k′, the temperature can be linked
to the pressure P as T = iωPk′/κ.32 At low frequencies, the governing
equation and the boundary condition can be simplified into

− Δk′0 = 1 in Ωf, (31)

k′0 = 0 on ∂Ωsf. (32)

The thermal permeability k̂′0 is determined by

k̂′0 = ϕ⟨k′0⟩. (33)

IV. RESULTS AND DISCUSSION
To validate the proposed theoretical model, full numerical sim-

ulations are carried out to evaluate the sound absorption perfor-
mance of parallel rough and smooth tubes, separately representing
porous materials with and without the roughness effect in the pores.
Relevant structure parameters are adopted as D = 0.6 mm, ε = 0.2,
β = 1, ϕ = 34.91%, and h = 30 mm. For the choice of these param-
eters, it was reported that the optimal cell size of porous materials
for best sound absorption was on the order of ∼0.1 mm.38 There-
fore, the mean diameter of the rough tube D = 0.6 mm represents a
moderate size. The relative roughness ε is no more than 0.2, which
ensures the accuracy of theoretical predictions for transport param-
eters.24 The value of the wavenumber β, the porosity ϕ, and the
thickness h has no specific limit. The choice of β = 1, ϕ = 34.91%,
and h = 30 mm is just to obtain good low-frequency sound absorp-
tion performance without wasting too much material. The poros-
ity of 34.91% corresponds to the situation in which the horizontal

FIG. 2. Finite element model for a periodic segment of the rough tube.

and vertical spacing of rough tubes are all 0.9 mm. For the porous
material containing rough tubes, a periodic segment of the rough
tube is selected as the computational model, and the FE mesh is
shown in Fig. 2.

Three modules of the commercial FE code COMSOL Multi-
physics, namely, the Creep Flow module, the Electrostatics module,
and the Coefficient Form partial differential equations (PDE) mod-
ule, are used to solve three sets of partial differential equations of
the numerical model. In the Creep Flow module, the density and
dynamic viscosity of the fluid are set to 1 kg/m3 and 1 Pa s, respec-
tively, and the governing equation of the fluid is transformed into
the form of Eq. (19). The value of pressure at the inlet is equal to that
of the unit cell length, while the pressure at the outlet is set to 0 Pa,
which is equivalent to externally applying a macroscopic unit pres-
sure gradient. Similarly, to apply a macroscopic unit electric field in
the Electrostatics module, the value of electric potential at the inlet
is equal to that of the unit cell length, while the electric potential at
the outlet is set to 0 V. The coefficients of the built-in differential
equation in the Coefficient Form PDE module can be determined
according to the form of Eq. (31). At the fluid–solid interface, the
Dirichlet boundary condition is applied.

To ensure the accuracy of the numerical calculations, a mesh
convergence study is implemented, as listed in Table I. In the FE sim-
ulations, as the number of elements increases, the numerical results
tend to the corresponding convergence solutions. However, the finer
the mesh, the more computing resources it takes up. Therefore, the
penultimate set of the mesh element number in Table I is adopted
for numerical calculations, and the convergence results are used for
sound absorption calculations.

In Table II, the five transport parameters of the considered
porous material (Fig. 1) obtained using the present theoretical model
are compared with those calculated numerically. The theoretically
predicted transport parameters are calculated with the correspond-
ing equations, i.e., Eq. (4) for viscous permeability, Eq. (12) for
thermal permeability, Eq. (6) for tortuosity, Eq. (8) for viscous char-
acteristic length, and Eq. (9) for thermal characteristic length. For
the case considered here, a good agreement is achieved between the-
oretical model predictions and FE simulation results. Among all the
five transport parameters, only the thermal permeability has a rela-
tively large error between the theoretical prediction and the numer-
ical result. However, the influence of thermal permeability on sound
absorption is much less than that of viscous permeability. Conse-
quently, the present theoretical predictions are accurate enough for
predicting sound absorption in porous materials containing rough
tubes.

Substituting the five transport parameters into the JCAL model
and calculating the sound absorption coefficient via Eq. (15) enable
theoretically determining the sound absorption coefficient for both
parallel rough tubes and smooth tubes. With reference to Fig. 3,
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TABLE I. A mesh convergence study for the numerically calculated transport parameters.

Number of elements k̂0/(10−3 mm2) α∞ Λ (mm) Λ′ (mm) k̂′0/(10−3 mm2)

154 287 1.5956 1.4048 0.231 95 0.319 49 5.1994
456 185 1.6055 1.4033 0.232 51 0.319 86 5.2055
728 048 1.6084 1.4029 0.232 68 0.319 95 5.2070
981 806 1.6098 1.4026 0.232 77 0.320 00 5.2077
1 268 579 1.6108 1.4025 0.232 83 0.320 03 5.2083
1 528 371 1.6112 1.4023 0.232 87 0.320 05 5.2086
1 630 639 1.6112 1.4023 0.232 87 0.320 06 5.2087
1 742 814 1.6112 1.4023 0.232 87 0.320 06 5.2087

TABLE II. Theoretical predictions and numerical results of transport parameters.

Theoretical Numerical Relative error
Acoustic parameters Symbol predictions Rt results Rn δ = |Rt − Rn|/Rn (%)

Viscous permeability k̂0/(10−3 mm2) 1.5994 1.611 2 0.73
Thermal permeability k̂′0/(10−3 mm2) 4.6946 5.208 7 9.87
Tortuosity α∞ 1.3201 1.402 3 5.86
Viscous characteristic length Λ (mm) 0.21196 0.232 87 8.98
Thermal characteristic length Λ′ (mm) 0.32799 0.320 06 2.48

the solid line represents theoretical predictions, while the symbols
indicate FE simulation results. As shown in Fig. 3, for both parallel
rough tubes and smooth tubes, the predicted absorption coefficients
show good agreements with the numerical results. Compared to the
smooth tubes, the rough tubes exhibit a better sound absorption
performance, which means a lower peak frequency and a higher

FIG. 3. The theoretical and numerical results of the sound absorption coefficient
for parallel rough tubes and smooth tubes.

absorption peak value. More specifically, the first absorption coef-
ficient peak of the parallel rough tubes is about 0.97 at 2290 Hz,
while that of the parallel smooth tubes is about 0.85 at 2670 Hz.
The absorption peak increases by 14.1%, while the peak frequency
decreases by 14.2%.

To reveal the reason why the sound absorption performance
of the rough tubes deviates from the smooth ones, sound energy
dissipation (which consists of thermal and viscous effects) needs
to be analyzed. Both the thermal and viscous effects are strongly
related to the five transport parameters. The transport parameters
k̂0 = k̂′0 = 3.9274 × 10−3 mm2, α∞ = 1, Λ = Λ′ = 0.3 mm
obtained for parallel smooth tubes are all far different from those
listed in Table I for parallel rough tubes. Specifically, the thermal per-
meability and thermal characteristic length of rough tubes are both

FIG. 4. Numerical results for a periodic segment of the rough tube: (a) thermal
permeability distribution (m2) and (b) viscous permeability distribution (m2).
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FIG. 5. (a) The real part and (b) imaginary part of normalized surface impedance of parallel rough tubes and parallel smooth tubes.

larger than those of smooth tubes, which indicates a smaller ther-
mal effect when energy dissipates from the rough tubes. However,
both the viscous permeability and viscous characteristic length are
smaller than those of smooth tubes, indicating a larger viscous effect

when sound propagates in rough tubes. In fact, when a sound wave
travels in parallel tubes, the existence of surface roughness makes
the air inside the tubes more difficult to be compressed, result-
ing in a smaller temperature rise of the air. The thermal effect is

FIG. 6. Influence of roughness structure parameters on transport parameters: (a) influence of relative roughness on the characteristic length (at β = 2π), (b) influence of
relative roughness on permeability (at β = 2π), (c) influence of wave number on the characteristic length (at ε = 0.2), and (d) influence of wave number on permeability (at
ε = 0.2).
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FIG. 7. Roughness effect on the sound absorption coefficient: (a) influence of relative roughness ε in contour map (at β = 2π) and (b) influence of wave number β in contour
map (at ε = 0.2).

therefore weakened by roughness, for a smaller temperature rise
leads to a smaller energy loss. Different from the thermal effect,
because of a larger flow resistivity [Eq. (5)], the sound wave suffers
a larger viscous loss in rough tubes compared to the case of smooth
tubes. Therefore, the viscous effect (i.e., viscous energy loss when a
sound wave passes through a porous material) is strengthened by
surface roughness.

For a rough tube in Fig. 2, the numerically calculated ther-
mal permeability and viscous permeability are displayed in Fig. 4.
In brief, thermal permeability relates to the difficulty of air to be
compressed, while viscous permeability characters the difficulty of
air to flow. When a sound wave travels across the rough tube,
the air at positions with relatively small radii (i.e., the two ends
of the tube in Fig. 4) is harder to be compressed compared to
the air at positions with bigger radii (i.e., the middle of the tube
in Fig. 4). Thus, there is a smaller thermal permeability at the
two ends. As for the viscous permeability, because of a smaller
section area, viscous permeability at the two ends is bigger than
that at the middle, which is in agreement with the results of
Fig. 4.

The sound absorption property of a porous material is strongly
related with its surface impedance. By rewriting Eq. (15), the sound
absorption coefficient can be expressed as α = 4Re(zn)

[Re(zn)+1]2+Im(zn)2 ,
where zn = Zs/Z0 is the normalized surface impedance. Figure 5
plots the real and imaginary parts of normalized surface impedance
for both parallel rough tubes and smooth tubes. The equation of
the sound absorption coefficient reveals that high sound absorption
stems from appropriate acoustic resistance, i.e., Re(Zs/Z0) close to 1,
and low acoustic reactance, i.e., Im(Zs/Z0) close to 0. As shown in
Fig. 5, at the peak frequency (2290 Hz for rough tube and 2760 Hz
for smooth tube; Fig. 3), one obtains Re(Zs/Z0) = 0.75 and Im(Zs/Z0)
= 0.10 for the rough tube and Re(Zs/Z0) = 0.45 and Im(Zs/Z0)
= 0.08 for the smooth tube, which validates the high sound absorp-
tion condition to certain extent.

Upon validating the sound absorption theory, the influence
of roughness structure on transport parameters is quantified using
the theory. As shown in Fig. 6, increasing either relative roughness
or wave number leads to reduced viscous characteristic length and

viscous permeability but increased thermal characteristic length and
thermal permeability. In fact, from Eqs. (4) and (8), the relationship
between viscous permeability and viscous characteristic length can
be derived as k̂0 = ϕΛ2/8α∞, implying that the viscous permeabil-
ity is proportional to the square of the viscous characteristic length.
From Eq. (12), the thermal permeability is found to be proportional
to the square of thermal characteristic length. So, as shown in Fig. 6,
the viscous characteristic length decreases with decreasing viscous
permeability, while the thermal characteristic length increases with
increasing viscous permeability.

Figure 7 plots the influence of relative roughness and wave
number on the sound absorption coefficient. Figures 7(a) and 7(b)
present the influence in the form of 2D contour maps, while
Figs. 7(c) and 7(d) present the influence in a 3D manner. The sound
absorption coefficient is depicted using different colors, ranging
from blue to red as it increases in magnitude. As shown in Figs. 7(a)–
7(d), with increasing relative roughness or wave number, the red
region moves a little to the left and the area enlarges. That is, a larger
relative roughness and a larger wave number can both decrease
the resonant frequency and increase the sound absorption band of
the porous material containing parallel rough tubes. As shown in
Fig. 7(a), for the considered case, it is seen that if the relative rough-
ness ε is less than 0.05, the roughness effect on the sound absorption
can be negligible.

V. CONCLUSIONS
A theoretical model has been developed to characterize sound

propagation in porous materials containing parallel rough tubes by
taking into account the roughness effect on equivalent fluid proper-
ties in the Johnson–Champoux–Allard–Lafarge (JCAL) model. For
simplicity, the rough tubes exhibit idealized sinusoidal morpholo-
gies. The predicted transport parameters (i.e., viscous permeability,
thermal permeability, tortuosity, viscous characteristic length, and
thermal characteristic length) and sound absorption coefficient are
validated against finite element simulation results. Compared to a
smooth tube, the rough tube achieves appropriate acoustic resistance
and low acoustic reactance at a lower frequency, leading to a smaller
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peak frequency and a higher peak sound absorption coefficient. Fur-
thermore, the existence of surface roughness weakens the thermal
effect and strengthens the viscous effect in sound energy dissipation.
The present results are helpful for understanding the sound absorp-
tion behavior of porous materials containing rough tubes and enable
designing high-performance sound absorbing materials by changing
the surface roughness of micro-pores or micro-channels of porous
materials.
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