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1. Introduction

Functionally graded materials (FGMs) have been proposed to
overcome severe aerodynamic heating encountered by aerocraft
(e.g., supersonic aircraft).[1] FGMs are typically heterogeneous,
with properties varying continuously and smoothly. In addition
to thermal protection, functionally graded (FG) electroactive
materials and magnetoactive materials for sensors, actuators,
biomedical devices, and flexible electronics have been
exploited.[2,3] Further, FG graphene/carbon nanotube-reinforced
materials with high strength/stiffness have been extensively
studied.[4,5] Until now, the most popular FGM is composed of
ceramic and metal materials; the benefit is that it can enjoy both

the low thermal conductivity of ceramic
and the high toughness of metal to prevent
premature ceramic cracking. With great
achievements in the past decades, the FG
plates constitute a basic structural form
and have been widely applied in complex
environments where, in addition to requir-
ing high stiffness/strength, thermal vibra-
tion is also of significant concern.

To characterize the vibration properties
of an FG plate, a variety of plate theories
have been developed. For instance, the
thermal free vibration of exponential FG
rectangular plates, FG thin annular sector
plates, and FG circular plates were analyzed
using the classical plate theory.[6–8] While
high accuracy was achieved in thin plates,
the analysis error increases with plate thick-
ness, because the effects of shear and
normal deformations in thickness direc-

tion were neglected. For moderately thick and thick FG plates,
the first-order shear deformation theory was proposed.[9–11]

Nonetheless, as the transverse shear strain is assumed to be con-
stant along with plate thickness, a shear correction factor must be
introduced to correct errors caused by nonzero shear stresses on
free surfaces. To avoid the use of the shear correction factor, a
variety of higher-order plate theories were proposed.[12–16]

In addition to plate theories, the theory of 3D elasticity is also
widely to analyze the vibration of rectangular and annular FG
plates.[17–19] As no assumptions about the distribution of defor-
mation and stress are made, the 3D elasticity theory is deemed
more accurate than the higher-order plate theories.

The 3D elasticity theory can be used to systematically investi-
gate how boundary conditions affect the free vibration of an FG
plate, as existing analyses only considered idealized boundary
conditions, such as free, simply supported, clamped, or their
combinations. In practice, most engineering structures are not
absolutely free, simply supported, or clamped, but may have
boundary conditions closer to elastic. For both monolithic and
FG plates, the effects of elastic-constraint boundary conditions
on plate vibration have already been analyzed.[20–30] However,
for an FG plate constrained elastically at its edges by
springs,[29,30] how its frequency parameters change under vary-
ing temperature environments remains elusive.

Built upon the 3D elasticity theory, this study aims to analyze
the free vibration of an FG plate having arbitrary boundary con-
ditions in thermal environments, with temperature effects
accounted for from two aspects: temperature-dependent material
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properties and thermal strain energy caused by elastic
constraints. With three different sets of springs introduced to
characterize elastic constraints at plate edges and the displace-
ment components expanded into improved Fourier series, the
free vibration problem is solved using the Rayleigh–Ritz method.
For validation, natural frequencies calculated under classical
boundary conditions are compared with existing results.
The proposed method is then utilized to quantify the influences
of plate aspect ratio, volume fraction, and elastic constraints and
explore the vibration characteristics of FG plates in thermal
environments.

2. Theoretical Formulation

2.1. Geometrical Configuration

Figure 1 shows the FG plate of concern, together with the coor-
dinate system for analysis. Let its length, width, and thickness be
denoted by a, b, and h, and let u, v, and w represent its displace-
ment components in the x, y, and z directions, respectively. With
the equivalent stiffness of the elastically restrained plate edges
represented by three sets of independent springs (denoted herein
by ku, kv, and kw), boundary conditions of the plate can be sys-
tematically adjusted by varying individual spring stiffness. For
example, the classical clamped and free boundaries can be mod-
eled by setting the related spring stiffness to approach infinity
and zero, respectively. Values of spring stiffness suitable for
representative boundary conditions are provided in subsequent
sections (e.g., Table A.2 in Appendix A).

2.2. Material Properties

According to the definition of an FG plate, the properties of its
material can vary continuously along the thickness direction as
the volume fractions of its constituents are varied. In the current
study, the FG plate is composed of ceramic and metal materials,
as shown in Figure 1. For simplicity, the FG is assumed to have a
uniform temperature T, the same as the environment. Existing
researches on free vibration of FG plates revealed that the influ-
ence of uniform temperature on natural frequencies is more sig-
nificant than nonuniform temperature.[6,12,17]

Material properties of the FG plate are assumed to vary in its
thickness direction as

Pðz,TÞ ¼ PmðTÞ þ PcðTÞ � PmðTÞð Þ z
h

� �
p

(1)

where T is the temperature and P(z, T ) represents material
parameters of the FG plate, such as Young’s modulus E(z, T ),
Poisson ratio v(z, T ), mass density ρ(z, T ), and thermal expan-
sion coefficient α(z, T ). Pm(T ) and Pc(T ) are temperature-
dependent material properties of ceramic andmetal, respectively.
Different values of the volume fraction index p represent differ-
ent material distributions along with plate thickness: the pure
ceramic plate is obtained by setting p to zero, whereas the pure
metal plate is recovered by setting p to infinite.

Temperature-dependent material properties are taken as non-
linear functions of temperature, given by[31]

PðTÞ ¼ P0 P�1T�1 þ 1þ P1T þ P2T2 þ P3T3ð Þ (2)

where P0, P�1, P1, P2, and P3 are temperature coefficients, with
specific values shown in Table A.1 for selected materials,[32]

and T¼ T0þ ΔT(z), T0¼ 300 K being room temperature.

2.3. Constitutive Laws and Kinematic Relations

For the FG plate of concern, the 3D elastic constitutive relations
can be written as

σxx
σyy
σzz
σxy
σxz
σyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

A B B 0 0 0
B A B 0 0 0
B B A 0 0 0
0 0 0 C 0 0
0 0 0 0 C 0
0 0 0 0 0 C

2
6666664

3
7777775

εxx
εyy
εzz
γxy
γxz
γyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(3)

where the reduced stiffness coefficients are

A ¼ Eðz,TÞvðz,TÞ
ð1þ vðz,TÞÞð1� 2vðz,TÞÞ þ

Eðz,TÞ
1þ vðz,TÞ

B ¼ Eðz,TÞvðz,TÞ
ð1þ vðz,TÞÞð1� 2vðz,TÞÞ C ¼ Eðz,TÞ

2ð1þ vðz,TÞÞ
(4)

In accordance with linear, small-strain elasticity theory, strain
components are defined as

εxx ¼
∂u
∂x

; εyy ¼
∂v
∂y

; εzz ¼
∂w
∂z

; γxy ¼
∂u
∂y

þ ∂v
∂x

;

γxz ¼
∂u
∂z

þ ∂w
∂x

; γyz ¼
∂v
∂z

þ ∂w
∂y

(5)

Figure 1. Schematic of an FG plate with elastically restrained edges represented by three independent sets of springs.
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2.4. Energy Expressions

The strain energy Ue of the FG plate is given by

Ue ¼
1
2

Z
V
ðσxxεxx þ σyyεyy þ σzzεzz þ σxyγxy

þ σyzγyz þ σxzγxzÞdV
(6)

where V is the volume of the plate. Detailed expression of Ue can
be obtained by substituting (3)–(5) into (6), yielding

Ue ¼
1
2

Z
a

0

Z
b

0

Z
h

0

�
A

∂u
∂x

� �
2
þ ∂v

∂y

� �
2
þ ∂w

∂z

� �
2

� �

þ 2B
∂u
∂x

∂v
∂y

þ ∂u
∂x

∂w
∂z

þ ∂v
∂y

∂w
∂z

� �

þ C
�

∂u
∂y

� �
2
þ ∂v

∂x

� �
2
þ ∂u

∂z

� �
2
þ ∂w

∂x

� �
2

þ ∂v
∂z

� �
2
þ ∂w

∂y

� �
2
�

þ 2C
∂u
∂y

∂v
∂x

þ ∂u
∂z

∂w
∂x

þ ∂v
∂z

∂w
∂y

� �	
dxdydz

(7)

The elastic potential energy stored in the springs can be
expressed as

Uspring ¼
1
2

Z
h

0

Z
b

0
½ðkux0 þ kuxaÞu2 þ ðkvx0 þ kvxaÞv2

þ ðkwx0 þ kwxaÞw2�dydz

þ 1
2

Z
h

0

Z
a

0
½ðkuy0 þ kuybÞu2 þ ðkvy0 þ kvybÞv2

þ ðkwy0 þ kwybÞw2�dxdz (8)

where x0, xa, y0, and yb indicate the positions of springs. For
example, x0 and xa indicate that the springs are distributed along
the edge x¼ 0 and edge x¼ a, respectively.

Kinetic energy Te of the FG plate is

Te ¼
1
2

Z
V
ρðz,TÞ ∂u

∂t

� �
2
þ ∂v

∂t

� �
2
þ ∂w

∂t

� �
2

� �
dV (9)

Thermal stresses in the FG plate can be expressed as

σ0xx
σ0yy
σ0zz
σ0xy
σ0xz
σ0yz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

A B B 0 0 0
B A B 0 0 0
B B A 0 0 0
0 0 0 C 0 0
0 0 0 0 C 0
0 0 0 0 0 C

2
6666664

3
7777775

�α z,Tð ÞΔT
�α z,Tð ÞΔT
�α z,Tð ÞΔT

0
0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(10)

whereas thermal strains caused by temperature variation can be
written as[6]

dxx ¼
∂u
∂x

∂u
∂x

þ ∂v
∂x

∂v
∂x

þ ∂w
∂x

∂w
∂x

dyy ¼
∂u
∂y

∂u
∂y

þ ∂v
∂y

∂v
∂y

þ ∂w
∂y

∂w
∂y

dxy ¼
∂u
∂x

∂u
∂y

þ ∂v
∂x

∂v
∂y

þ ∂w
∂x

∂w
∂y

(11)

The strain energy of initial thermal stresses induced by tem-
perature rise ΔT is thus

UT ¼ 1
2

Z
V
ðσ0xxdxx þ σ0yydyy þ 2σ0xydxyÞdV (12)

Deformation of FG plate along z-direction is not constrained;
thus, thermal strain energy containing the z-coordinate is
ignored in (12). Detailed expression ofUT can thence be obtained
by substituting (10) and (11) into (12), yielding

UT ¼
Z

a

0

Z
b

0

Z
h

0
� 1
2
ðAþ 2BÞ

�
∂u
∂x

∂u
∂x

þ ∂v
∂x

∂v
∂x

þ ∂w
∂x

∂w
∂x

þ ∂u
∂y

∂u
∂y

þ ∂v
∂y

∂v
∂y

þ ∂w
∂y

∂w
∂y

�

� αðz,TÞΔTdxdydz

(13)

2.5. Admissible Displacement Functions and Solution
Procedure

Modified 3D Fourier cosine series supplemented with
closed-form auxiliary functions are selected as the displacement
functions that satisfy arbitrary boundary conditions,[28] namely

uðx, y,z, tÞ ¼
�X∞

m¼0

X∞
n¼0

X∞
l¼0

AmnlHxyz þ
X∞
m¼0

X∞
n¼0

X2
r¼1

amnrHxyξrz

þ
X∞
m¼0

X2
r¼1

X∞
l¼0

amrlHxξryz þ
X2
r¼1

X∞
n¼0

X∞
l¼0

arnlHξrxyz

�
eiωt

(14)

vðx, y,z, tÞ ¼
�X∞

m¼0

X∞
n¼0

X∞
l¼0

BmnlHxyz þ
X∞
m¼0

X∞
n¼0

X2
r¼1

bmnrHxyξrz

þ
X∞
m¼0

X2
r¼1

X∞
l¼0

bmrlHxξryz þ
X2
r¼1

X∞
n¼0

X∞
l¼0

brnlHξrxyz

�
eiωt

(15)

wðx, y,z, tÞ ¼
�X∞

m¼0

X∞
n¼0

X∞
l¼0

CmnlHxyz þ
X∞
m¼0

X∞
n¼0

X2
r¼1

cmnrHxyξrz

þ
X∞
m¼0

X2
r¼1

X∞
l¼0

cmrlHxξryz þ
X2
r¼1

X∞
n¼0

X∞
l¼0

crnlHξrxyz

�
eiωt

(16)

where Amnl, Bmnl, Cmnl, amnr, bmnr, cmnr, amrl, bmrl, cmrl, arnl, brnl,
and crnl are unknown coefficients, and ω is the natural frequency
of FG plate, with i representing the imaginary unit and t the time
variable. The expanded series functions can be expressed as
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Hxyz ¼ cos λmx cos λny cos λlz Hxyξrz ¼ cos λmx cos λnyξrzðzÞ
Hxξryz ¼ cos λmxξryðyÞ cos λlz Hξrxyz ¼ ξrxðxÞ cos λny cos λlz
λm ¼ mπ=a λn ¼ nπ=b λl ¼ lπ=h

(17)

where the closed-form auxiliary functions are

ξrxðxÞ ¼

8>><
>>:
x

x
a
� 1

� �
2

r ¼ 1

x2

a
x
a
� 1

� �
r ¼ 2

(18)

ξry yð Þ ¼

8>><
>>:
y

y
b
� 1

� �
2

r ¼ 1

y2

b
y
b
� 1

� �
r ¼ 2

(19)

ξrz zð Þ ¼

8>><
>>:
z

z
h
� 1

� �
2

r ¼ 1

z2

h
z
h
� 1

� �
r ¼ 2

(20)

It is worth noting that the form of auxiliary function is not
unique. Any type of closed function satisfying the following
conditions can be used to deal with possible discontinuities of
displacement or derivatives at the edges of the plate

ξ1xð0Þ ¼ ξ1xðaÞ ¼ ξ01xðaÞ ¼ 0, ξ01xð0Þ ¼ 1 (21)

ξ2xð0Þ ¼ ξ2xðaÞ ¼ ξ02xð0Þ ¼ 0, ξ02xðaÞ ¼ 1 (22)

ξ1yð0Þ ¼ ξ1yðbÞ ¼ ξ01yðbÞ ¼ 0, ξ01yð0Þ ¼ 1 (23)

ξ2yð0Þ ¼ ξ2yðbÞ ¼ ξ02yð0Þ ¼ 0, ξ02yðbÞ ¼ 1 (24)

ξ1zð0Þ ¼ ξ1zðhÞ ¼ ξ01zðhÞ ¼ 0, ξ01zð0Þ ¼ 1 (25)

ξ2zð0Þ ¼ ξ2zðhÞ ¼ ξ02zð0Þ ¼ 0, ξ02zðhÞ ¼ 1 (26)

The first-order displacement derivative has auxiliary terms
only at the edge. In other words, the potential discontinuity of
the first-order displacement derivative at the edge is effectively
transferred to the auxiliary functions.

Finally, detailed displacement functions can be obtained by
substituting (17)–(20) into (14)–(16). Once the displacement field
is expressed using a suitable form like (14)–(16), the remaining
task is to determine the unknown coefficients. A conventional
solution strategy is substituting the assumed displacement field
into the governing equation and boundary conditions, which is
effective but cumbersome. The Rayleigh–Ritz solution procedure
is used instead in the present work, with a flowchart shown in
Figure 2.

The Lagrangian function of the FG plate system can be
expressed as

Π ¼ Te �Ue �Uspring �UT (27)

where the kinetic energy Te, the strain energy of plate Ue, the
potential energy of spring Uspring, and the thermal strain energy
UT have been defined in (7)–(9) and (13), respectively.
Substituting these four equations into (27) and minimizing
the Lagrangian function against all unknown coefficients
lead to

∂Π
∂η

¼ 0 η ¼ Amnl, amnr , amrl, arnl,Bmnl, bmnr , bmrl, brnl,

Cmnl, cmnr , cmrl, crnl

(28)

Figure 2. Flowchart of the Rayleigh�Ritz solution procedure.

www.advancedsciencenews.com www.aem-journal.com

Adv. Eng. Mater. 2021, 2100636 2100636 (4 of 16) © 2021 Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.aem-journal.com


Finally, upon transforming the free vibration problem into a
standard matrix eigenvalue problem, the following governing
equations are obtained

ð½K� þ ½KS� þ ½KT� � ω2½M�ÞfΦg ¼ f0g (29)

where [K] is the symmetric stiffness matrix obtained from the
strain energy of the plate, [Ks] is the stiffness matrix obtained
from the potential energy of the springs, [KT] is the stiffness
matrix obtained from the strain energy of initial thermal stresses
induced by temperature rise, and [M] is the mass matrix. Φ is the
column vector of unknown coefficients

fΦgT ¼ fAmnl, amnr , amrl, arnl,Bmnl, bmnr , bmrl, brnl,Cmnl,

cmnr , cmrl, crnlg
(30)

Detailed expressions of these matrices can be found in
Appendix B. Ultimately, the solution of the eigenvalue problem,
Equation (29), gives the natural frequency parameters and mode
shapes of the FG plate in thermal environments.

3. Numerical Results and Discussion

3.1. Determination of Spring Stiffness

As shown in Figure 1, three sets of springs are assigned to the
edges of the FG plate to restrain its displacement in three

coordinate directions. Theoretically, when all springs are set to
have infinite (or zero) stiffness, the boundary condition becomes
clamped (or free). As numerical calculations cannot deal with
infinite values directly, spring stiffness must be reasonably set
to ensure sufficient calculation accuracy. For illustration, for a
clamped FG plate, Table 1 shows how spring stiffness (ku, kv,
and kw) affects the convergence of nondimensional natural fre-
quency λ, defined as

λ ¼ ωb2=π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ0hÞ=D0

p
D0 ¼ E0h3=½12ð1� v02Þ� (31)

where ρ0, E0, and v0 refer to the mass density, Young’s modulus,
and Poisson ratio of SUS304 at 300 K (Table A.1), respectively.
Unless specifically noted, all the natural frequencies in subse-
quent numerical examples are denoted in the nondimensional
form of (31).

The results of Table 1 show that, when the spring stiffness is
greater than 1e-19, the first eight natural frequencies converge
gradually. Values of spring stiffness associated with the three
classical boundary conditions, that is, free (referred to as F), sim-
ply supported (referred to as S), and clamped (referred to as C),
are shown in Table A.2. It is worth emphasizing that the present
model can be used to deal with situations where the four plate
edges have different restraint conditions, for example, one
boundary simply supported and the others clamped (SCCC).
This is the main reason why “arbitrary” is used in the title of this
study.

Table 1. Determination of spring stiffness for CCCC FG square plates with different thickness-side ratios (T0¼ 300 K, ΔT¼ T�T0¼ 0 K).

h/b ku¼ kv¼ kw
[N/m]

Natural frequency

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0.05 1e-12 2.3060 5.4042 5.4042 8.1736 10.2319 10.2531 12.0003 12.0003

1e-13 3.0744 6.4590 6.4590 9.6066 11.7355 11.7673 14.6705 14.6705

1e-14 3.8340 7.6775 7.6775 11.1385 13.4137 13.4936 16.5929 16.5929

1e-16 4.0345 8.0531 8.0531 11.6503 14.0160 14.1060 17.3002 17.3002

1e-18 4.0540 8.0923 8.0923 11.7065 14.0824 14.1734 17.3804 17.3804

1e-19 4.0545 8.0933 8.0933 11.7079 14.0840 14.1751 17.3824 17.3824

1e-20 4.0545 8.0934 8.0934 11.7080 14.0842 14.1752 17.3826 17.3826

0.1 1e-12 2.1102 4.6585 4.6585 6.0010 6.0010 6.6593 8.0117 8.1705

1e-13 2.9067 5.8705 5.8705 8.4474 10.1422 10.1937 11.5152 11.5152

1e-14 3.5757 6.8480 6.8480 9.6311 11.3616 11.4584 13.5323 13.5323

1e-16 3.7462 7.1339 7.1339 9.9889 11.7582 11.8733 13.8438 13.8438

1e-18 3.7558 7.1513 7.1513 10.0116 11.7842 11.9004 13.8516 13.8516

1e-19 3.7560 7.1516 7.1516 10.0119 11.7846 11.9007 13.8518 13.8518

1e-20 3.7560 7.1516 7.1516 10.0119 11.7846 11.9008 13.8518 13.8518

0.5 1e-12 0.9929 1.1918 1.1918 1.5740 1.5740 1.6890 2.0667 2.2162

1e-13 1.4882 2.2592 2.2592 2.4409 2.4409 2.8801 3.1590 3.3135

1e-14 1.6675 2.6056 2.6056 2.6828 2.6828 3.1339 3.4256 3.7589

1e-16 1.7042 2.6504 2.6504 2.7337 2.7337 3.1632 3.4693 3.8330

1e-18 1.7047 2.6510 2.6510 2.7343 2.7343 3.1635 3.4699 3.8339

1e-19 1.7047 2.6510 2.6510 2.7343 2.7343 3.1635 3.4699 3.8340

1e-20 1.7047 2.6510 2.6510 2.7343 2.7343 3.1635 3.4699 3.8340
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3.2. Convergence Study

When using the method of series expansion, it is necessary to
conducted a convergence study. Moreover, the effect of temper-
ature on the convergence of improved Fourier series is yet to be
analyzed, although its convergence in the absence of thermal
effects has been established.[28] In this section, to check the con-
vergence of the present numerical method, an SSSS FG plate is
taken as a representative example, with its geometrical dimen-
sions given by: length a¼ b¼ 0.2 m, thickness-side ratio
h/b¼ 0.1, and volume fraction index p¼ 2. As shown in Table 2,
when the truncated numbers in the improved Fourier series are
greater than 16� 16� 8, the relative error of nondimensional
natural frequency λ does not exceed 0.11% for all the temperature
conditions considered. For other types of boundary conditions, it
is found that selecting 16� 16� 8 also ensures convergence
(details not shown for brevity). Therefore, in all subsequent
calculations, the truncated numbers are selected asM�N� L¼
16� 16� 8 by default.

3.3. Validation of Analytical Method: Isotropic Plates with
Classical Boundary Conditions

To validate the analytical method, obtained results are compared
with those calculated using alternative methods, first, for isotro-
pic plates and then for FG plates. To this end, Table A.3 shows
the first seven frequency parameters (θ) for isotropic Al2O3

square plates having varying thickness-side ratios (h/b¼ 0.1,
0.2, 0.5), with θ defined by

θ ¼ ωb2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ρð1� v2Þ=ðEh2Þ

q
(32)

Relevant material and geometric parameters are E¼ 380 GPa,
v¼ 0.3, ρ¼ 3800 kgm�3, length a¼ 0.2m, aspect ratios a/b¼ 1.0,
and volume fraction index p¼ 0. Three classical boundary condi-
tions, that is, FFFF, SSSS, and CCCC, are selected. It is seen from
Table A.3 that the present calculation results are in excellent
agreement with existing results.[28,33,34] In addition, Figure 3–5
shows the first six 3D mode shapes of isotropic Al2O3 square
plates (with thickness-side ratio fixed at 0.1), under FFFF,
SSSS, and CCCC boundary conditions.

3.4. Validation of Analytical Method: FG Plates in Thermal
Environment

For further validation, especially for thermal applications, the
nondimensional natural frequencies of CCCC Si3N4/SUS304
FG plates are compared with existing results.[14,17,35] In
Table A.4, an FG square plate (a¼ b¼ 0.2 m, h/b¼ 0.1, and
p¼ 2) is subjected to different temperature increases:
ΔT¼ 0 K, 300 K, 500 K. In Table A.5, a square FG plate has fixed
length a¼ 0.2 m and thickness-to-length ratio h/b¼ 0.1, whereas
its volume fraction index p and aspect ratio a/b are both varied;
the temperature rise is set as ΔT¼ 300 K. Similar to the case of
isotropic plates, the results of Table A.4 and A.5 demonstrate
again that the present results for FG plates in thermal environ-
ments agree well with those reported by others.[14,17,35]

Table 2. Convergence study of nondimensional natural frequency λ for an SSSS FG plate subjected to uniform temperature rise (T0¼ 300 K, ΔT¼ T�T0).

ΔT [K] M�N�L Natural frequency

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 4� 4� 2 2.7276 6.1973 6.1973 8.1041 8.1041 9.7522 11.4501 13.5178

8� 8� 4 2.4189 5.7594 5.7594 8.1033 8.1033 8.8611 10.7653 10.7988

12� 12� 6 2.4031 5.7360 5.7360 8.1033 8.1033 8.8134 10.7351 10.7417

16� 16� 8 2.4007 5.7322 5.7322 8.1033 8.1033 8.8053 10.7311 10.7332

17� 17� 8 2.4004 5.7319 5.7319 8.1033 8.1033 8.8051 10.7306 10.7320

18� 18� 9 2.4003 5.7316 5.7316 8.1033 8.1033 8.8040 10.7305 10.7318

300 4� 4� 2 2.2609 5.5936 5.5936 7.7330 7.7330 9.0234 10.9252 12.7572

8� 8� 4 1.9139 5.1446 5.1446 7.7323 7.7323 8.1283 9.9567 9.9894

12� 12� 6 1.8955 5.1204 5.1204 7.7323 7.7323 8.0801 9.9257 9.9322

16� 16� 8 1.8927 5.1165 5.1165 7.7323 7.7323 8.0719 9.9215 9.9235

17� 17� 8 1.8923 5.1162 5.1162 7.7323 7.7323 8.0718 9.9211 9.9224

18� 18� 9 1.8923 5.1159 5.1159 7.7323 7.7323 8.0706 9.9209 9.9222

600 4� 4� 2 1.3472 4.5410 4.5410 7.0279 7.0279 7.7522 9.9253 11.5186

8� 8� 4 0.7733 4.0574 4.0574 6.8394 7.0273 7.0273 8.5287 8.5598

12� 12� 6 0.7337 4.0306 4.0306 6.7895 7.0273 7.0273 8.4948 8.5011

16� 16� 8 0.7273 4.0263 4.0263 6.7810 7.0273 7.0273 8.4903 8.4922

17� 17� 8 0.7265 4.0260 4.0260 6.7809 7.0273 7.0273 8.4897 8.4910

18� 18� 9 0.7264 4.0256 4.0256 6.7796 7.0273 7.0273 8.4896 8.4908
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Figure 3. The first six 3D mode shapes of FFFF Al2O3 square plate with thickness-side ratio fixed at 0.1.

Figure 4. The first six 3D mode shapes of SSSS Al2O3 square plate with thickness-side ratio fixed at 0.1.

Figure 5. The first six 3D mode shapes of CCCC Al2O3 square plate with thickness-side ratio fixed at 0.1.
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3.5. Parametric Studies

Next, the validated analytical method is used to quantify the
effects of plate aspect ratio a/b, volume fraction index p, and
elastic restrained stiffness on the natural frequencies of
Si3N4/SUS304 FG plates in different thermal environments.

Figure 6 shows the first four natural frequencies as functions
of temperature for CCCC FG plates having different aspect ratios
(0.5, 1.0, 1.5, and 2.0) for a¼ 0.2 m, h/b¼ 0.1, and p¼ 2.
Regardless of the plate aspect ratio, the first four natural
frequencies decrease with increasing temperature: the higher
the temperature, the faster the decrease. Two reasons contribute
to such a variation trend: material properties vary with tempera-
ture, and thermal stresses caused by boundary conditions grad-
ually increase with temperature. In addition, in Figure 6c, the
value of λ3 gradually approaches that of λ4 as the temperature
increases. Figure 7 shows the vibration modes of a CCCC FG
plate with a fixed aspect ratio of 1.5, at 1000 K. At 1000 K,
although λ3 and λ4 have nearly identical values, the correspond-
ing vibration modes are seen to be completely different. In other
words, a small frequency error in thermal environments may
lead to significantly mismatching mode shapes, which proves
the importance of an accurate theoretical model for thermal
vibration analysis.

Figure 8 shows the influence of volume fraction index on the
variation of fundamental frequency with temperature for

Si3N4/SUS304 FG plates. In this case, four different types of
boundary condition are considered: 1) CCCC, 2) CSCS,
3) CFCF, and 4) SSSS. Intuitively, from the viewpoint of restraint
stiffness, the boundary constraints weaken gradually from 1) to
2). For each type of boundary condition, a total of five FG plates
with different volume fractions (p¼ 0.3, 0.5, 1.0, 2.0, 10.0) are
studied. Geometric dimensions of all the FG plates remain
unchanged (a¼ 0.2m, a/b¼ 1.0, and h/b¼ 0.1).

It can be seen from Figure 8 that the fundamental frequency
of an FG plate with a large volume fraction decreases more rap-
idly with increasing temperature, because the larger the volume
fraction, the higher the metal content. Interestingly, for a given
volume fraction, when the temperature is fixed, the fundamental
frequency is related to boundary condition as follows: λ
(CCCC)> λ (CSCS)> λ (CFCF)> λ (SSSS). This is because a
weaker constraint at the edges of the FG plate decreases its flex-
ural rigidity, resulting in lower frequency. This phenomenon is
consistent with the results of Chakraverty and Pradhan for
Al/Al2O3 FG plates with different boundary conditions.[6] For
further validation, finite element (FE) analysis is also conducted
to calculate the fundamental frequencies of an isotropic SUS304
plate with four different boundary conditions at 300, 500, and
700 K, respectively. Table 3 shows the FE simulation results,
which show that the variation trend of the fundamental
frequency with boundary condition agrees with the present ana-
lytical result of Figure 8.

Figure 6. The first four nondimensional natural frequencies of CCCC FG plates plotted as functions of temperature (T0¼ 300 K and 300 K≤ T≤ 1100 K)
for selected plate aspect ratios: a) a/b¼ 0.5; b) a/b¼ 1.0; c) a/b¼ 1.5; d) a/b¼ 2.0.
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Figure 8. Fundamental frequency of Si3N4/SUS304 FG plate with varying volume fraction p plotted as a function of temperature (T0¼ 300 K and
300 K≤ T≤ 1000 K) for selected boundary conditions: a) CCCC; b) CSCS; c) CFCF; d) SSSS.

Figure 7. The first four 3D mode shapes of the CCCC FG plate with a fixed aspect ratio of 1.5 at 1000 K.
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The fundamental frequency of an FG plate with a fixed volume
fraction of 10 drops to zero at the critical temperature of 908.5 K
(CFCF plate), as shown in Figure 8c, and 855.6 K (SSSS plate), as
shown in Figure 8d. In particular, the fundamental frequency of
an FG plate with a fixed volume fraction of 2 drops to zero at the
critical temperature of 944.0 K in Figure 8d. Physically, according
to Chen et al.,[36] such an FG plate will buckle when its funda-
mental frequency drops to zero. Given that the boundary
conditions in Figure 8a,d are CCCC and SSSS, respectively, it
can be inferred that an FG plate with weaker boundary con-
straints is more prone to buckling in thermal environments.
In other words, the present analytical method not only can

predict the buckling of an FG plate but also can accurately deter-
mine its critical buckling temperature.

Figure 9 and 10 show how the fundamental frequency of
Si3N4/SUS304 FG plate varies with the spring stiffness of elastic
boundaries at different temperature rises: 100, 300, and 500 K.
For the plotting, relevant parameters are fixed at: a¼ 0.2 m,
a/b¼ 1.0, h/b¼ 0.1, and p¼ 1.

Specifically, the four boundary conditions in Figure 9 contain
the combination of simply supported boundary (S) and elastic
constraints approaching the simply supported form (Es). From
Figure 9a–d, in terms of spring stiffness, the elastic boundaries
of the FG plate gradually vary, as follows (in abbreviation):
a) SSSEs; b) SSEsEs; c) SEsEsEs; and d) EsEsEsEs.

In Figure 10, the four boundary condition types are composed
of clamped boundary (C) and elastic constraints approaching the
clamped form (Ec). From Figure 10a–d, the order of change in
elastic boundaries is similar to Figure 9, as a) CCCEc; b) CCEcEc;
c) CEcEcEc; and d) EcEcEcEc.

Table 4 shows the spring stiffness values of elastic boundaries
adopted to construct Figure 9 and 10.

The results of Figure 9 and 10 reveal some new phenomena of
natural frequency varying with elastic boundary conditions in dif-
ferent thermal environments. In Figure 9, when the stiffness of
elastic boundary decreases, the (nondimensional) fundamental

Table 3. Fundamental frequencies of isotropic SUS304 plate with different
combinations of boundary conditions in thermal environments
(a¼ 0.2 m, a/b¼ 1.0, h/b¼ 0.1).

Temperature T [K] Fundamental frequency [Hz]

CCCC CSCS CFCF SSSS

300 4009.0 3280.5 2539.6 2331.2

500 3777.7 3124.8 2363.6 2215.9

700 3449.2 2894.2 2187.8 2049.1

Figure 9. Nondimensional fundamental frequency λ of Si3N4/SUS304 FG plate plotted as a function of spring stiffness at different temperature rises
(ΔT¼ T�T0 and T0¼ 300 K) for elastic constraints in simply supported form: a) SSSEs; b) SSEsEs; c) SEsEsEs; d) EsEsEsEs.
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frequency of an FG plate decreases continuously: the smaller the
stiffness, the faster the fundamental frequency decreases.
Meanwhile, the more the edges are elastically constrained, the
more the fundamental frequency decreases. When the stiffness
of elastic boundaries is increased from 1e-11 to 1e-15, the higher
the temperature, the more the fundamental frequency decreases.
As for Figure 10, although the fundamental frequency decreases
with decreasing boundary stiffness, the downtrend slightly
increases and then decreases. As the number of elastic bound-
aries increases, the extent to which the fundamental frequency
decreases is enlarged. The influence of temperature on the vari-
ation of the fundamental frequency is similar to that shown in
Figure 9.

4. Conclusion

Based on the theory of 3D elasticity, an analytical method has been
developed to predict the free vibration performance of an FG rect-
angular plate with arbitrary boundary conditions in thermal envi-
ronments. The convergence and accuracy of the proposed method
are validated against existing analytical results for both isotropic
and FG plates, with excellent agreement achieved. The method
is then utilized to conduct a systematic parameter analysis to high-
light the effects of plate aspect ratio, volume fraction, and elastic
boundary on the free vibration characteristics of the FG plate set in
different temperatures. Nomatter how its aspect ratio changes, the
natural frequency of the FG plate decreases with increasing tem-
perature. When the boundary constraint is relatively weak, the nat-
ural frequency drops to zero at a critical temperature, that is, the
critical buckling temperature. With elastic boundary conditions
considered, the sensitivity of natural frequency to spring stiffness
increases with the number of elastic edges. The proposed analyti-
cal method can be readily extended to deal with more complicated
situations, like nonuniform elastic restraint of plate edges and
nonuniform and/or transient temperature rises, which are impor-
tant for designing supersonic aircraft. In addition, the current
work can be extended to study the free vibration of FG smart mate-
rials, such as FG electro- and FG magnetoactive materials,[2,3] by
developing relevant constitutive relations on the basis of nonlinear
thermo–electric–elasticity and thermo–magnetic–elasticity.

Figure 10. Nondimensional fundamental frequency λ of Si3N4/SUS304 FG plate plotted as a function of spring stiffness at different temperature rises
(ΔT¼ T�T0 and T0¼ 300 K) for elastic constraints in clamped form: a) CCCEc; b) CCEcEc; c) CEcEcEc; d) EcEcEcEc.

Table 4. Spring stiffness values for two different types of elastic constraint
boundary conditions.

Edge Stiffness of elastic boundaries

Es [N/m] Ec [N/m]

x¼ 0 ku¼ 0, kv¼ kw¼ 1e-11�1e-15 ku¼ kv¼ kw¼ 1e-11�1e-15

x¼ a ku¼ 0, kv¼ kw¼ 1e-11�1e-15 ku¼ kv¼ kw¼ 1e-11�1e-15

y¼ 0 kv¼ 0, ku¼ kw¼ 1e-11�1e-15 ku¼ kv¼ kw¼ 1e-11�1e-15

y¼ b kv¼ 0, ku¼ kw¼ 1e-11�1e-15 ku¼ kv¼ kw¼ 1e-11�1e-15
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Appendix A. Supplementary Tables

Table A.1. Temperature-dependent coefficients of Young’s modulus E, Poisson ratio ν, and thermal expansion coefficient α of Si3N4 and SUS304.[32]

Material Properties P�1 P0 P1 P2 P3 P (300 K)

Si3N4 E [Pa] 0 348.43e-9 �3.070e-4 2.160e-7 �8.946e-11 322.2715e-9

v 0 0.2400 0 0 0 0.2400

α [1/K] 0 5.8723e-6 9.095e-4 0 0 7.4746e-6

ρ [kg m�3] 0 2370 0 0 0 2370

SUS304 E [Pa] 0 201.04e-9 3.079e-4 �6.534e-7 0 207.7877e-9

v 0 0.3262 �2.002e-4 3.797e-7 0 0.3178

α [1/K] 0 12.330e-6 8.086e-4 0 0 1.5321e-5

ρ [kg m�3] 0 8166 0 0 0 8166

Table A.2. Spring stiffness setup for classical boundary conditions.

Edge Boundary condition Spring stiffness [N/m]

ku kv kw

x¼ 0 Free (F) 0 0 0

Simply supported (S) 0 1e-19 1e-19

Clamped (C) 1e-19 1e-19 1e-19

x¼ a Free (F) 0 0 0

Simply supported (S) 0 1e-19 1e-19

Clamped (C) 1e-19 1e-19 1e-19

y¼ 0 Free (F) 0 0 0

Simply supported (S) 1e-19 0 1e-19

Clamped (C) 1e-19 1e-19 1e-19

y¼ b Free (F) 0 0 0

Simply supported (S) 1e-19 0 1e-19

Clamped (C) 1e-19 1e-19 1e-19

Table A.3. The first seven frequency parameters for isotropic Al2O3 square plates (T0¼ 300 K) for selected boundary conditions: comparison between the
present analytical method and those in the open literature.

Case h/b Source Frequency parameters

θ1 θ2 θ3 θ4 θ5 θ6 θ7

SSSS 0.1 Jin[28] 19.098 45.636 45.636 64.384 64.384 70.149 85.500

Liew[33] 19.090 45.619 45.619 64.383 64.383 70.104 85.488

present 19.100 45.639 45.639 64.384 64.384 70.156 85.503

0.2 Jin[28] 17.528 32.192 32.192 38.488 38.488 45.526 55.802

Liew[33] 17.526 32.192 32.192 38.483 38.483 45.526 55.787

present 17.529 32.192 32.192 32.489 32.489 45.526 55.804

0.5 Jin[28] 12.426 12.877 12.877 18.210 23.009 23.009 25.753

Liew[33] 12.426 12.877 12.877 18.210 23.007 23.007 25.753

present 12.426 12.877 12.877 18.210 23.010 23.010 25.753
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Table A.3. Continued.

Case h/b Source Frequency parameters

θ1 θ2 θ3 θ4 θ5 θ6 θ7

CCCC 0.1 Jin[28] 33.009 63.043 63.043 88.411 104.28 105.29 123.73

Liew[33] 32.782 62.630 62.630 87.896 103.61 104.60 123.59

present 33.032 63.102 63.102 88.496 104.37 105.39 123.74

0.2 Jin[28] 27.065 47.346 47.346 62.000 62.000 63.635 72.604

Liew[33] 26.906 47.103 47.103 61.917 61.917 63.348 72.286

present 27.081 47.386 47.386 62.009 62.009 63.688 72.657

0.5 Jin[28] 15.358 24.136 24.136 24.866 24.866 29.379 31.578

Liew[33] 15.294 24.078 24.078 24.832 24.832 29.377 31.210

present 15.366 24.148 24.148 24.869 24.869 29.379 31.594

FFFF 0.1 Jin[28] 12.728 18.956 23.346 31.965 31.965 55.493 55.493

Liew[34] 12.726 18.955 23.347 31.965 31.965 55.493 55.493

present 12.730 18.958 23.348 31.967 31.967 55.454 55.454

0.2 Jin[28] 11.710 17.433 21.252 27.648 27.648 40.192 42.775

Liew[34] 11.710 17.433 21.252 27.647 27.647 40.191 42.776

present 11.711 17.434 21.253 27.659 27.649 40.192 42.775

0.5 Jin[28] 8.7801 12.515 14.962 16.072 17.030 17.030 17.632

Liew[34] 8.7802 12.515 14.962 16.073 17.030 17.030 17.631

present 8.7802 12.515 14.962 16.072 17.030 17.030 17.632

Table A.4. Nondimensional natural frequency λ for CCCC square Si3N4/SUS304 FG plates subjected to different temperature rises (T0¼ 300 K,
ΔT¼ T�T0): comparison between the present analytical method and those in the existing literature.

ΔT [K] Source Natural frequency

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0 Yang[14] 4.1062 7.8902 7.8902 11.1834 12.5881 13.1867 15.4530 16.0017

Li[17] 4.1658 7.9389 7.9389 11.1212 13.0973 13.2234 15.3627 15.3627

Kim[35] 4.1165 7.9696 7.9696 11.2198 13.1060 13.2089 15.9471 15.9471

present 4.1389 7.9011 7.9011 11.0783 13.0550 13.1824 15.4525 15.4525

300 Yang[14] 3.6636 7.2544 7.2544 10.3924 11.7054 12.3175 14.4520 15.0019

Li[17] 3.7202 7.3010 7.3010 10.3348 12.2256 12.3563 14.8112 14.8112

Kim[35] 3.6593 7.3098 7.3098 10.4021 12.1928 12.3052 14.9090 14.9090

present 3.7222 7.2953 7.2953 10.3251 12.2168 12.3481 14.8106 14.8106

500 Yang[14] 3.2357 6.6281 6.6281 9.5900 10.8285 11.4350 13.4412 13.9756

Li[17] 3.2747 6.6509 6.6509 9.5192 11.3126 11.4468 13.7907 13.7907

Kim[35] 3.2147 6.6561 6.6561 9.5761 11.2708 11.3812 13.8346 13.8346

present 3.2811 6.6511 6.6511 9.5157 11.3099 11.4455 13.7863 13.7863

Table A.5. Nondimensional natural frequency λ for CCCC rectangular Si3N4/SUS304 FG plates with different aspect ratios a/b and different volume
fraction index p subjected to uniform temperature rise (T0¼ 300 K, ΔT¼ T�T0¼ 300 K): comparison between the present analytical method and
those in the existing literature.

p a/b Source Natural frequency

λ1 λ2 λ3 λ4 λ5 λ6 λ7

2 0.5 Yang[14] 9.2196 11.6913 15.2957 20.4667 21.2323 21.4468 22.4853

Li[17] 9.2111 11.5890 15.5999 19.9043 20.0234 20.7922 21.9073

present 9.2051 11.5831 15.5976 19.8983 20.0595 20.8200 21.9454
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Appendix B. Detailed Expression of Matrices
1 in Theoretical Formulas

2 With reference to Equation (29), to clearly show each element in a
3 matrix, the indices of the matrix are given as

i ¼ l ⋅M ⋅ N þ n ⋅M þm þ 1 (B.1)

j ¼ o ⋅M ⋅ N þ q ⋅M þ pþ 1 (B.2)

i1 ¼ ðr � 1Þ ⋅M ⋅ N þ n ⋅M þm þ 1 (B.3)

j1 ¼ ðs� 1Þ ⋅M ⋅N þ q ⋅M þ pþ 1 (B.4)

i2 ¼ ðr � 1Þ ⋅M ⋅ Lþ l ⋅M þm þ 1 (B.5)

j2 ¼ ðs� 1Þ ⋅M ⋅ Lþ o ⋅M þ pþ 1 (B.6)

i3 ¼ ðr � 1Þ ⋅ N ⋅ Lþ l ⋅N þ nþ 1 (B.7)

j3 ¼ ðs� 1Þ ⋅N ⋅ Lþ o ⋅ N þ qþ 1 (B.8)

4 where m¼ 0, 1, …, M�1; p¼ 0, 1, …, M�1; n¼ 0, 1, …, N�1;
5 q¼ 0, 1, …, N�1; l¼ 0, 1, …, L�1; o¼ 0, 1, …, L�1; r¼ 1, 2;
6 and s¼ 1, 2.
7 For stiffness matrix [K], detailed expressions of its first row are

½K1,1�i,j ¼ X11
cc Y00

cc A Z00
cc þ X00

cc Y11
cc C Z00

cc þ X00
cc Y00

cc C Z11
cc (B.9)

½K1,2�i,j1 ¼ X11
cc Y00

cc A Z00
cξ þ X00

cc Y11
cc C Z00

cξ þ X00
cc Y00

cc C Z11
cξ (B.10)

½K1,3�i,j2 ¼ X11
cc Y00

cξA Z00
cc þ X00

cc Y11
cξC Z00

cc þ X00
cc Y00

cξC Z11
cc (B.11)

½K1,4�i,j3 ¼ X11
cξY

00
cc A Z00

cc þ X00
cξY

11
cc C Z00

cc þ X00
cξY

00
cc C Z11

cc (B.12)

½K1,5�i,j ¼ X10
cc Y01

cc B Z00
cc þ X01

cc Y10
cc C Z00

cc (B.13)

½K1,6�i,j1 ¼ X10
cc Y01

cc B Z00
cξ þ X01

cc Y10
cc C Z00

cξ (B.14)

½K1,7�i,j2 ¼ X10
cc Y01

cξB Z00
cc þ X01

cc Y10
cξC Z00

cc (B.15)

½K1,8�i,j3 ¼ X10
cξY

01
cc B Z00

cc þ X01
cξY

10
cc C Z00

cc (B.16)

½K1,9�i,j ¼ X10
cc Y01

cc B Z00
cc þ X01

cc Y00
cc C Z01

cc (B.17)

½K1,10�i,j1 ¼ X10
cc Y01

cc B Z00
cξ þ X01

cc Y00
cc C Z01

cξ (B.18)

½K1,11�i,j2 ¼ X10
cc Y01

cξB Z00
cc þ X01

cc Y00
cξC Z01

cc (B.19)

½K1,12�i,j3 ¼ X10
cξY

01
cc B Z00

cc þ X01
cξY

00
cc C Z01

cc (B.20)

8Detailed expressions of stiffness matrix [Ks] are

½Ks� ¼
½Ks�uu 0 0
0 ½Ks�vv 0
0 0 ½Ks�ww

2
4

3
5 (B.21)

½Ks�uu ¼
½Ks

1,1� ½Ks
1,2� ½Ks

1,3� ½Ks
1,4�

½Ks
2,2� ½Ks

2,3� ½Ks
2,4�

½Ks
3,3� ½Ks

3,4�
sym ½Ks

4,4�

2
664

3
775 (B.22)

½Ks
1,1�i,j ¼ kux0Y00

cc Z00
cc þ kuxað�1ÞmþpY00

cc Z00
cc

þ kuy0X00
cc Z00

cc þ kuybð�1ÞnþqX00
cc Z00

cc

(B.23)

½Ks
1,2�i,j1 ¼ kux0Y00

cc Z00
cξ þ kuxað�1ÞmþpY00

cc Z00
cξ

þ kuy0X00
cc Z00

cξ þ kuybð�1ÞnþqX00
cc Z00

cξ

(B.24)

½Ks
1,3�i,j2 ¼ kux0Y00

cξZ
00
cc þ kuxað�1ÞmþpY00

cξZ
00
cc (B.25)

½Ks
1,4�i,j3 ¼ kuy0X00

cξZ
00
cc þ kuybð�1ÞnþqX00

cξZ
00
cc (B.26)

½Ks
2,2�i1,j1 ¼ kux0Y00

cc Z00
ξξ þ kuxað�1ÞmþpY00

cc Z00
ξξ

þ kuy0X00
cc Z00

ξξ þ kuybð�1ÞnþqX00
cc Z00

ξξ

(B.27)

Table A.5. Continued.

p a/b Source Natural frequency

λ1 λ2 λ3 λ4 λ5 λ6 λ7

1.0 Yang[14] 3.6636 7.2544 7.2544 10.3924 11.7054 12.3175 14.4520

Li[17] 3.7202 7.3010 7.3010 10.3348 12.2256 12.3563 14.8112

present 3.7222 7.2953 7.2953 10.3251 12.2168 12.3481 14.8106

1.5 Yang[14] 2.7373 4.2236 6.6331 6.6331 7.9088 9.8122 10.0191

Li[17] 2.7904 4.2839 6.6401 6.7227 7.8941 9.8528 9.9676

present 2.7976 4.2890 6.6367 6.7201 7.8889 9.8492 9.9585

10 0.5 Yang[14] 7.9839 10.1219 13.3088 17.6295 18.3727 18.9066 19.3778

Li[17] 7.8170 9.8332 13.2410 16.8733 16.9943 17.6538 18.5960

present 7.8392 9.8607 13.2733 16.8710 17.0290 17.6972 18.6311

1.0 Yang[14] 3.1835 6.3001 6.3001 9.0171 10.2372 10.6781 12.6015

Li[17] 3.1398 6.1857 6.1857 8.7653 10.3727 10.4866 12.5971

present 3.1567 6.2123 6.2123 8.7971 10.4054 10.5216 12.6226

1.5 Yang[14] 2.3753 3.6692 5.7618 5.7618 6.8690 8.5206 8.6979

Li[17] 2.3470 3.6147 5.6234 5.6910 6.6888 8.3553 8.4522

present 2.3620 3.6365 5.6495 5.7198 6.7185 8.3957 8.4845
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½Ks
2,3�i1,j2 ¼ kux0Y00

cξZ
00
ξc þ kuxað�1ÞmþpY00

cξZ
00
ξc (B.28)

½Ks
2,4�i1,j3 ¼ kuy0X00

cξZ
00
ξc þ kuybð�1ÞnþqX00

cξZ
00
ξc (B.29)

½Ks
3,3�i2,j2 ¼ kux0Y00

ξξZ
00
cc þ kuxað�1ÞmþpY00

ξξZ
00
cc (B.30)

½Ks
3,4�i2,j3 ¼ 0 (B.31)

½Ks
4,4�i3,j3 ¼ kuy0X00

ξξZ
00
cc þ kuybð�1ÞnþqX00

ξξZ
00
cc (B.32)

1 where the matrices [Ks]vv and [Ks]ww can be easily obtained by
2 replacing the spring stiffness ku in the matrix [Ks]uu with kv
3 and kw, respectively.
4 Detailed expressions of stiffness matrix [KT] are

½KT � ¼
½KT �uu 0 0
0 ½KT �vv 0
0 0 ½KT �ww

2
4

3
5 (B.33)

½KT �uu ¼ ½KT �vv ¼ ½KT �ww ¼
½KT

1,1� ½KT
1,2� ½KT

1,3� ½KT
1,4�

½KT
2,2� ½KT

2,3� ½KT
2,4�

½KT
3,3� ½KT

3,4�
sym ½KT

4,4�

2
664

3
775
(B.34)

½KT
1,1�i,j ¼ ðX11

cc Y00
cc T Z00

cc þ X00
cc Y11

cc T Z00
cc ÞΔT (B.35)

½KT
1,2�i,j1 ¼ ðX11

cc Y00
cc T Z00

cξ þ X00
cc Y11

cc T Z00
cξ ÞΔT (B.36)

½KT
1,3�i,j2 ¼ ðX11

cc Y00
cξT Z00

cc þ X00
cc Y11

cξT Z00
cc ÞΔT (B.37)

½KT
1,4�i,j3 ¼ ðX11

cξY
00
cc T Z00

cc þ X00
cξY

11
cc T Z00

cc ÞΔT (B.38)

½KT
2,2�i1,j1 ¼ ðX11

cc Y00
cc T Z00

ξξ þ X00
cc Y11

cc T Z00
ξξ ÞΔT (B.39)

½KT
2,3�i1,j2 ¼ ðX11

cc Y00
cξT Z00

ξc þ X00
cc Y11

cξT Z00
ξc ÞΔT (B.40)

½KT
2,4�i1,j3 ¼ ðX11

cξY
00
cc T Z00

ξc þ X00
cξY

11
cc T Z00

ξc ÞΔT (B.41)

½KT
3,3�i2,j2 ¼ ðX11

cc Y00
ξξT Z00

cc þ X00
cc Y11

ξξT Z00
cc ÞΔT (B.42)

½KT
3,4�i2,j3 ¼ ðX11

cξY
00
ξc T Z00

cc þ X00
cξY

11
ξc T Z00

cc ÞΔT (B.43)

½KT
4,4�i3,j3 ¼ ðX11

ξξY
00
cc T Z00

cc þ X00
ξξY

11
cc T Z00

cc ÞΔT (B.44)

5 Detailed expressions of mass matrix [M] are

½M� ¼
½M�uu 0 0
0 ½M�vv 0
0 0 ½M�ww

2
4

3
5 (B.45)

½M�uu ¼ ½M�vv ¼ ½M�ww ¼
½M1,1� ½M1,2� ½M1,3� ½M1,4�

½M2,2� ½M2,3� ½M2,4�
½M3,3� ½M3,4�

sym ½M4,4�

2
664

3
775
(B.46)

½M1,1�i,j ¼ X00
cc Y00

cc ρ Z00
cc (B.47)

½M1,2�i,j1 ¼ X00
cc Y00

cc ρ Z00
cξ (B.48)

½M1,3�i,j2 ¼ X00
cc Y00

cξ ρ Z00
cc (B.49)

½M1,4�i,j3 ¼ X00
cξY

00
cc ρ Z00

cc (B.50)

½M2,2�i1,j1 ¼ X00
cc Y00

cc ρ Z00
ξξ (B.51)

½M2,3�i1,j2 ¼ X00
cc Y00

cξ ρ Z00
ξc (B.52)

½M2,4�i1,j3 ¼ X00
cξY

00
cc ρ Z00

ξc (B.53)

½M3,3�i2,j2 ¼ X00
cc Y00

ξξ ρ Z00
cc (B.54)

½M3,4�i2,j3 ¼ X00
cξY

00
ξc ρ Z00

cc (B.55)

½M4,4�i3,j3 ¼ X00
ξξY

00
cc ρ Z00

cc (B.56)

6Detailed expressions of integral operations are

Xef
cc ¼

Z
a

0

de cosðλmxÞ
dxe

df cosðλpxÞ
dxf

dx

Xef
ξc ¼

Z
a

0

deξtðxÞ
dxe

df cosðλpxÞ
dxf

dx

(B.57-58)

Xef
cξ ¼

Z
a

0

de cosðλmxÞ
dxe

df ξkðxÞ
dxf

dx

Xef
ξξ ¼

Z
a

0

deξtðxÞ
dxe

df ξkðxÞ
dxf

dx

(B.59-60)

Yef
cc ¼

Z
b

0

de cosðλnyÞ
dye

df cosðλqyÞ
dyf

dy

Yef
ξc ¼

Z
b

0

deξtðxÞ
dye

df cosðλpxÞ
dyf

dy

(B.61-62)

Yef
cξ ¼

Z
b

0

de cosðλnyÞ
dye

df ξkðyÞ
dyf

dy

Yef
ξξ ¼

Z
b

0

deξtðyÞ
dye

df ξkðyÞ
dyf

dy

(B.63-64)

Zef
cc ¼

Z
h

0

de cosðλlzÞ
dze

df cosðλozÞ
dzf

dz

Zef
ξc ¼

Z
h

0

deξtðzÞ
dze

df cosðλozÞ
dzf

dz

(B.65-66)

Zef
cξ ¼

Z
h

0

de cosðλlzÞ
dze

df ξkðzÞ
dzf

dz

Zef
ξξ ¼

Z
h

0

deξtðzÞ
dze

df ξkðzÞ
dzf

dz

(B.67-68)

A Zef
cc ¼

Z
h

0
A
de cosðλlzÞ

dze
df cosðλozÞ

dzf
dz

A Zef
ξc ¼

Z
h

0
A
deξtðzÞ
dze

df cosðλozÞ
dzf

dz

(B.69-70)

A Zef
cξ ¼

Z
h

0
A
de cosðλlzÞ

dze
df ξkðzÞ
dzf

dz

A Zef
ξξ ¼

Z
h

0
A
deξtðzÞ
dze

df ξkðzÞ
dzf

dz

(B.71-72)
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B Zef
cc ¼

Z
h

0
B
de cosðλlzÞ

dze
df cosðλozÞ

dzf
dz

B Zef
ξc ¼

Z
h

0
B
deξtðzÞ
dze

df cosðλozÞ
dzf

dz

(B.73-74)

B Zef
cξ ¼

Z
h

0
B
de cosðλlzÞ

dze
df ξkðzÞ
dzf

dz

B Zef
ξξ ¼

Z
h

0
B
deξtðzÞ
dze

df ξkðzÞ
dzf

dz

(B.75-76)

C Zef
cc ¼

Z
h

0
C
de cosðλlzÞ

dze
df cosðλozÞ

dzf
dz

C Zef
ξc ¼

Z
h

0
C
deξtðzÞ
dze

df cosðλozÞ
dzf

dz

(B.77-78)

C Zef
cξ ¼

Z
h

0
C
de cosðλlzÞ

dze
df ξkðzÞ
dzf

dz

C Zef
ξξ ¼

Z
h

0
C
deξtðzÞ
dze

df ξkðzÞ
dzf

dz

(B.79-80)

ρ Zef
cc ¼

Z
h

0
ρðzÞ d

e cosðλlzÞ
dze

df cosðλozÞ
dzf

dz

ρ Zef
ξc ¼

Z
h

0
ρðzÞ d

eξtðzÞ
dze

df cosðλozÞ
dzf

dz

(B.81-82)

ρ Zef
cξ ¼

Z
h

0
ρðzÞ d

e cosðλlzÞ
dze

df ξkðzÞ
dzf

dz

ρ Zef
ξξ ¼

Z
h

0
ρðzÞ d

eξtðzÞ
dze

df ξkðzÞ
dzf

dz

(B.83-84)

T Zef
cc ¼

Z
h

0
� 1
2
ðAþ 2BÞαðz,TÞ d

e cosðλlzÞ
dze

df cosðλozÞ
dzf

dz

(B.85)

T Zef
cξ ¼

Z
h

0
� 1
2
ðAþ 2BÞαðz,TÞ d

e cosðλlzÞ
dze

df ξkðzÞ
dzf

dz (B.86)

T Zef
ξc ¼

Z
h

0
� 1
2
ðAþ 2BÞαðz,TÞ d

eξtðzÞ
dze

df cosðλozÞ
dzf

dz (B.87)

T Zef
ξξ ¼

Z
h

0
� 1
2
ðAþ 2BÞαðz,TÞ d

eξtðzÞ
dze

df ξkðzÞ
dzf

dz (B.88)

7 where e¼ 0, 1 and f¼ 0, 1.
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